首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrothermal reactions of lead(II) acetate and HO2C(CH2)3N(CH2PO3H2)2 at 170 and 140 °C, respectively, resulted in two different lead diphosphonates, namely, Pb2[NH(CH2PO3)2] · 2H2O (1), in which the butyric acid moiety of the HO2C(CH2)3N(CH2PO3H2)2 has been cleaved and a novel layered compound, Pb3[HO2C(CH2)3NH(CH2PO3)2]2 · 2H2O (2). Their crystal structures have been determined by single crystal X-ray diffraction. In compound 1, the interconnection of the lead(II) ions by bridging amino-diphosphonate ligands leads to the formation of a 3D network. Compound 2 features an unusual triple-layer structure with the non-coordinated butyric acid moieties as pendant groups between the layers.  相似文献   

2.
The reaction of α-MgCl2 with boiling ethyl acetate affords MgCI2(CH3COOC2H5)2· (CH3COOC2H5), which is obtained as crystals suitable for X-ray analysis only from the mother liquor. M=315.5, orthorhombic, space group P21221 (No. 18), a=25.077(3), b=8.616(1), c=7.345(1) Å, V=1587.0(3) Å3, Z=4, Dx=1.32 g cm−3,λ A(Mo Kα)=0.71069 Å, μ=4.17 cm−1, F(000)=664, T=298 K, observed reflections: 1667, R=0.059 and Rw=0.069. The structure is composed of polymeric chains of MgCl2(CH3COOC2H5)2 and the ethyl acetate molecules occupy a mutually trans position.  相似文献   

3.
New mixed metal complexes SrCu2(O2CR)3(bdmap)3 (R = CF3 (1a), CH3 (1b)) and a new dinuclear bismuth complex Bi2(O2CCH3)4(bdmap)2(H2O) (2) have been synthesized. Their crystal structures have been determined by single-crystal X-ray diffraction analyses. Thermal decomposition behaviors of these complexes have been examined by TGA and X-ray powder diffraction analyses. While compound 1a decomposes to SrF2 and CuO at about 380°C, compound 1b decomposes to the corresponding oxides above 800°C. Compound 2 decomposes cleanly to Bi2O3 at 330°C. The magnetism of 1a was examined by the measurement of susceptibility from 5–300 K. Theoretical fitting for the susceptibility data revealed that 1a is an antiferromagnetically coupled system with g = 2.012(7), −2J = 34.0(8) cm−1. Crystal data for 1a: C27H51N6O9F9Cu2Sr/THF, monoclinic space group P21/m, A = 10.708(6), B = 15.20(1), C = 15.404(7) Å, β = 107.94(4)°, V = 2386(2) Å3, Z = 2; for 1b: C27H60N6O9Cu2Sr/THF, orthorhombic space group Pbcn, A = 19.164(9), B = 26.829(8), C = 17.240(9) Å, V = 8864(5) Å3, Z = 8; for 2: C22H48O11N4Bi2, monoclinic space group P21/c, A = 17.614(9), B = 10.741(3), C = 18.910(7) Å, β = 109.99(3)°, V = 3362(2) Å3, Z = 4.  相似文献   

4.
The organotin complex [Ph3SnS(CH2)3SSnPh3] (1) was synthesized by PdCl2 catalyzed reaction between Ph3SnCl and disodium-1,3-propanedithiolate which in turn was prepared from 1,2-propanedithiol and sodium in refluxing THF. Reaction of 1 with Ru3(CO)12 in refluxing THF affords the mononuclear complex trans-[Ru(CO)4(SnPh3)2] (2) and the dinuclear complex [Ru2(CO)6(μ-κ2-SCH2CH2CH2S)] (3) in 20 and 11% yields, respectively, formed by cleavage of Sn-S bond of the ligand and Ru-Ru bonds of the cluster. Treatment of pymSSnPPh3 (pymS = pyrimidine-2-thiolate) with Ru3(CO)12 at 55-60 °C also gives 2 in 38% yield. Both 1 and 2 have been characterized by a combination of spectroscopic data and single crystal X-ray diffraction analysis.  相似文献   

5.
Complexes of the type [Pt(amine)4]I2 were synthesized and characterized mainly by multinuclear (195Pt, 1H and 13C) magnetic resonance spectroscopy. The compounds were prepared with different primary amines, but not with bulky amines, due to steric hindrance. In 195Pt NMR, the signals were observed between −2715 and −2769 ppm in D2O. The coupling constant 3J(195Pt-1H) for the MeNH2 complex is 42 Hz. In 13C NMR, the average values of the coupling constants 2J(195Pt-13C) and 3J(195Pt-13C) are 18 and 30 Hz, respectively. The crystal structure of [Pt(EtNH2)4]I2 was determined by X-ray diffraction methods. The Pt atom is located on an inversion center. The structure is stabilized by H-bonding between the amines and the iodide ions. The compound with n-BuNH2 was found by crystallographic methods to be [Pt(n-BuNH2)4]2I3(n-BuNHCOO). The crystal contains two independent [Pt(CH3NH2)4]2+ cations, three iodide ions and a carbamate ion formed from the reaction of butylamine with CO2 from the air. When the compound [Pt(CH3NH2)4]I2 was dissolved in acetone, crystals identified as trans-[Pt(CH3NH2)2(H3CNC(CH3)2)2]I2 were isolated and characterized by crystallographic methods. Two trans bonded MeNH2 ligands had reacted with acetone to produce the two N-bonded Schiff base Pt(II) compound.  相似文献   

6.
Lei Yang 《Inorganica chimica acta》2005,358(15):4505-4510
An organically templated zinc-substituted gallium phosphite, [H3N(CH2)2NH3]1/2 · [GaZn(HPO3)3(H2O)2] was synthesized under mild hydrothermal conditions in the presence of ethylenediamine (en) as structure-directing agent and characterized by single-crystal X-ray diffraction analysis. It crystallizes in the orthorhombic space group Pbcn with unit cell parameters: a = 18.6146(10) Å, b = 11.0454(6) Å, c = 10.9074(4) Å, V = 2242.62(19) Å3 and Z = 8. This compound has a three-dimensional framework built up from secondary building units (SBU) of Ga(III) (or Zn(II)) and HPO3 pseudopyramid by sharing vertices. The structure displays a two-dimensional channel system running along the [0 0 1] and [0 1 0] direction with 5-, 8- and 10-membered rings. The diprotonated ethylenediamine template molecules are located in the channels. In this structure, some of the Ga(III) sites are occupied by Zn(II) atoms. The compound was also characterized by IR spectroscopy, inductively coupled plasma (ICP), X-ray photoelectron spectra (XPS), differential thermal and thermogravimetric analyses.  相似文献   

7.
The new tripodal phosphine CH3C{CH2P(m-CF3C6H4)2}3, CF3PPP, was prepared by reacting CH3C(CH2Br)3 with Li+P(m-CF3C6H4)2, the latter being best obtained by adding Li+NiPr2 to PH(m-CF3C6H4)2. The rhodium complexes [RhCl(CO)(CF3PPP)], [Rh(LL)(CF3PPP)](CF3SO3) (LL = 2 CO or NBD), [RhX3(CF3PPP)], [RhX(MeCN)3(CF3PPP)](CF3SO3)2 (X = H and Cl), [RhCl2(MeCN)(CF3PPP)](CF3SO3) and [Rh(MeCN)3(CF3PPP)](CF3SO3)3 were prepared and characterized. The X-ray crystal structure of [Rh(NBD)(CF3PPP)](CF3SO3) is reported. The lower oxygen sensitivity of the CF3PPP rhodium(I) complexes, relative to the corresponding species with the parent ligand CH3C(CH2PPh2)3, is attributed to the higher effective nuclear charge on the metal centers caused by the presence of the six CF3 substituents on the terdentate phosphine. A similar effect may be responsible for the easier hydrolysis of the CF3PPP-containing, cationic rhodium(III) complexes relative to the corresponding compounds of the parent ligand.  相似文献   

8.
The reaction of TiCl4 with Li2[(SiMe2)25-C5H3)2] in toluene at room temperature afforded a mixture of cis- and trans-[(TiCl3)2{(SiMe2)25-C5H3)2}] in a molar ratio of 1/2 after recrystallization. The complex trans-[(TiCl3)2{(SiMe2)25-C5H3)2}] was hydrolyzed immediately by the addition of water to THF solutions to give trans-[(TiCl2)2(μ-O){(SiMe2)25-C5H3)2}] as a solid insoluble in all organic solvents, whereas hydrolysis of cis-[(TiCl3)2{(SiMe2)25-C5H3)2}] under different conditions led to the dinuclear μ-oxo complex cis-[(TiCl2)2)(μ-O){(SiMe2)25-C5H3)2}] and two oxo complexes of the same stoichiometry [(TiCl)2(μ-O){(SiMe2)25-C5H3)2}]2(μ-O)2 as crystalline solids. Alkylation of cis- and trans-[(TiCl3)2{(SiMe2)25-C5H3)2}] with MgCIMe led respectively to the partially alkylated cis-[(TiMe2Cl)2{(SiMe2)25-C5H3)2}] and the totally alkylated trans-[(TiMe3)2{(SiMe2)25-C5H3)2}] compounds. The crystal and molecular structure of the tetranuclear oxo complex [(TiCl)2(μ-O){(SiMe2)25-C5H3)2}]2(μ-O)2 was determined by X-ray diffraction.  相似文献   

9.
A new ruthenium nitric oxide complex with the bidentate phosphine, 1,2-bis(diethylphosphino)ethane (depe), has been synthesized and characterized by UV-Vis, infrared, EPR, NMR, electrochemical techniques and X-ray structure determination. The electronic spectrum showed a typical band of dπ→pπ* charge-transfer (CT) transition, assigned to Ru(II)NO transition, and the vibrational spectrum exhibited a peak of nitrosyl ligand at (νNO=1851 cm−1). A model structure for this complex has been proposed based on 1H, 1H{31P}, 31P{1H}, 13C{1H}, COSY 1H1H{31P}, J-Resolved, HSQC, HMBC, HSQC 1H13C{31P} and 1H13C HSQC/1H1H TOCSY spectral data, and confirmed by X-ray diffraction. The nitrosonium character for the NO ligand become evident through both electron paramagnetic resonance and X-ray data (angle RuNO=177.4(3)°). The reversible monoeletronic process at E1/2=0.040 V versus SHE was assigned to the ligand NO+/NO redox couple. Under treatment with Cd(Hg) solutions containing the [Ru(NO)(depe)2Cl](PF6)2 yields a signal in the EPR spectrum (g=1.99 and g//=1.88) which fitted quite well with the simulated spectra of coordinated NO species.  相似文献   

10.
In order to assemble polynuclear iron(III) complexes, the coordination chemistry of the 2-hydroxyethyl-3,5-dimethylpyrazole (hedmp-H) ligand has been investigated. Reaction of hedmp-H with trinuclear iron carboxylate precursor [Fe3O(PhCOO)6(H2O)3]Cl in acetonitrile yielded the hexanuclear Fe(III) complex [Fe6O2(OH)2(PhCOO)10(hedmp)2]·3CH3CN (1). This aggregate has been characterized by employing various analytical techniques, spectroscopic studies and single crystal X-ray diffraction. Detailed magnetic susceptibility measurements revealed that 1 displays an ST = 5 ground state.  相似文献   

11.
The reaction of uranyl oxalate trihydrate with guanidinium acetate at room temperature in water yields known uranyl complex with composition (CN3H6)2[UO2(C2O4)2(H2O)]·H2O as a first phase and a novel complex (CN3H6)5[(UO2)3O(OH)2(CH3COO)(C2O4)3] as a second. The second phase was investigated by means of IR spectroscopy and X-ray diffraction. The trinuclear discrete complex contains two symmetrically independent uranyl ions with a pentagonal bipyramid structure and has a nonplanar geometry. The distortion of its equatorial plane is caused by substitution of a monodentate bridge hydroxide anion by a bidentate bridge acetate-anion. The acidic ligands found in the complex are usually in competition for a place in coordination sphere of an uranyl ion, thus peculiarities of the complex formation are discussed in terms of ‘crystallochemical analysis’.  相似文献   

12.
13.
Compounds of formula [Al(CH3CN)6][MCl6]3(CH3CN)3 (M=Ta (1); Nb (2); Sb (3)) have been synthesized from the reactions of MCl5 and AlCl3 in acetonitrile and characterized by X-ray crystallography. Complex 1 crystallizes in the tetragonal space group P4/mbm with a = B = 10.408(2), C = 7.670(3) Å, V = 830.9(4) Å3 and Z = 2/3. Complex 2 crystallizes in the tetragonal space group P4/mnc with a = B = 330(a), C = 15.320(3) Å3 V = 1634.8(4) Å3 and Z = 4/3. Complex 3 also crystallizes in the tetragonal space group P4/mnc with a = B = 10.313(1), C = 15.238(2) Å, V = 1621.0(1) Å3 and Z = 4/3. The non-integer Z values for complexes 1–3 result unusual problems of disorder and/or twinning in these crystal structures due to their high symmetry. The M---Cl distances range from 2.329(3) Å in the Ta complex to 2.355(1) Å in the Sb complex, while the Al---N distances are similar in all three complexes, ranging from 1.92(1) to 1.97(1) Å, respectively. Complexes 1–3 are the first structurally characterized complexes that contain a (hexaacetonitrile)aluminum(III) cation.  相似文献   

14.
Reaction of Mo(CO)4(NCCH3)2 and 7-aza-2-tosylnorbornadiene (7-azaNBD) yielded five air-stable Mo complexes. One is Mo(CO)44-7-azaNBD), in which the molybdenum atom is chelated by the two π-bonds of 7-azaNBD. The other four are isomers of Mo(CO)22-7-azaNBD)2, in which the molybdenum atoms are chelated by the nitrogen atom and one of the two double bonds of 7-azaNBD. In one pair of the isomers, the metal binds to C(2)C(3) of both 7-azaNBD ligands; whereas in the other pair of isomers the metal binds to C(2)C(3) of one 7-azaNBD ligand and C(5)C(6) of another ligand. All structures were fully characterized by NMR spectra. A single crystal of compound 4 was analyzed by X-ray diffraction analysis, which was found to be monoclinic with a = 8.4199, b = 23.984, c = 16.395 Å, and β = 99.99°.  相似文献   

15.
The reaction between the linear trinuclear complex [Pt{Fe(CO)3(NO)}2(PhCN)2] and Ph2(2-C5H4N)PSe led to the isolation and characterization of the 46-electron cluster [(CO)3Fe(μ3-Se){Pt(CO)P(2-C5H4N)Ph2}2] (1), whose structure has been determined by X-ray diffraction methods. The cluster typology, which consists of an open triangle Pt---Fe---Pt capped by a μ3-Se atom, is rather rare. The chemical bonding in 1 and in similar systems has been analyzed through density functional theory (DFT) and qualitative MO approaches. A strict analogy with the well understood L2M(μ-acetylene)ML2 systems is invoked by considering 1 as formed by the (CO)3FeSe tetrahedral unit stabilized by sidewise interactions of the triple bond with two d10-L2M fragments. Otherwise, the 18-electron (CO)3FeSe monomer is unstable as an isolate molecule. This is confirmed by our DFT calculations that indicate how the well characterized dimer (CO)3Fe(μ-Se2)Fe(CO)3 lies as much as, approximately, 58 kcal mol−1 deeper in energy. Finally, by considering an analogy with [L2M(μ-dichalcogen)ML2]0, +2 redox systems (M=Pd, Pt), reduction of 1 to a dianion has been hypothesized and the structure of the latter has been tentatively explored by DFT calculations.  相似文献   

16.
17.
With exposure to trace amounts of air and moisture, the Cr2(II, II) complex Cr2(μ-3,5Cl2-form)4, where 3,5Cl2-form is [(3,5-Cl2C6H3)NC(H)N(3,5-Cl2C6H3)], undergoes an oxidative addition reaction. Structural information from the X-ray crystal structure of the edge-sharing bioctahedral (ESBO) Cr2(III, III) product Cr2(μ-OH)2(μ-3,5Cl2-form)22-3,5Cl2-form)2 (1) indicates 1 has a significantly longer Cr–Cr distance [2.732(2) Å] than Cr2(μ-3,5Cl2-form)4 [1.9162(10) Å], but the shortest Cr–Cr distance in an ESBO Cr2(III, III) complex recorded to date.  相似文献   

18.
Two new zincophosphites [C6H14N2]0.5[Zn(H2PO3)2] 1 and [C4H12N2]0.5[(CH3)2NH2][Zn2(HPO3)3] 2 have been solvothermally synthesized in mixed solvents of N,N-dimethylformamide (DMF) and 1,4-dioxane (DOA), respectively. Single-crystal X-ray diffraction analysis reveals that compound 1 exhibits a neutral inorganic chain formed by ZnO4 and HPO2(OH) units. Interestingly, the left- and right-handed hydrogen-bonded helical chains are alternately formed via the hydrogen-bonds between two adjacent chains. Compound 2 exhibits a layer structure with 4- and 12-MRs formed by ZnO4 and HPO3 units, in which two kinds of organic amine molecules both act as countercations to compensate the overall negative electrostatic charge of the anionic network.  相似文献   

19.
Reaction of the precursor Ir complex [Ir(H)2(PPh3)2(Me2CO)2]PF6 with 3,6-bis(2-pyridyl)tetrazine (bptz) in CH2Cl2 gave a novel dinuclear Ir hydrido complex [Ir2(H)4(PPh3)4(bptz)](PF6)2 · 4CH2Cl2. Crystallographic study described an interesting coordination environment having a π-π interaction and 1H NMR study showed unique upfield shifts of pyridyl rings that are likely induced by the ring current effect of neighboring PPh3 ligands.  相似文献   

20.
The preparation and structural characterization of {Ru3(CO)11}2(1,4-bis(diphenylphosphino)benzene), a modified synthesis of 1,4-bis(diphenylphosphino)benzene, and the structural characterization of {Ru3(CO)11}2(bis(diphenylphosphino)ethane) are reported. In both compounds two metal cluster units are connected through ditertiary-phosphine ligands. Both molecules consist of centrosymmetric units in which the diphosphine ligands are largely covered by the triangular ruthenium clusters. No direct interaction between the two cluster units occurs within individual molecules. Molecular packing in the solid state is dominated by interactions between sets of carbon monoxide ligands in motifs that were previously identified in the solid state structure of the parent cluster, Ru3(CO)12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号