首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Palindromic sequences are important DNA motifs related to gene regulation, DNA replication and recombination, and thus, investigating the evolutionary forces shaping the distribution pattern and abundance of palindromes in the genome is substantially important. In this article, we analyzed the abundance of palindromes in the genome, and then explored the possible effects of several genomic factors on the palindrome distribution and abundance in Drosophila melanogaster. Our results show that the palindrome abundance in D. melanogaster deviates from random expectation and the uneven distribution of palindromes across the genome is associated with local GC content, recombination rate, and coding exon density. Our data suggest that base composition is the major determinant of the distribution pattern and abundance of palindromes and the correlation between palindrome density and recombination is a side-product of the effect of compositional bias on the palindrome abundance.  相似文献   

2.
Nam K  Ellegren H 《PLoS genetics》2012,8(5):e1002680
Selective and/or neutral processes may govern variation in DNA content and, ultimately, genome size. The observation in several organisms of a negative correlation between recombination rate and intron size could be compatible with a neutral model in which recombination is mutagenic for length changes. We used whole-genome data on small insertions and deletions within transposable elements from chicken and zebra finch to demonstrate clear links between recombination rate and a number of attributes of reduced DNA content. Recombination rate was negatively correlated with the length of introns, transposable elements, and intergenic spacer and with the rate of short insertions. Importantly, it was positively correlated with gene density, the rate of short deletions, the deletion bias, and the net change in sequence length. All these observations point at a pattern of more condensed genome structure in regions of high recombination. Based on the observed rates of small insertions and deletions and assuming that these rates are representative for the whole genome, we estimate that the genome of the most recent common ancestor of birds and lizards has lost nearly 20% of its DNA content up until the present. Expansion of transposable elements can counteract the effect of deletions in an equilibrium mutation model; however, since the activity of transposable elements has been low in the avian lineage, the deletion bias is likely to have had a significant effect on genome size evolution in dinosaurs and birds, contributing to the maintenance of a small genome. We also demonstrate that most of the observed correlations between recombination rate and genome contraction parameters are seen in the human genome, including for segregating indel polymorphisms. Our data are compatible with a neutral model in which recombination drives vertebrate genome size evolution and gives no direct support for a role of natural selection in this process.  相似文献   

3.
Artificial selection during the domestication of maize is thought to have been predominantly positive and to have had little effect on the surrounding neutral diversity because linkage disequilibrium breaks down rapidly when physical distance increases. However, the degree to which indirect selection has shaped neutral diversity in the maize genome during domestication remains unclear. In this study, we investigate the relationship between local recombination rate and neutral polymorphism in maize and in teosinte using both sequence and microsatellite data. To quantify diversity, we estimate 3 parameters expected to differentially reflect the effects of indirect selection and mutation. We find no general correlation between diversity and recombination, indicating that indirect selection has had no genome-wide impact on maize diversity. However, we detect a weak correlation between heterozygosity and recombination for trinucleotide microsatellites deviating from the stepwise mutation model and located within genes (rho = 0.32, P < 0.03). This result can be explained by a background selection hypothesis. The fact that the same correlation is not confirmed for nucleotide diversity suggests that the strength of purifying selection at or near this class of microsatellites is higher than for nucleotide mutations.  相似文献   

4.
Duret L  Arndt PF 《PLoS genetics》2008,4(5):e1000071
Unraveling the evolutionary forces responsible for variations of neutral substitution patterns among taxa or along genomes is a major issue for detecting selection within sequences. Mammalian genomes show large-scale regional variations of GC-content (the isochores), but the substitution processes at the origin of this structure are poorly understood. We analyzed the pattern of neutral substitutions in 1 Gb of primate non-coding regions. We show that the GC-content toward which sequences are evolving is strongly negatively correlated to the distance to telomeres and positively correlated to the rate of crossovers (R2=47%). This demonstrates that recombination has a major impact on substitution patterns in human, driving the evolution of GC-content. The evolution of GC-content correlates much more strongly with male than with female crossover rate, which rules out selectionist models for the evolution of isochores. This effect of recombination is most probably a consequence of the neutral process of biased gene conversion (BGC) occurring within recombination hotspots. We show that the predictions of this model fit very well with the observed substitution patterns in the human genome. This model notably explains the positive correlation between substitution rate and recombination rate. Theoretical calculations indicate that variations in population size or density in recombination hotspots can have a very strong impact on the evolution of base composition. Furthermore, recombination hotspots can create strong substitution hotspots. This molecular drive affects both coding and non-coding regions. We therefore conclude that along with mutation, selection and drift, BGC is one of the major factors driving genome evolution. Our results also shed light on variations in the rate of crossover relative to non-crossover events, along chromosomes and according to sex, and also on the conservation of hotspot density between human and chimp.  相似文献   

5.
Although previous studies have failed to detect an association between microsatellite polymorphism and broadscale recombination rates in the human genome, there are several possible reasons why such a relationship could exist. For instance, there might be a direct link if recombination is mutagenic to microsatellite sequences or if polymorphic microsatellites act as recombination signals. Alternatively, recombination could exert an indirect effect by uncoupling of natural selection at linked loci, promoting polymorphism. As recombination is concentrated in narrow hotspot regions in the human genome, we investigated the relationship between microsatellite polymorphism and recombination hot spots. By using data from a common allele frequency database, we found several polymorphism estimates to be similar for hot spots and the genomic average. However, this is likely explained by an ascertainment bias because markers with high polymorphism information content are usually selected for genotyping in human populations and pedigrees. In contrast, by using an unbiased set of shotgun sequence data, we found an excess of microsatellite polymorphism in recombination hot spots of 14%. However, when other genomic variables are taken into account in a generalized model and using wavelet analysis, the effect is no longer detectable and the only firm predictor of microsatellite polymorphism is the incidence of SNPs and indels. One possible neutral explanation to these observations is that there is a common denominator affecting the local rate of mutation in unique as well as in repetitive DNA, for example, base composition.  相似文献   

6.
According to population genetics models, genomic regions with lower crossing-over rates are expected to experience less effective selection because of Hill-Robertson interference (HRi). The effect of genetic linkage is thought to be particularly important for a selection of weak intensity such as selection affecting codon usage. Consistent with this model, codon bias correlates positively with recombination rate in Drosophila melanogaster and Caenorhabditis elegans. However, in these species, the G+C content of both noncoding DNA and synonymous sites correlates positively with recombination, which suggests that mutation patterns and recombination are associated. To remove this effect of mutation patterns on codon bias, we used the synonymous sites of lowly expressed genes that are expected to be effectively neutral sites. We measured the differences between codon biases of highly expressed genes and their lowly expressed neighbors. In D. melanogaster we find that HRi weakly reduces selection on codon usage of genes located in regions of very low recombination; but these genes only comprise 4% of the total. In C. elegans we do not find any evidence for the effect of recombination on selection for codon bias. Computer simulations indicate that HRi poorly enhances codon bias if the local recombination rate is greater than the mutation rate. This prediction of the model is consistent with our data and with the current estimate of the mutation rate in D. melanogaster. The case of C. elegans, which is highly self-fertilizing, is discussed. Our results suggest that HRi is a minor determinant of variations in codon bias across the genome.  相似文献   

7.
Rate of recombination is a powerful variable affecting several aspects of molecular variation and evolution. A nonrecombining portion of the genome of most Drosophila species, the "dot" chromosome or F element, exhibits very low levels of variation and unusual codon usage. One lineage of Drosophila, the willistoni/saltans groups, has the F element fused to a normally recombining E element. Here, we present polymorphism data for genes on the F element in two Drosophila willistoni and one D. insularis populations, genes previously studied in D. melanogaster. The D. willistoni populations were known to be very low in inversion polymorphism, thus minimizing the recombination suppression effect of inversions. We first confirmed, by in situ hybridization, that D. insularis has the same E + F fusion as D. willistoni, implying this was a monophyletic event. A clear gradient in codon usage exists along the willistoni F element, from the centromere distally to the fusion with E; estimates of recombination rates parallel this gradient and also indicate D. insularis has greater recombination than D. willistoni. In contrast to D. melanogaster, genes on the F element exhibit moderate levels of nucleotide polymorphism not distinguishable from two genes elsewhere in the genome. Although some linkage disequilibrium (LD) was detected between polymorphic sites within genes (generally <500 bp apart), no long-range LD between F element loci exists in the two willistoni group species. In general, the distribution of allele frequencies of F element genes display the typical pattern of expectations of neutral variation at equilibrium. These results are consistent with the hypothesis that recombination allows the accumulation of nucleotide variation as well as allows selection to act on synonymous codon usage. It is estimated that the fusion occurred ~20 Mya and while the F element in the willistoni lineage has evolved "normal" levels and patterns of nucleotide variation, equilibrium may not have been reached for codon usage.  相似文献   

8.
9.
Most "tests of neutrality" assess whether particular data sets depart from the predictions of a standard neutral model with no recombination. For Drosophila, where nuclear polymorphism data routinely show evidence of genetic exchange, the assumption of no recombination is often unrealistic. In addition, while conservative, this assumption is made at the cost of a great loss in power. Perhaps as a result, tests of the frequency spectrum based on zero recombination suggest an adequate fit of Drosophila polymorphism data to the predictions of the standard neutral model. Here, we analyze the frequency spectrum of a large number of loci in Drosophila melanogaster and D. simulans using two summary statistics. We use an estimate of the population recombination rate based on a laboratory estimate of the rate of crossing over per physical length and an estimate of the species' effective population size. In contrast to previous studies, we find that roughly half of the loci depart from the predictions of the standard neutral model. The extent of the departure depends on the exact recombination rate, but the global pattern that emerges is robust. Interestingly, these departures from neutral expectations are not unidirectional. The large variance in outcomes may be due to a complex demographic history and inconsistent sampling, or to the pervasive action of natural selection.  相似文献   

10.
The usage of preferred codons in Drosophila melanogaster is reduced in regions of lower recombination. This is consistent with population genetics theory, whereby the effectiveness of selection on multiple targets is limited by stochastic effects caused by linkage. However, because the selectively preferred codons in D. melanogaster end in C or G, it has been argued that base-composition-biasing effects of recombination can account for the observed relationship between preferred codon usage and recombination rate (Marais et al., 2003). Here, we show that the correlation between base composition (of protein-coding and intron regions) and recombination rate holds only for lower values of the latter. This is consistent with a Hill-Robertson interference model and does not support a model whereby the entire effect of recombination on codon usage can be attributed to its potential role in generating compositional bias.  相似文献   

11.
Natural selection can produce a correlation between local recombination rates and levels of neutral DNA polymorphism as a consequence of genetic hitchhiking and background selection. Theory suggests that selection at linked sites should affect patterns of neutral variation in partially selfing populations more dramatically than in outcrossing populations. However, empirical investigations of selection at linked sites have focused primarily on outcrossing species. To assess the potential role of selection as a determinant of neutral polymorphism in the context of partial self-fertilization, we conducted a multivariate analysis of single-nucleotide polymorphism (SNP) density throughout the genome of the nematode Caenorhabditis elegans. We based the analysis on a published SNP data set and partitioned the genome into windows to calculate SNP densities, recombination rates, and gene densities across all six chromosomes. Our analyses identify a strong, positive correlation between recombination rate and neutral polymorphism (as estimated by noncoding SNP density) across the genome of C. elegans. Furthermore, we find that levels of neutral polymorphism are lower in gene-dense regions than in gene-poor regions in some analyses. Analyses incorporating local estimates of divergence between C. elegans and C. briggsae indicate that a mutational explanation alone is unlikely to explain the observed patterns. Consequently, we interpret these findings as evidence that natural selection shapes genome-wide patterns of neutral polymorphism in C. elegans. Our study provides the first demonstration of such an effect in a partially selfing animal. Explicit models of genetic hitchhiking and background selection can each adequately describe the relationship between recombination rate and SNP density, but only when they incorporate selfing rate. Clarification of the relative roles of genetic hitchhiking and background selection in C. elegans awaits the development of specific theoretical predictions that account for partial self-fertilization and biased sex ratios.  相似文献   

12.
Kern AD  Jones CD  Begun DJ 《Genetics》2002,162(4):1753-1761
Selective fixation of beneficial mutations reduces levels of linked, neutral variation. The magnitude of this "hitchhiking effect" is determined by the strength of selection and the recombination rate between selected and neutral sites. Thus, depending on the values of these parameters and the frequency with which directional selection occurs, the genomic scale over which directional selection reduces levels of linked variation may vary widely. Here we present a permutation-based analysis of nucleotide polymorphisms and fixations in Drosophila simulans. We show evidence of pervasive small-scale hitchhiking effects in this lineage. Furthermore, our results reveal that different types of fixations are associated with different levels of linked variation.  相似文献   

13.
A negative correlation between intron size and recombination rate has been reported for the Drosophila melanogaster and human genomes. Population-genetic models suggest that this pattern could be caused by an interaction between recombination rate and the efficacy of natural selection. To test this idea, we examined variation in intron size and recombination rate across the genome of the nematode Caenorhabditis elegans. Interestingly, we found that intron size correlated positively with recombination rate in this species.  相似文献   

14.
Species and recombination effects on DNA variability in the tomato genus   总被引:13,自引:0,他引:13  
Baudry E  Kerdelhué C  Innan H  Stephan W 《Genetics》2001,158(4):1725-1735
Population genetics theory predicts that strong selection for rare, beneficial mutations or against frequent, deleterious mutations reduces polymorphism at linked neutral (or weakly selected) sites. The reduction of genetic variation is expected to be more severe when recombination rates are lower. In outbreeding species, low recombination rates are usually confined to certain chromosomal regions, such as centromeres and telomeres. In contrast, in predominantly selfing species, the rarity of double heterozygotes leads to a reduced effective recombination rate in the whole genome. We investigated the effects of restricted recombination on DNA polymorphism in these two cases, analyzing five Lycopersicon species with contrasting mating systems: L. chilense, L. hirsutum, L. peruvianum, L. chmielewskii, and L. pimpinellifolium, of which only the first three species have self-incompatibility alleles. In each species, we determined DNA sequence variation of five single-copy genes located in chromosomal regions with either high or low recombination rate. We found that the mating system has a highly significant effect on the level of polymorphism, whereas recombination has only a weak influence. The effect of recombination on levels of polymorphism in Lycopersicon is much weaker than in other well-studied species, including Drosophila. To explain these observations, we discuss a number of hypotheses, invoking selection, recombination, and demographic factors associated with the mating system. We also provide evidence that L. peruvianum, showing a level of polymorphism (almost 3%) that is comparable to the level of divergence in the whole genus, is the ancestral species from which the other species of the genus Lycopersicon have originated relatively recently.  相似文献   

15.
Gossmann TI  Woolfit M  Eyre-Walker A 《Genetics》2011,189(4):1389-1402
The effective population size (N(e)) is one of the most fundamental parameters in population genetics. It is thought to vary across the genome as a consequence of differences in the rate of recombination and the density of selected sites due to the processes of genetic hitchhiking and background selection. Although it is known that there is intragenomic variation in the effective population size in some species, it is not known whether this is widespread or how much variation in the effective population size there is. Here, we test whether the effective population size varies across the genome, between protein-coding genes, in 10 eukaryotic species by considering whether there is significant variation in neutral diversity, taking into account differences in the mutation rate between loci by using the divergence between species. In most species we find significant evidence of variation. We investigate whether the variation in N(e) is correlated to recombination rate and the density of selected sites in four species, for which these data are available. We find that N(e) is positively correlated to recombination rate in one species, Drosophila melanogaster, and negatively correlated to a measure of the density of selected sites in two others, humans and Arabidopsis thaliana. However, much of the variation remains unexplained. We use a hierarchical Bayesian analysis to quantify the amount of variation in the effective population size and show that it is quite modest in all species-most genes have an N(e) that is within a few fold of all other genes. Nonetheless we show that this modest variation in N(e) is sufficient to cause significant differences in the efficiency of natural selection across the genome, by demonstrating that the ratio of the number of nonsynonymous to synonymous polymorphisms is significantly correlated to synonymous diversity and estimates of N(e), even taking into account the obvious nonindependence between these measures.  相似文献   

16.
Andolfatto P  Przeworski M 《Genetics》2001,158(2):657-665
A correlation between diversity levels and rates of recombination is predicted both by models of positive selection, such as hitchhiking associated with the rapid fixation of advantageous mutations, and by models of purifying selection against strongly deleterious mutations (commonly referred to as "background selection"). With parameter values appropriate for Drosophila populations, only the first class of models predicts a marked skew in the frequency spectrum of linked neutral variants, relative to a neutral model. Here, we consider 29 loci scattered throughout the Drosophila melanogaster genome. We show that, in African populations, a summary of the frequency spectrum of polymorphic mutations is positively correlated with the meiotic rate of crossing over. This pattern is demonstrated to be unlikely under a model of background selection. Models of weakly deleterious selection are not expected to produce both the observed correlation and the extent to which nucleotide diversity is reduced in regions of low (but nonzero) recombination. Thus, of existing models, hitchhiking due to the recurrent fixation of advantageous variants is the most plausible explanation for the data.  相似文献   

17.
The rates and patterns of molecular evolution in many eukaryotic organisms have been shown to be influenced by the compartmentalization of their genomes into fractions of distinct base composition and mutational properties. We have examined the Drosophila genome to explore relationships between the nucleotide content of large chromosomal segments and the base composition and rate of evolution of genes within those segments. Direct determination of the G + C contents of yeast artificial chromosome clones containing inserts of Drosophila melanogaster DNA ranging from 140-340 kb revealed significant heterogeneity in base composition. The G + C content of the large segments studied ranged from 36.9% G + C for a clone containing the hunchback locus in polytene region 85, to 50.9% G + C for a clone that includes the rosy region in polytene region 87. Unlike other organisms, however, there was no significant correlation between the base composition of large chromosomal regions and the base composition at fourfold degenerate nucleotide sites of genes encompassed within those regions. Despite the situation seen in mammals, there was also no significant association between base composition and rate of nucleotide substitution. These results suggest that nucleotide sequence evolution in Drosophila differs from that of many vertebrates and does not reflect distinct mutational biases, as a function of base composition, in different genomic regions. Significant negative correlations between codon-usage bias and rates of synonymous site divergence, however, provide strong support for an argument that selection among alternative codons may be a major contributor to variability in evolutionary rates within Drosophila genomes.  相似文献   

18.
Microsatellite variation and recombination rate in the human genome   总被引:13,自引:0,他引:13  
Payseur BA  Nachman MW 《Genetics》2000,156(3):1285-1298
Background (purifying) selection on deleterious mutations is expected to remove linked neutral mutations from a population, resulting in a positive correlation between recombination rate and levels of neutral genetic variation, even for markers with high mutation rates. We tested this prediction of the background selection model by comparing recombination rate and levels of microsatellite polymorphism in humans. Published data for 28 unrelated Europeans were used to estimate microsatellite polymorphism (number of alleles, heterozygosity, and variance in allele size) for loci throughout the genome. Recombination rates were estimated from comparisons of genetic and physical maps. First, we analyzed 61 loci from chromosome 22, using the complete sequence of this chromosome to provide exact physical locations. These 61 microsatellites showed no correlation between levels of variation and recombination rate. We then used radiation-hybrid and cytogenetic maps to calculate recombination rates throughout the genome. Recombination rates varied by more than one order of magnitude, and most chromosomes showed significant suppression of recombination near the centromere. Genome-wide analyses provided no evidence for a strong positive correlation between recombination rate and polymorphism, although analyses of loci with at least 20 repeats suggested a weak positive correlation. Comparisons of microsatellites in lowest-recombination and highest-recombination regions also revealed no difference in levels of polymorphism. Together, these results indicate that background selection is not a major determinant of microsatellite variation in humans.  相似文献   

19.
Macpherson JM  Sella G  Davis JC  Petrov DA 《Genetics》2007,177(4):2083-2099
The effect of recurrent selective sweeps is a spatially heterogeneous reduction in neutral polymorphism throughout the genome. The pattern of reduction depends on the selective advantage and recurrence rate of the sweeps. Because many adaptive substitutions responsible for these sweeps also contribute to nonsynonymous divergence, the spatial distribution of nonsynonymous divergence also reflects the distribution of adaptive substitutions. Thus, the spatial correspondence between neutral polymorphism and nonsynonymous divergence may be especially informative about the process of adaptation. Here we study this correspondence using genomewide polymorphism data from Drosophila simulans and the divergence between D. simulans and D. melanogaster. Focusing on highly recombining portions of the autosomes, at a spatial scale appropriate to the study of selective sweeps, we find that neutral polymorphism is both lower and, as measured by a new statistic Q(S), less homogeneous where nonsynonymous divergence is higher and that the spatial structure of this correlation is best explained by the action of strong recurrent selective sweeps. We introduce a method to infer, from the spatial correspondence between polymorphism and divergence, the rate and selective strength of adaptation. Our results independently confirm a high rate of adaptive substitution (approximately 1/3000 generations) and newly suggest that many adaptations are of surprisingly great selective effect (approximately 1%), reducing the effective population size by approximately 15% even in highly recombining regions of the genome.  相似文献   

20.
Regional biases in substitution pattern are likely to be responsible for the large-scale variation in base composition observed in vertebrate genomes. However, the evolutionary forces responsible for these biases are still not clearly defined. In order to study the processes of mutation and fixation across the entire human genome, we analyzed patterns of substitution in Alu repeats since their insertion. We also studied patterns of human polymorphism within the repeats. There is a highly significant effect of recombination rate on the pattern of substitution, whereas no such effect is seen on the pattern of polymorphism. These results suggest that regional biases in substitution are caused by biased gene conversion, a process that increases the probability of fixation of mutations that increase GC content. Furthermore, the strongest correlate of substitution patterns is found to be male recombination rates rather than female or sex-averaged recombination rates. This indicates that in addition to sexual dimorphism in recombination rates, the sexes also differ in the relative rates of crossover and gene conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号