首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arylalkylamine N-acetyltransferase (AANAT, serotonin N-acetyltransferase, EC ) plays a unique transduction role in vertebrate physiology by converting information about day and night into a hormonal signal: melatonin. Only vertebrate members of the AANAT family have been functionally characterized. Here a putative AANAT from Saccharomyces cerevisiae (scAANAT) was studied to determine whether it possessed the catalytic activity of the vertebrate enzyme. scAANAT is 47% similar to ovine AANAT, but lacks the regulatory N- and C-terminal flanking regions conserved in all vertebrate AANATs. It was found to have enzyme activity generally typical for AANAT family members, although the substrate preference pattern was somewhat broader, the specific activity was lower, and the pH optimum was higher. Deletion of scAANAT reduced arylalkylamine acetylation by S. cerevisiae extracts, indicating that scAANAT contributes significantly to this process. The scAANAT sequence conformed to the three-dimensional structure of ovine AANAT catalytic core; however, an important structural element (loop 1) was found to be shorter and to lack a proline involved in substrate binding. These differences could explain the lower specific activity of scAANAT, because of the importance of loop 1 in catalysis. Data base analysis revealed the presence of putative AANATs in other fungi but not in the nearly complete genomes of Drosophila melanogaster or Caenorhabditis elegans. These studies indicate that the catalytic and kinetic characteristics of fungal and vertebrate enzymes can be considered to be generally similar, although some differences exist that appear to be linked to changes in one structural element. Perhaps the most striking difference is that fungal AANATs lack the regulatory domains of the vertebrate enzyme, which appear to be essential for the regulatory role the enzyme plays in photochemical transduction.  相似文献   

2.
A theory is presented that explains the evolution of the pinealocyte from the common ancestral photoreceptor of both the pinealocyte and retinal photoreceptor. Central to the hypothesis is the previously unrecognized conflict between the two chemistries that define these cells-melatonin synthesis and retinoid recycling. At the core of the conflict is the formation of adducts composed of two molecules of retinaldehyde and one molecule of serotonin, analogous to formation in the retina of the toxic bis-retinyl ethanolamine (A2E). The hypothesis argues that early in chordate evolution, at a point before the genes required for melatonin synthesis were acquired, retinaldehyde--which is essential for photon capture--was depleted by reacting with naturally occurring arylalkylamines (tyramine, serotonin, tryptamine, phenylethylamine) and xenobiotic arylalkylamines. This generated toxic bis-retinyl arylalkylamines (A2AAs). The acquisition of arylalkylamine N-acetyltransferase (AANAT) prevented this by N-acetylating the arylalkylamines. Hydroxyindole-O-methyltransferase enhanced detoxification in the primitive photoreceptor by increasing the lipid solubility of serotonin and bis-retinyl serotonin. After the serotonin --> melatonin pathway was established, the next step leading toward the pinealocyte was the evolution of a daily rhythm in melatonin and the capacity to recognize it as a signal of darkness. The shift in melatonin from metabolic garbage to information developed a pressure to improve the reliability of the melatonin signal, which in turn led to higher levels of serotonin in the photodetector. This generated the conflict between serotonin and retinaldehyde, which was resolved by the cellular segregation of the two chemistries. The result, in primates, is a pineal gland that does not detect light and a retinal photodetector that does not make melatonin. High levels of AANAT in the latter tissue might serve the same function AANAT had when first acquired- prevention of A2AA formation.  相似文献   

3.
4.
Large changes in the activity of serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT) in the pineal gland control the rhythmic production of the time-keeping hormone melatonin. The activity of AANAT reflects changes in the amount and activation state of the AANAT protein, both of which increase at night. The molecular basis of this regulation is now becoming known, and recent data indicate that this involves phosphorylation-dependent binding to the 14-3-3 protein at two sites, one of which, Ser-205, is located several residues from the C terminus. In this study, we determined whether substitution of this residue with a non-hydrolyzable the phosphoserine/phosphothreonine mimetic would promote binding to the 14-3-3 protein and enhance cellular stability. To accomplish this, a C-terminal AANAT peptide containing the phosphonodifluoromethylene alanine at Ser-205 was synthesized and fused to bacterially expressed AANAT(30-199) using expressed protein ligation. The resulting semisynthetic protein has enhanced affinity for the expressed 14-3-3 protein and exhibits greater cellular stability in microinjection experiments, as compared with the unmodified AANAT. Enhanced 14-3-3 binding was also observed using humanized ovine AANAT, which has a different C-terminal sequence (Gly-Cys) than the ovine enzyme (Asp-Arg), indicating that that characteristic is not unique to the ovine enzyme. These studies provide the first evidence that substitution of Ser-205 with the stable phosphomimetic amino acid phosphonodifluoromethylene alanine enhances binding to 14-3-3 and the cellular stability of AANAT and are consistent with the view that Ser-205 phosphorylation plays a critical role in the regulation of AANAT activity and melatonin production.  相似文献   

5.
Cholangiocarcinoma (CCA) is a devastating biliary cancer. Melatonin is synthesized in the pineal gland and peripheral organs from serotonin by two enzymes, serotonin N-acetyltransferase (AANAT) and acetylserotonin O-methyltransferase (ASMT). Cholangiocytes secrete neuroendocrine factors, including serotonin-regulating CCA growth by autocrine mechanisms. Melatonin exerts its effects by interaction with melatonin receptor type 1A/1B (MT1/MT2) receptors. We propose that 1) in CCA, there is decreased expression of AANAT and ASMT and secretion of melatonin, changes that stimulate CCA growth; and 2) in vitro overexpression of AANAT decreases CCA growth. We evaluated the 1) expression of AANAT, ASMT, melatonin, and MT1/MT2 in human nonmalignant and CCA lines and control and CCA biopsy samples; 2) melatonin levels in nonmalignant and CCA lines, and bile and serum from controls and patients with intrahepatic CCA; 3) effect of melatonin on the growth and expression of AANAT/ASMT and MT1/MT2 in CCA lines implanted into nude mice; and 4) effect of AANAT overexpression on the proliferation, apoptosis, and expression of MT1/MT2 in Mz-ChA-1 cells. The expression of AANAT, ASMT, and melatonin decreased, whereas MT1/MT2 expression increased in CCA lines and biopsy samples. Melatonin secretion decreased in the supernatant of CCA lines and bile of CCA patients. Melatonin decreased xenograft CCA tumor growth in nude mice by increased AANAT/ASMT and melatonin, along with reduced MT1/MT2 expression. Overexpression of AANAT in Mz-ChA-1 cells inhibited proliferation and MT1/MT2 expression and increased apoptosis. There is dysregulation of the AANAT/ASMT/melatonin → melatonin receptor axis in CCA, which inhibited melatonin secretion and subsequently enhanced CCA growth.  相似文献   

6.
The objectives of this study were to test the effects of light on melatonin rhythms in the pineal gland and gut of goldfish Carassius auratus and to investigate whether melatonin function differed in these two tissues, which are photosensitive and non-photosensitive respectively. Rhythms were evaluated by measuring arylalkylamine N-acetyltransferase (AANAT2) and melatonin receptor 1 (MT-R1) mRNA expression and melatonin concentration in the pineal gland, gut (in vivo), and cell cultures of the two tissues (in vitro). Compared to control, pineal gland melatonin secretion was higher at night, whereas the 24-h dark and ophthalmectomy groups maintained higher AANAT2 and MT-R1 mRNA expression during the day. Melatonin levels and AANAT2 and MT-R1 mRNA expression in the gut were also the highest at night, but the 24-h light, dark, and ophthalmectomy groups did not significantly differ from control. Furthermore, we measured AANAT2 and MT-R1 mRNA expression in high temperature water (30 °C) to investigate differences in the antioxidant capacity of pineal gland vs. gut melatonin. Melatonin and H2O2 levels, as well as AANAT2 and MT-R1 mRNA expression, were all higher in the two tissues under thermal stress, compared with their levels at 22 °C. Taken together, our results suggest that light has no effect on melatonin patterns in the gut, which appears to exhibit its own circadian rhythm, but both gut and pineal gland melatonin exhibit similar antioxidant function.  相似文献   

7.
8.
9.
The present study aimed to test the effects of melatonin on oxidative stress in the yellowtail clownfish, Amphiprion clarkii, as produced by light emitting diodes (LEDs): red, green, and blue. We investigated the effects of the different LEDs on oxidative stress by measuring the mRNA expression of arylalkylamine N-acetyltransferase (AANAT2), the expression and activities of antioxidant enzymes (superoxide dismutase, SOD (EC 1.15.1.1); and catalase, CAT (EC 1.11.1.6)), and plasma H2O2 and plasma melatonin levels. In red light, the expression of AANAT2, SOD, and CAT mRNA was significantly higher than those under the other light spectra. SOD and CAT activities and plasma H2O2 and melatonin levels were also significantly higher for the red spectra than those for the other light spectra. These results indicate that red light induces oxidative stress. To investigate the effects of melatonin on oxidative stress, we injected melatonin into live fish (in vivo) or treated cultured pineal organ (in vitro) with melatonin. We found that AANAT2, SOD, and CAT mRNA expression levels, SOD and CAT activities, and plasma H2O2, lipid peroxidation (LPO) and melatonin levels were significantly lower than those for the controls. Therefore, our results indicate that red light induces oxidative stress and melatonin plays the role of a strong antioxidant in yellowtail clownfish.  相似文献   

10.
Arylalkylamine N-acetyltransferase (serotonin N-acetyltransferase, AANAT, EC ) is the penultimate enzyme in melatonin synthesis. As described here, a cell line (1E7) expressing human AANAT (hAANAT) has been developed to study the human enzyme. 1E7 hAANAT is detectable in immunoblots as a 23-kDa band and is immunocytochemically visualized in the cytoplasm. The specific concentration of hAANAT in homogenates is comparable to that of the night rat pineal gland. Kinetics of AANAT extracted from 1E7 cells are the same as those of bacterially expressed hAANAT; both preparations of hAANAT are equally sensitive to the inhibitor CoA-S-N-acetyltryptamine. Studies of cAMP regulation indicate that treatment with forskolin, dibutyryl cAMP, isobutylmethylxanthine, or isoproterenol activate cellular hAANAT within intact 1E7 cells approximately 8-fold without markedly increasing the abundance of AANAT protein or the activity of AANAT in broken cell preparations; and, that forskolin, isobutylmethylxanthine and isoproterenol elevate cyclic AMP production. These observations extend our understanding of cAMP regulation of AANAT activity, because it is currently thought that this only involves changes in the steady-state levels of AANAT protein. This previously unrecognized switching mechanism could function physiologically to control melatonin production without changing AANAT protein levels.  相似文献   

11.
In all the vertebrates, synthesis of melatonin and its rhythm-generating enzyme arylalkylamine N-acetyltransferase (AANAT) reaches its peak in the pineal during the night in a daily light-dark cycle, but the role of different neuronal signals in their regulation were unknown for any fish. Hence, the authors used specific agonist and antagonists of receptors for different neuronal signals and regulators of intracellular calcium (Ca(2+)) and adenosine 3',5'-cyclic monophosphate (cAMP) in vitro to study their effects on the abundance of AANAT and titer of melatonin in the carp (Catla catla) pineal. Western blot analysis followed by quantitative analysis of respective immunoblot data for AANAT protein, radioimmunoassay of melatonin, and spectrophotometric analysis of Ca(2+) in the pineal revealed stimulatory effects of both adrenergic (α(1) and β(1)) and dopaminergic (D(1)) agonists and cholinergic (both nicotinic and muscarinic) antagonists, inhibition by both adrenergic and dopaminergic antagonists and cholinergic agonists, but independent of the influence of any agonists or antagonists of α(2)-adrenergic receptors. Band intensity of AANAT and concentration of melatonin in the pineal were also enhanced by the intracellular calcium-releasing agent, activators of both calcium channel and adenylate cyclase, and phophodiesterase inhibitor, but suppressed by inhibitor of calcium channel and adenylate cyclase as well as activator of phophodiesterase. Moreover, an inhibitory effect of light on the pineal AANAT and melatonin was blocked by both cAMP and proteasomal proteolysis inhibitor MG132. Collectively, these data suggest that dark-induced abundance of AANAT and melatonin synthesis in the carp pineal are a multineuronal function, in which both adrenergic (α(1) and β(1), but not α(2)) and dopaminergic signals are stimulatory, whereas cholinergic signals are inhibitory. This study also provides indications, though arguably not conclusive evidence, that in either case the neuronal mechanisms follow a signal-transduction pathway in which Ca(2+) and cAMP may act as the intracellular messengers. It also appears that proteasomal proteolysis is a conserved event in the regulation of AANAT activity in vertebrates.  相似文献   

12.
The aim of the present study was to examine arylalkylamine N-acetyltransferase (AANAT) activity and melatonin content in the pineal gland and retina as well as the melatonin concentration in plasma of the turkey (Meleagris gallopavo), an avian species in which several physiological processes, including reproduction, are controlled by day length. In order to investigate whether the analyzed parameters display diurnal or circadian rhythmicity, we measured these variables in tissues isolated at regular time intervals from birds kept either under a regular light-dark (LD) cycle or under constant darkness (DD). The pineal gland and retina of the turkey rhythmically produced melatonin. In birds kept under a daily LD cycle, melatonin levels in the pineal gland and retina were high during the dark phase and low during the light phase. Rhythmic oscillations in melatonin, with high night-time concentrations, were also found in the plasma. The pineal and retinal melatonin rhythms mirrored oscillations in the activity of AANAT, the penultimate enzyme in the melatonin biosynthetic pathway. Rhythmic oscillations in AANAT activity in the turkey pineal gland and retina were circadian in nature, as they persisted under conditions of constant darkness (DD). Transferring birds from LD into DD, however, resulted in a potent decline in the amplitude of the AANAT rhythm from the first day of DD. On the sixth day of DD, pineal AANAT activity was still markedly higher during the subjective dark than during the subjective light phase; whereas, AANAT activity in the retina did not exhibit significant oscillations. The results indicate that melatonin rhythmicity in the turkey pineal gland and retina is regulated both by light and the endogenous circadian clock. The findings suggest that environmental light may be of primary importance in the maintenance of the high-amplitude melatonin rhythms in the turkey.  相似文献   

13.
Melatonin has been found in the digestive tract of many vertebrates. However, the enzymatic activity of the arylalkylamine-N-acetyltransferase (AANAT) and the hydroxindole-O-methyltransferase (HIOMT), the last two enzymes of melatonin biosynthesis, have been only measured in rat liver. Therefore, the first objective of the present study is to investigate the functionality of these enzymes in the liver and gut of goldfish, analyzing its possible daily changes and comparing its catalytic properties with those from the retina isoforms. The daily rhythms with nocturnal acrophases in retinal AANAT and HIOMT activities support their role in melatonin biosynthesis. In foregut AANAT activity also show a daily rhythm while in liver and hindgut significant but not rhythmic levels of AANAT activity are found. HIOMT activity is not detected in any of these peripheral tissues suggesting an alternative role for AANAT besides melatonin synthesis. The failure to detect functional HIOMT activity in both, liver and gut, led us to investigate other physiological substrates for the AANAT, as dopamine, searching alternative roles for this enzyme in the goldfish gut. Dopamine competes with tryptamine and inhibits retinal, intestinal and hepatic N-acetyltryptamine production, suggesting that the active isoform in gut is AANAT1. Besides, gut and liver produces N-acetyldopamine in presence of acetyl coenzyme-A and dopamine. This production is not abolished by the presence of folic acid (arylamine N-acetyltransferase inhibitor) in any studied tissue, but a total inhibition occurs in the presence of CoA-S-N-acetyltryptamine (AANAT inhibitor) in liver. Therefore, AANAT1 seems to be an important enzyme in the regulation of dopamine and N-acetyldopamine content in liver. Finally, for the first time in fish we found that dopamine, but not N-acetyldopamine, regulates the gut motility, underlying the broad physiological role of AANAT in the gut.  相似文献   

14.
Pineal function is defined by a set of very narrowly expressed genes that encode proteins required for photoperiodic transduction and rhythmic melatonin secretion. One of these proteins is serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT), which controls the daily rhythm in melatonin production. Here, pineal-specific expression of the zebrafish aanat-2 (zfaanat-2) was studied using in vivo transient expression analyses of promoter-reporter constructs; this revealed that specificity is determined by two regions located 12 kb away from each other. One is the 5'-flanking region, and the other is a 257-bp sequence, located 6 kb downstream of the transcribed region. This 3'-sequence, designated pineal-restrictive downstream module (PRDM), has a dual function: enhancement of pineal expression and inhibition of extrapineal expression. The former is an autonomic property of PRDM whereas the later function requires interaction with the upstream regulatory region of zfaanat-2. Functional analyses of the PRDM sequence revealed that three photoreceptor conserved elements (TAATC) and a single perfect E-box (CACGTG) are crucial for the dual function of PRDM. These results indicate that pineal specificity of zfaanat-2 is determined by the dual functionality of the PRDM and the interaction between upstream regulatory region and downstream photoreceptor conserved elements and E-box element.  相似文献   

15.
16.
Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT) is the penultimate enzyme in melatonin (5-methoxy-N-acetyltryptamine) biosynthesis. It is the key-enzyme responsible of the nocturnal rhythm of melatonin production in the pineal gland. Specific AANAT inhibitors could be useful for treatment of different physiopathological disorders encountered in diseases such as seasonal affective disorders or obesity. On the basis of previous works and 3D-QSAR studies carried out in our laboratory, we have synthesized and evaluated four novel benzo[b]thiophene derivatives designed as AANAT inhibitors. Compound 13 exhibited high inhibitory activity (IC50 = 1.4 microM) and low affinities for both MT, (1100 nM) and MT2 (1400 nM) receptors.  相似文献   

17.
The article shortly reviews literature data and presents our new findings on the regulation of melatonin biosynthesis and level in the vertebrate retina. Special emphasis is given to the role of dopamine as a mediator of the inhibitory effect of light on melatonin synthesis in retinas of lower vertebrates. Other discussed problems include (1) the role of cyclic AMP and calcium ions in the induction of serotonin N-acetyltransferase (NAT; the key regulatory enzyme in melatonin biosynthetic pathway), and (2) feedback regulations and metabolism of retinal melatonin. The presented experimental evidence, compared with similar data obtained for the pineal gland, suggests the existence in the vertebrates retina of some specific for this tissue factors, that locally regulate and control the level of retinal melatonin.  相似文献   

18.
19.
20.
Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT) regulates the daily rhythm in the production of melatonin and is therefore an attractive target for pharmacologic modulation of the synthesis of this hormone. Previously prepared bisubstrate analogs show potent inhibition of AANAT but have unfavorable pharmacokinetic properties due to the presence of phosphate groups which prevents transfer across the plasma membrane. Here, we examine a bis-pivaloyloxymethylene (POM)-tryptamine-phosphopantetheine prodrug (2) and its biotransformations in vitro by homogenates and pineal cells. Compound 2 is an efficient porcine liver esterase substrate for POM cleavage in vitro although cyclization of the phosphate moiety is a potential side product. Tryptamine phosphopantetheine (3) is converted to tryptamine-coenzyme A (CoA) bisubstrate analog (1) by human phosphoribosyl pyrophosphate amidotransferase (PPAT) and dephosphocoenzyme A kinase (DPCK) in vitro. Compound 2 was found to inhibit melatonin production in rat pineal cell culture. It was also found that the POM groups are readily removed to generate 3; however, further processing to tryptamine-CoA (1) is much slower in pineal extracts or cell culture. Implications for CoA prodrug development based on the strategy used here are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号