首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In our previous study on discovering novel types of CCR3 antagonists, we found a fluoronaphthalene derivative (1) that exhibited potent CCR3 inhibitory activity with an IC(50) value of 20 nM. However, compound 1 also inhibited human cytochrome P450 2D6 (CYP2D6) with an IC(50) value of 400 nM. In order to reduce its CYP2D6 inhibitory activity, we performed further systematic structural modifications on 1. In particular, we focused on reducing the number of lipophilic moieties in the biphenyl part of 1, using ClogD(7.4) values as the reference index of lipophilicity. This research led to the identification of N-{(3-exo)-8-[(6-fluoro-2-naphthyl)methyl]-8-azabicyclo[3.2.1]oct-3-yl}-3-(piperidin-1-ylcarbonyl)isonicotinamide 1-oxide (30) which showed comparable CCR3 inhibitory activity (IC(50)=23 nM) with much reduced CYP2D6 inhibitory activity (IC(50)=29,000 nM) compared with 1.  相似文献   

2.
We report the synthesis, biochemical evaluation and rationalisation of the inhibitory activity of a number of azole-based compounds as inhibitors of the two components of the cytochrome P-450 enzyme 17alpha-hydroxylase/17,20-lyase (P450(17alpha)), i.e. 17alpha-hydroxylase (17alpha-OHase) and 17,20-lyase (lyase). The results suggest that the compounds synthesised are potent inhibitors, with 7-phenyl heptyl imidazole (11) (IC(50)=320 nM against 17alpha-OHase and IC(50)=100 nM against lyase); 1-[7-(4-fluorophenyl) heptyl] imidazole (14) (IC(50)=170 nM against 17alpha-OHase and IC(50)=57 nM against lyase); 1-[5-(4-bromophenyl) pentyl] imidazole (19) (IC(50)=500 nM against 17alpha-OHase and IC(50)=58 nM against lyase) being the most potent inhibitors within the current study, in comparison to ketoconazole (KTZ) (IC(50)=3.76 microM against 17alpha-OHase and IC(50)=1.66 microM against lyase). Furthermore, consideration of the inhibitory activity against the two components shows that all of the compounds tested are less potent towards the 17alpha-OHase in comparison to the lyase component, a desirable property in the development of novel inhibitors of P450(17alpha). From the modelling of these compounds onto the novel substrate heme complex (SHC) for the overall enzyme complex, the length of the compound, along with its ability to undergo interaction with the active site corresponding to the C(3) area of the steroidal backbone, are suggested to play a key role in determining the overall inhibitory activity.  相似文献   

3.
The synthesis and potent inhibitory activity of novel 4-[(imidazol-1-yl and triazol-1-yl)(phenyl)methyl]aryl-and heteroaryl amines versus a MCF-7 CYP26A1 cell assay is described. Biaryl imidazole ([4-(imidazol-1-yl-phenyl-methyl)-phenyl]-naphthalen-2-yl-amine (8), IC(50)=0.5 microM; [4-(imidazol-1-yl-phenyl-methyl)-phenyl]-indan-5-yl-amine (9), IC(50)=1.0 microM) and heteroaryl imidazole derivatives ((1H-benzoimidazol-2-yl)-{4-[(5H-imidazol-1-yl)-phenyl-methyl]-phenyl}-amine (15), IC(50)=2.5 microM; benzooxazol-2-yl-{4-[(5H-imidazol-1-yl)-phenyl-methyl]-phenyl}-amine (16), IC(50)=0.9 microM; benzothiazol-2-yl-{4-[(5H-imidazol-1-yl)-phenyl-methyl]-phenyl}-amine (17), IC(50)=1.5 microM) were the most potent CYP26 inhibitors. Using a CYP26A1 homology model differences in activity were investigated. Incubation of SH-SY5Y human neuroblastoma cells with the imidazole aryl derivative 8, and the imidazole heteroaryl derivatives 16 and 17 potentiated the atRA-induced expression of CYP26B1. These data suggest that further structure-function studies leading to clinical development are warranted.  相似文献   

4.
Improvement of the physical properties of pyrazole derivative 1, which we reported previously as a potent and selective 20-HETE synthase inhibitor (IC(50) 5.7 nM), is described. Introduction of a sufficient substituted-amino group on the side chain enhanced the water-solubility of 1 (0.014 mg/mL at pH 6.8). Among the products, 2-piperazinoethoxy derivatives 3e and 6b showed solubility suitable for injection and potent inhibitory activity toward 20-HETE synthase (IC(50) 21.2 and 14.0 nM, respectively).  相似文献   

5.
Callophycin A was originally isolated from the red algae Callophycus oppositifolius and shown to mediate anticancer and cytotoxic effects. In our collaborative effort to identify potential chemopreventive and anticancer agents with enhanced potency and selectivity, we employed a tetrahydro-β-carboline-based template inspired by callophycin A for production of a chemical library. Utilizing a parallel synthetic approach, 50 various functionalized tetrahydro-β-carboline derivatives were prepared and assessed for activities related to cancer chemoprevention and cancer treatment: induction of quinone reductase 1 (QR1) and inhibition of aromatase, nitric oxide (NO) production, tumor necrosis factor (TNF)-α-induced NFκB activity, and MCF7 breast cancer cell proliferation. Biological results showed that the n-pentyl urea S-isomer 6a was the strongest inducer of QR1 with an induction ratio (IR) value of 4.9 at 50 μM [the concentration to double the activity (CD)=3.8 μM] and its corresponding R-isomer 6f had an IR value of 4.3 (CD=0.2 μM). The isobutyl carbamate derivative 3d with R stereochemistry demonstrated the most potent inhibitory activity of NFκB, with the half maximal inhibitory concentration (IC(50)) value of 4.8 μM, and also showed over 60% inhibition at 50 μM of NO production (IC(50)=2.8 μM). The R-isomer urea derivative 6j, having an appended adamantyl group, exhibited the most potent MCF7 cell proliferation inhibitory activity (IC(50)=14.7 μM). The S-isomer 12a of callophycin A showed the most potent activity in aromatase inhibition (IC(50)=10.5 μM).  相似文献   

6.
We have replaced the pyridyl ring of trovirdine with an alicyclic cyclohexenyl, adamantyl or cis-myrtanyl ring. Only the cyclohexenyl-containing thiourea compound N-[2-(1-cyclohexenyl)ethyl]-N'-[2-(5-bromopyridyl)]- thiourea (HI-346) (as well as its chlorine-substituted derivative N-[2-(1-cyclohexenyl)ethyl]-N'-[2-(5-chloropyridyl)]- thiourea/HI-445) showed RT inhibitory activity. HI-346 and HI-445 effectively inhibited recombinant RT with better IC50 values than other anti-HIV agents tested. The ranking order of efficacy in cell-free RT inhibition assays was: HI-346 (IC50 = 0.4 microM) > HI-445 (IC50 = 0.5 microM) > trovirdine (IC50 = 0.8 microM) > MKC-442 (IC5 = 0.8 microM) = delavirdine (IC50 = 1.5 microM) > nevirapine (IC50 = 23 microM). In accord with this data, both compounds inhibited the replication of the drug-sensitive HIV-1 strain HTLV(IIIB) with better IC50 values than other anti-HIV agents tested. The ranking order of efficacy in cellular HIV-1 inhibition assays was: HI-445 = HI-346 (IC50 = 3 nM) > MKC-442 (IC50 = 4 nM) = AZT (IC50 = 4 nM) > trovirdine (IC50 = 7 nM) > delavirdine (IC50 = 9 nM) > nevirapine (IC50 = 34 nM). Surprisingly, the lead compounds HI-346 and HI-445 were 3-times more effective against the multidrug resistant HIV-1 strain RT-MDR with a V106A mutation (as well as additional mutations involving the RT residues 74V,41L, and 215Y) than they were against HTLV(IIIB) with wild-type RT. HI-346 and HI-445 were 20-times more potent than trovirdine, 200-times more potent than AZT, 300-times more potent than MKC-442, 400-times more potent than delavirdine, and 5000-times more potent than nevirapine against the multidrug resistant HIV-1 strain RT-MDR. HI-445 was also tested against the RT Y181C mutant A17 strain of HIV-1 and found to be >7-fold more effective than trovirdine and >1,400-fold more effective than nevirapine or delavirdine. Similarly, both HI-346 and HI-445 were more effective than trovirdine, nevirapine, and delavirdine against the problematic NNI-resistant HIV-1 strain A17-variant with both Y181C and K103N mutations in RT, although their activity was markedly reduced against this strain. Neither compound exhibited significant cytotoxicity at effective concentrations (CC50 >100 microM). These findings establish the lead compounds HI-346 and HI-445 as potent inhibitors of drug-sensitive as well as multidrug-resistant stains of HIV-1.  相似文献   

7.
In this study, a novel series of imidazole-containing compounds with dual properties, that is, inhibitory potency at the enzyme histamine N(tau)-methyltransferase (HMT) and antagonist potency at histamine H(3) receptors was designed and synthesized. Pharmacologically, these new hybrid drugs were evaluated in functional assays for their inhibitory potencies at rat kidney HMT and for their antagonist activities on synaptosomes of rat cerebral cortex. For selected compounds, binding affinities at recombinant human histamine H(3) receptors were determined. The first compounds (1-10) of the series proved to be H(3) receptor ligands of high potency at rat synaptosomes or of high binding affinity at human H(3) receptors, respectively, but of only moderate activity as inhibitors of rat kidney HMT. In contrast, aminoquinoline- or tetrahydroacridine-containing derivatives 11-17 also displayed HMT inhibitory potency in the nanomolar concentration range. Preliminary data from molecular modeling investigations showed that the imidazole derivative 15 and the HMT inhibitor quinacrine possess identical binding areas. The most interesting compound (14) is simultaneously a highly potent H(3) receptor ligand (K(i)=4.1nM) and a highly potent HMT inhibitor (IC(50)=24nM), which makes this derivative a valuable pharmacological tool for further development.  相似文献   

8.
A novel series of 4-thiazolylimidazoles was synthesized as transforming growth factor-β (TGF-β) type I receptor (also known as activin receptor-like kinase 5 or ALK5) inhibitors. These compounds were evaluated for their ALK5 inhibitory activity in an enzyme assay and their TGF-β-induced Smad2/3 phosphorylation inhibitory activity in a cell-based assay. N-{[5-(1,3-benzothiazol-6-yl)-4-(4-methyl-1,3-thiazol-2-yl)-1H-imidazol-2-yl]methyl}butanamide 20, a potent and selective ALK5 inhibitor, exhibited good enzyme inhibitory activity (IC(50)=8.2nM) as well as inhibitory activity against TGF-β-induced Smad2/3 phosphorylation at a cellular level (IC(50)=32nM).  相似文献   

9.
Through directed screening of compounds prepared as metalloprotease inhibitors a compound, CGS 30084, that had potent endothelin converting enzyme-1 (ECE-1) in vitro inhibitory activity (IC50 = 77 nM) was identified. Herein we report the synthesis and optimization of ECE-1 inhibitory activity of additional analogues from this lead. Compound 3c, the thioacetate methyl ester derivative of compound 4c, was found to be a long acting inhibitor of ECE-1 activity in rats after oral administration.  相似文献   

10.
A novel series of naphthylmethylimidazole derivatives and related compounds have been investigated as selective 17,20-lyase inhibitors. Optimization of the substituent at the 6-position on the naphthalene ring was performed to yield a methylcarbamoyl derivative, which exhibited potent inhibitory activity against human 17,20-lyase and promising selectivity (>200-fold) for 17,20-lyase over CYP3A4. Further modifications of the methylcarbamoyl derivative led to the discovery of the corresponding tricyclic compound, which showed highly potent activity against human 17,20-lyase (IC(50) 19 nM) and good selectivity (>1000-fold) for inhibition of 17,20-lyase over CYP3A4. Additional biological evaluation revealed that the tricyclic compound had potent in vivo efficacy in monkeys and favorable pharmacokinetic profiles when administered in rats. Asymmetric synthesis of the selective tricyclic inhibitor was also achieved using a chiral α-hydroxy ketone.  相似文献   

11.
We investigated inhibitory activities of five-membered sugar mimics toward glycogen-degrading enzymes and a variety of glucosidases. 1,4-Dideoxy-1,4-imino-D-arabinitol (D-AB1) is known to be a potent inhibitor of glycogen phosphorylase. However, the structural modification of D-AB1, such as its enantiomerization, epimerization at C-2 and/or C-3, introduction of a substituent to C-1, and replacement of the ring nitrogen by sulfur, markedly lowered or abolished its inhibition toward the enzyme. The present work elucidated that d-AB1 was also a good inhibitor of the de-branching enzyme of glycogen, amylo-1,6-glucosidase, with a IC(50) value of 8.4 microM. In the present work, the de-sulfonated derivative of salacinol was isolated from the roots of Salacia oblonga and found to be a potent inhibitor of rat intestinal isomaltase with an IC(50) value of 0.64 microM. On the other hand, salacinol showed a much more potent inhibitory activity toward maltase in Caco-2 cell model system than its de-sulfonated derivative, with an IC(50) value of 0.5 microM, and was further a stronger inhibitor of human lysosomal alpha-glucosidase than the derivative (IC(50)=0.34 microM). This indicates that the sulfate in the side chain plays an important role in the specificity of enzyme inhibition.  相似文献   

12.
A number of 2-(furan-2-yl)-4-phenoxyquinoline derivatives have been synthesized and evaluated for anti-inflammatory evaluation. 4-[(2-Furan-2-yl)quinolin-4-yloxy]benzaldehyde (8), with an IC(50) value of 5.0 microM against beta-glucuronidase release, was more potent than its tricyclic furo[2,3-b]quinoline isomer 3a (>30 microM), its 4'-COMe counterpart 7 (7.5 microM), and its oxime derivative 13a (11.4 microM) and methyloxime derivative 13b (>30 microM). For the inhibition of lysozyme release, however, oxime derivative 12a (8.9 microM) and methyloxime derivative 12b (10.4 microM) are more potent than their ketone precursor 7 and their respective tricyclic furo[2,3-b]quinoline counterparts 4a and 4b. Among them, 4-[4-[(2-furan-2-yl)-quinolin-4-yloxy]phenyl]but-3-en-2-one (10) is the most active against lysozyme release with an IC(50) value of 4.6 microM, while 8 is the most active against beta-glucuronidase release with an IC(50) value of 5.0 microM. (E)-1-[3-[(2-Furan-2-yl)quinolin-4-yloxy]phenyl] ethanone oxime (11a) is capable of inhibiting both lysozyme and beta-glucuronidase release with IC(50) values of 7.1 and 9.5 microM, respectively. For the inhibition of TNF-alpha formation, 1-[3-[(2-furan-2-yl)quinolin-4-yloxy]phenyl]ethanone (6) is the most potent with an IC(50) value of 2.3 microM which is more potent than genistein (9.1 microM). For the inhibitory activity of fMLP-induced superoxide anion generation, 11a (2.7 microM), 11b (2.8 microM), and 13b (2.2 microM) are three of the most active. None of above compounds exhibited significant cytotoxicity.  相似文献   

13.
In present study, a series of new 2-(1,3,4-oxadiazol-2-ylthio)-1-phenylethanone derivatives (6a-6x) as potential focal adhesion kinase (FAK) inhibitors were synthesized. The bioassay assays demonstrated that compound 6i showed the most potent activity, which inhibited the growth of MCF-7 and A431 cell lines with IC(50) values of 140 ± 10 nM and 10 ± 1 nM, respectively. Compound 6i also exhibited significant FAK inhibitory activity (IC(50)=20 ± 1 nM). Docking simulation was performed to position compound 6i into the active site of FAK to determine the probable binding model.  相似文献   

14.
KPU-105 (4), a potent anti-microtubule agent that contains a benzophenone was derived from the diketopiperazine-type vascular disrupting agent (VDA) plinabulin 3, which displays colchicine-like tubulin depolymerization activity. To develop derivatives with more potent anti-microtubule and cytotoxic activities, we further modified the benzophenone moiety of 4. Accordingly, we obtained a 4-fluorobenzophenone derivative 16j that inhibited tumor cell growth in vitro with a subnanomolar IC(50) value against HT-29 cells (IC(50)=0.5 nM). Next, the effect of 16j on mitotic spindles was evaluated in HeLa cells. Treatment with 3nM of 16j partially disrupted the interphase microtubule network. By contrast, treatment with the same concentration of CA-4 barely affected the microtubule network, indicating that 16j exhibited more potent anti-mitotic effects than did CA-4.  相似文献   

15.
The causative agent behind adult T-cell leukemia and tropical spastic paraparesis/HTLV-I-associated myelopathy is the human T-cell leukemia virus type 1 (HTLV-I). Tetrapeptidic HTLV-I protease inhibitors were designed on a previously reported potent inhibitor KNI-10516, with modifications at the P(3)-cap moieties. All the inhibitors showed high HIV-1 protease inhibitory activity (over 98% inhibition at 50nM) and most exhibited highly potent inhibition against HTLV-I protease (IC(50) values were less than 100nM).  相似文献   

16.
A series of 2-phenoxy-indan-1-one derivatives have been designed, synthesized, and tested as acetylcholinesterase inhibitors. The most potent compound exhibited high AChE inhibitory activity (IC50 = 50 nM), and the molecular docking study indicated that it was nicely accommodated by AChE.  相似文献   

17.
A series of 3-aryl-4-hydroxyquinolin-2(1H)-ones with fatty acid synthase inhibitory activity was prepared. Starting from a derivative with an IC(50) = 1.4 microM, SAR studies led to compounds with more than 70-fold increase in potency (IC(50) < 20 nM).  相似文献   

18.
The 4-piperidyl moiety and the pyrazole ring in 1-(3-chlorophenyl)-5-(4-phenoxyphenyl)-3-(4-piperidyl)pyrazole 2, which has previously shown improved DNA gyrase inhibition and target-related antibacterial activity, were transformed to other groups and the in vitro antibacterial activity of the synthesized compounds was evaluated. The selected pyrazole, oxazole and imidazole derivatives showed moderate inhibition against DNA gyrase and topoisomerase IV with similar IC(50) values (IC(50)=9.4-25 microg/mL). In addition, many of the pyrazole, oxazole and imidazole derivatives synthesized in this study exhibited potent antibacterial activity against quinolone-resistant clinical isolates and coumarin-resistant laboratory isolates of Gram-positive bacteria with minimal inhibitory concentration values equivalent to those against susceptible strains.  相似文献   

19.
New derivatives of monascus pigment were produced during Monascus fermentation by the addition of unnatural amino acids, and the inhibitory activities of the derivatives against diet-related lipase and alpha-glucosidase were tested. Derivatives with penicillamine (H-Pen), cyclohexylalanine (H-Cha), butylglycine (L-t-Bg), and norleucine (H-Nle) showed relatively high inhibitory activities against lipase. The H-Pen derivative exhibited the highest inhibitory activity, with an IC(50) (50% inhibition) value of 24.0 microM. The four derivatives all showed noncompetitive inhibition patterns against lipase. The inhibition constant (K(i)) of the H-Pen derivative was estimated to be 20.7 microM. The H-Pen derivative also exhibited a relatively high inhibitory activity against alpha-glucosidase, with an IC(50) value of 50.9 microM. The inhibition pattern of the H-Pen derivative against alpha-glucosidase appeared to be of a mixed type. The inhibition constants K(i) and were estimated to be 25.9, and 98.9 microM, respectively.  相似文献   

20.
The overstimulation of excitatory amino acid receptors such as the glutamate AMPA receptor has been implicated in the physiopathogenesis of epilepsy as well as in acute and chronic neurodegenerative disorders. An original series of readily water soluble 4-oxo-10-substituted-imidazo[1,2-a]indeno[1,2-e]pyrazin-2-carboxylic acid derivatives was synthesized. The most potent derivative 6a exhibited nanomolar binding affinity (IC50 = 35nM) and antagonist activity (IC50 = 6nM) at ionotropic AMPA receptor. This compound also demonstrated potent anticonvulsant properties in MES in mice and rats with long durations of action with ED50 values in the 1-3 mg/kg dose range following ip and iv administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号