共查询到20条相似文献,搜索用时 15 毫秒
1.
A combined N- and C-terminal truncation variant of human apolipoprotein A-I (apoA-I) was designed, expressed in Escherichia coli, isolated, and characterized. Hydrodynamic experiments yielded a weight average molecular weight of 34000, indicating apoA-I-(44-186) exists in solution predominantly as a dimer. An axial ratio of 4.2 was calculated for the dimer based on sedimentation velocity experiments. Far-UV circular dichroism spectroscopy of apoA-I-(44-186) in buffer indicated the presence of 65% alpha-helix secondary structure. Guanidine hydrochloride denaturation experiments yielded a transition midpoint of 0.5 M for apoA-I-(44-186). ApoA-I-(44-186) induced solubilization of dimyristoylphosphatidylcholine vesicles at a rate comparable to that of full-length apoA-I, displayed lipoprotein binding ability, and was an acceptor of ABCA1-mediated cholesterol efflux from cultured macrophages. Fluorescence quenching studies with KI indicate that the three Trp residues in apoA-I-(44-186) are shielded from the aqueous environment. Taken together, the data indicate that lipid-free apoA-I-(44-186) adopts a folded conformation in solution that possesses lipid binding capability. The central region of apoA-I appears to adopt a globular amphipathic alpha-helix bundle organization that is stabilized by intramolecular and/or intermolecular helix-helix interactions. Lipid association likely results in a conformational adaptation wherein helix-helix contacts are substituted for helix-lipid interactions. 相似文献
2.
The C-terminal domain of apolipoprotein A-I is involved in ABCA1-driven phospholipid and cholesterol efflux 总被引:1,自引:0,他引:1
Favari E Bernini F Tarugi P Franceschini G Calabresi L 《Biochemical and biophysical research communications》2002,299(5):801-805
ABCA1, a member of the ATP-binding cassette family, mediates the efflux of cellular lipids to free apolipoproteins, mainly apoA-I. The role of the C-terminal domain of apoA-I in this process has been evaluated by measuring the efflux capacity of a truncated form (apoA-I-(1-192)) versus intact apoA-I in different cellular models. In stimulated J774 macrophages, cholesterol efflux to apoA-I-(1-192) was remarkably lower than that to the intact apoA-I. The truncated apoA-I, lacking an important lipid-binding domain, was also significantly less efficient in removing phospholipids from stimulated macrophages. No difference was detected with stimulated Tangier fibroblasts that do not express functional ABCA1. The C-terminal domain of apoA-I is clearly involved in ABCA1-driven lipid efflux. Independent of the interaction with the cell surface, it may be the decreased ability of the truncated apoA-I to recruit membrane phospholipids that impairs its capacity to promote cell cholesterol efflux. 相似文献
3.
《生物化学与生物物理学报:生物膜》2023,1865(2):184098
Apolipoprotein A-I (apoA-I) is the main protein of high-density lipoprotein and is comprised of a helical bundle domain and a C-terminal (CT) domain encompassing the last ~65 amino acid residues of the 243-residue protein. The CT domain contains three putative helices (helix 8, 9, and 10) and is critical for initiating lipid binding and harbors sites that mediate self-association of the lipid-free protein. Three lysine residues reside in helix-8 (K195, 206, 208), and three in helix-10 (K226, 238, 239). To determine the role of each CT lysine residue in apoA-I self-association, single, double and triple lysine to glutamine mutants were engineered via site-directed mutagenesis. Circular dichroism and chemical denaturation analysis revealed all mutants retained their structural integrity. Chemical crosslinking and size-exclusion chromatography showed a small effect on self-association when helix-8 lysine residues were changed into glutamine. In contrast, mutation of the three helix-10 lysine residues resulted in a predominantly monomeric protein and K226 was identified as a critical residue. When helix-10 glutamate residues 223, 234, or 235 were substituted with glutamine, reduced self-association was observed similar to that of the helix-10 lysine variants, suggesting ionic interactions between these residues. Thus, helix-10 is a critical part of apoA-I mediating self-association, and disruption of ionic interactions changes apoA-I from an oligomeric state into a monomer. Since the helix-10 triple mutant solubilized phospholipid vesicles at higher rates compared to wild-type apoA-I, this indicates monomeric apoA-I is more potent in lipid binding, presumably because helix-10 is fully accessible to interact with lipids. 相似文献
4.
The Escherichia coli dnaQ gene encodes the 3'-->5' exonucleolytic proofreading (epsilon) subunit of DNA polymerase III (Pol III). Genetic analysis of dnaQ mutants has suggested that epsilon might consist of two domains, an N-terminal domain containing the exonuclease and a C-terminal domain essential for binding the polymerase (alpha) subunit. We have created truncated forms of dnaQ resulting in epsilon subunits that contain either the N-terminal or the C-terminal domain. Using the yeast two-hybrid system, we analyzed the interactions of the single-domain epsilon subunits with the alpha and theta subunits of the Pol III core. The DnaQ991 protein, consisting of the N-terminal 186 amino acids, was defective in binding to the alpha subunit while retaining normal binding to the theta subunit. In contrast, the NDelta186 protein, consisting of the C-terminal 57 amino acids, exhibited normal binding to the alpha subunit but was defective in binding to the theta subunit. A strain carrying the dnaQ991 allele exhibited a strong, recessive mutator phenotype, as expected from a defective alpha binding mutant. The data are consistent with the existence of two functional domains in epsilon, with the C-terminal domain responsible for polymerase binding. 相似文献
5.
J W Burgess P G Frank V Franklin P Liang D C McManus M Desforges E Rassart Y L Marcel 《Biochemistry》1999,38(44):14524-14533
The contribution of the amphipathic alpha-helices of apoA-I toward lipid efflux from human skin fibroblasts and macrophage was examined. Four apoA-I mutants were designed, each by deletion of a pair of predicted adjacent helices. Three mutants lacked two consecutive central alpha-helices [Delta(100-143), Delta(122-165), and Delta(144-186)], whereas the final mutant lacked the C-terminal domain [Delta(187-243)]. When compared to recombinant wild-type apoA-I and mutants with central domain deletions, Delta(187-243) exhibited a marked reduction in its ability to promote either cholesterol or phospholipid efflux from THP-1 macrophages. This mutant also demonstrated a decreased ability to bind lipids and to form lipoprotein complexes. In contrast, the four mutants and apoA-I equally supported cholesterol efflux from fibroblasts, albeit with a reduced capacity when compared to macrophages. Delta(187-243) bound poorly to the macrophage cell surface when compared to apoA-I, and competitive binding studies with the central domain and C-terminal deletions mutants showed that only Delta(187-243) did not compete effectively with [(125)I]apoA-I. Omission of PMA during cholesterol loading enhanced cholesterol efflux to both apoA-I (1.5-fold) and the C-terminal deletion mutant (2.5-fold). Inclusion of the Sandoz ACAT inhibitor (58-035) during loading and, in the absence of PMA, increased and equalized cholesterol efflux to apoA-I and Delta(187-243). Surprisingly, omission of PMA during cholesterol loading had minimal effects on the binding of apoA-I or Delta(187-243) to the THP-1 cell surface. Overall, these results show that cholesterol efflux from cells such as fibroblasts does not require any specific sequence between residues 100 and 243 of apoA-I. In contrast, optimal cholesterol efflux in macrophages requires binding of the C-terminal domain of apoA-I to a cell surface-binding site and the subsequent translocation of intracellular cholesterol to an efflux-competent pool. 相似文献
6.
Kohjiro Nagao Mami Hata Kento Tanaka Yuki Takechi David Nguyen Padmaja Dhanasekaran Sissel Lund-Katz Michael C. Phillips Hiroyuki Saito 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2014,1841(1):80-87
Apolipoprotein A-I (apoA-I) accepts cholesterol and phospholipids from ATP-binding cassette transporter A1 (ABCA1)-expressing cells to form high-density lipoprotein (HDL). Human apoA-I has two tertiary structural domains and the C-terminal domain (approximately amino acids 190–243) plays a key role in lipid binding. Although the high lipid affinity region of the C-terminal domain of apoA-I (residues 223–243) is essential for the HDL formation, the function of low lipid affinity region (residues 191–220) remains unclear. To evaluate the role of residues 191–220, we analyzed the structure, lipid binding properties, and HDL formation activity of Δ191–220 apoA-I, in comparison to wild-type and Δ223–243 apoA-I. Although deletion of residues 191–220 has a slight effect on the tertiary structure of apoA-I, the Δ191–220 variant showed intermediate behavior between wild-type and Δ223–243 regarding the formation of hydrophobic sites and lipid interaction through the C-terminal domain. Physicochemical analysis demonstrated that defective lipid binding of Δ191–220 apoA-I is due to the decreased ability to form α-helix structure which provides the energetic source for lipid binding. In addition, the ability to form HDL particles in vitro and induce cholesterol efflux from ABCA1-expressing cells of Δ191–220 apoA-I was also intermediate between wild-type and Δ223–243 apoA-I. These results suggest that despite possessing low lipid affinity, residues 191–220 play a role in enhancing the ability of apoA-I to bind to and solubilize lipids by forming α-helix upon lipid interaction. Our results demonstrate that the combination of low lipid affinity region and high lipid affinity region of apoA-I is required for efficient ABCA1-dependent HDL formation. 相似文献
7.
Radiation injury to cells enhances C-terminal phosphorylation of p53 at both Ser315 and Ser392 in vivo, suggesting the existence of two cooperating DNA damage-responsive pathways that play a role in stimulating p53-dependent gene expression. Our previous data has shown that cyclin A-cdk2 is the major enzyme responsible for modifying p53 at Ser315 in vivo after irradiation damage and in this report we dissect the mechanism of cyclinA-cdk2 binding to and phosphorylation of p53. Although cyclin B(1)-dependent protein kinases can phosphorylate small peptides containing the Ser315 site, cyclin A-cdk2 does not phosphorylate such small peptides suggesting that additional determinants are required for cyclin A-cdk2 interaction with p53. Peptide competition studies have localized a cyclin A interaction site to a Lys381Lys382Leu383Met384Phe385 sequence within C-terminal negative regulatory domain of human p53. An alanine mutation at any one of four key positions abrogates the efficacy of a synthetic peptide containing this motif as an inhibitor of cyclin A-cdk2 phosphorylation of p53 protein. Single amino acid mutations of full-length p53 protein at Lys382, Leu383, or Phe385 decreases cyclin A-cdk2 dependent phosphorylation at Ser315. Cyclin B(1)-cdk2 complexes are not inhibited by KKLMF motif-containing peptides nor is p53 phosphorylation by cyclin B-cdk2 reduced by mutation of the cyclin A interaction site. These data identifying a KKLMF cyclin A docking site on p53 protein highlight a common cyclin A interaction motif that is shared between the tumour suppressor proteins pRb and p53. 相似文献
8.
Gauthamadasa K Vaitinadin NS Dressman JL Macha S Homan R Greis KD Silva RA 《The Journal of biological chemistry》2012,287(10):7615-7625
It is well accepted that HDL has the ability to reduce risks for several chronic diseases. To gain insights into the functional properties of HDL, it is critical to understand the HDL structure in detail. To understand interactions between the two major apolipoproteins (apos), apoA-I and apoA-II in HDL, we generated highly defined benchmark discoidal HDL particles. These particles were reconstituted using a physiologically relevant phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) incorporating two molecules of apoA-I and one homodimer of apoA-II per particle. We utilized two independent mass spectrometry techniques to study these particles. The techniques are both sensitive to protein conformation and interactions and are namely: 1) hydrogen deuterium exchange combined with mass spectrometry and 2) partial acetylation of lysine residues combined with MS. Comparison of mixed particles with apoA-I only particles of similar diameter revealed that the changes in apoA-I conformation in the presence of apoA-II are confined to apoA-I helices 3-4 and 7-9. We discuss these findings with respect to the relative reactivity of these two particle types toward a major plasma enzyme, lecithin:cholesterol acyltransferase responsible for the HDL maturation process. 相似文献
9.
Behling Agree AK Tricerri MA Arnvig McGuire K Tian SM Jonas A 《Biochimica et biophysica acta》2002,1594(2):286-296
Apolipoprotein A-I (apoA-I) has important physiologic roles in reverse cholesterol transport, as a component of HDL; however, apoA-I also exists in lipid-poor or lipid-free forms that are key intermediates in HDL metabolism and acceptors of lipids from cells. The aim of this study was to examine the structure and stability of the central and C-terminal regions of lipid-free apoA-I. To this end, five Cys mutants of proapoA-I were constructed and expressed in Escherichia coli: V119C, A124C, A154C, A190C, and A232C. These mutants were specifically labeled with 6-acryloyl-2-dimethylaminonaphthalene (acrylodan, AC) and were examined by CD spectroscopy and a variety of fluorescence methods. The results showed that the introduction of Cys residues and their covalent labeling with AC did not affect the overall structure and stability of apoA-I. However, AC fluorescence properties revealed that different segments of the central and C-terminal half of apoA-I have distinct folding and stability properties. From fluorescence energy transfer data, average distances between the N-terminal region containing Trp residues and the various AC locations were obtained. The current results, together with previously published observations, led to the construction of a three-dimensional model for the folding of lipid-free apoA-I. 相似文献
10.
Human apolipoprotein A-I (apoA-I) is the principle apolipoprotein of high-density lipoproteins that are critically involved in reverse cholesterol transport. The intrinsically flexibility of apoA-I has hindered studies of the structural and functional details of the protein. Our strategy is to study peptide models representing different regions of apoA-I. Our previous report on [1-44]apoA-I demonstrated that this N-terminal region is unstructured and folds into approximately 60% alpha-helix with a moderate lipid binding affinity. We now present details of the conformation and lipid interaction of a C-terminal 46-residue peptide, [198-243]apoA-I, encompassing putative helix repeats 10 and 9 and the second half of repeat 8 from the C-terminus of apoA-I. Far-ultraviolet circular dichroism spectra show that [198-243]apoA-I is also unfolded in aqueous solution. However, self-association induces approximately 50% alpha-helix in the peptide. The self-associated peptide exists mainly as a tetramer, as determined by native electrophoresis, cross-linking with glutaraldehyde, and unfolding data from circular dichroism (CD) and differential scanning calorimetry (DSC). In the presence of a number of lipid-mimicking detergents, above their CMC, approximately 60% alpha-helix was induced in the peptide. In contrast, SDS, an anionic lipid-mimicking detergent, induced helical folding in the peptide at a concentration of approximately 0.003% (approximately 100 microM), approximately 70-fold below its typical CMC (0.17-0.23% or 6-8 mM). Both monomeric and tetrameric peptide can solubilize dimyristoylphosphatidylcholine (DMPC) liposomes and fold into approximately 60% alpha-helix. Fractionation by density gradient ultracentrifugation and visualization by negative staining electromicroscopy demonstrated that the peptide binds to DMPC with a high affinity to form at least two sizes of relatively homogeneous discoidal HDL-like particles depending on the initial lipid:peptide ratio. The characteristics (lipid:peptide weight ratio, diameter, and density) of both complexes are similar to those of plasma A-I/DMPC complexes formed under similar conditions: small discoidal complexes (approximately 3:1 weight ratio, approximately 110 A, and approximately 1.10 g/cm3) formed at an initial 1:1 weight ratio and larger discoidal complexes (approximately 4.6:1 weight ratio, approximately 165 A, and approximately 1.085 g/cm3) formed at initial 4:1 weight ratio. The cross-linking data for the peptide on the complexes of two sizes is consistent with the calculated peptide numbers per particle. Compared to the approximately 100 A disk-like complex formed by the N-terminal peptide in which helical structure was insufficient to cover the disk edge by a single belt, the compositions of these two types of complexes formed by the C-terminal peptide are more consistent with a "double belt" model, similar to that proposed for full-length apoA-I. Thus, our data provide direct evidence that this C-terminal region of apoA-I is responsible for the self-association of apoA-I, and this C-terminal peptide model can mimic the interaction with the phospholipid of plasma apoA-I to form two sizes of homogeneous discoidal complexes and thus may be responsible for apoA-I function in the formation and maintenance of HDL subspecies in plasma. 相似文献
11.
Tanaka M Koyama M Dhanasekaran P Nguyen D Nickel M Lund-Katz S Saito H Phillips MC 《Biochemistry》2008,47(7):2172-2180
The tertiary structure of apolipoprotein (apo) A-I and the contributions of structural domains to the properties of the protein molecule are not well defined. We used a series of engineered human and mouse apoA-I molecules in a range of physical-biochemical measurements to address this issue. Circular dichroism measurements of alpha-helix thermal unfolding and fluorescence spectroscopy measurements of 8-anilino-1-napthalenesulfonic acid binding indicate that removal of the C-terminal 54 amino acid residues from human and mouse apoA-I has similar effects; the molecules are only slightly destabilized, and there is a decrease in hydrophobic surface exposure. These results are consistent with both human and mouse apoA-I adopting a two-domain tertiary structure, comprising an N-terminal antiparallel helix bundle domain and a separate less ordered C-terminal domain. Mouse apoA-I is significantly less resistant than human apoA-I to thermal and chemical denaturation; the midpoint of thermal unfolding of mouse apoA-I at 45 degrees C is 15 degrees C lower and the midpoint of guanidine hydrochloride denaturation (D1/2) occurs at 0.5 M as compared to 1.0 M for human apoA-I. These differences reflect the overall greater stability of the helix bundle formed by residues 1-189 in human apoA-I. Measurements of the heats of binding to egg phosphatidylcholine (PC) small unilamellar vesicles and the kinetics of solubilization of dimyristoyl PC multilamellar vesicles indicate that the more stable human helix bundle interacts poorly with lipids as compared to the equivalent mouse N-terminal domain. The C-terminal domain of human apoA-I is much more hydrophobic than that of mouse apoA-I; in the lipid-free state the human C-terminal domain (residues 190-243) is partially alpha-helical and undergoes cooperative unfolding (D1/2 = 0.3 M) whereas the isolated mouse C-terminal domain (residues 187-240) is disordered in dilute solution. The human C-terminal domain binds to lipid surfaces much more avidly than the equivalent mouse domain. Human and mouse apoA-I have very different tertiary structure domain contributions for achieving functionality. It is clear that the stability of the N-terminal helix bundle, and the hydrophobicity and alpha-helix content of the C-terminal domain, are critical factors in determining the overall properties of the apoA-I molecule. 相似文献
12.
The C-terminal domain of Rac1 contains two motifs that control targeting and signaling specificity 总被引:4,自引:0,他引:4
van Hennik PB ten Klooster JP Halstead JR Voermans C Anthony EC Divecha N Hordijk PL 《The Journal of biological chemistry》2003,278(40):39166-39175
Rho-like GTPases control a wide range of cellular functions such as integrin- and cadherin-mediated adhesion, cell motility, and gene expression. The hypervariable C-terminal domain of these GTPases has been implicated in membrane association and effector binding. We found that cell-permeable peptides, encoding the C termini of Rac1, Rac2, RhoA, and Cdc42, interfere with GTPase signaling in a specific fashion in a variety of cellular models. Pull-down assays showed that the C terminus of Rac1 does not associate to either RhoGDI or to Pak. In contrast, the C terminus of Rac1 (but not Rac2 or Cdc42) binds to phosphatidylinositol 4,5-phosphate kinase (PIP5K) via amino acids 185-187 (RKR). Moreover, Rac1 associates to the adapter protein Crk via the N-terminal Src homology 3 (SH3) domain of Crk and the proline-rich stretch in the Rac1 C terminus. These differential interactions mediate Rac1 localization, as well as Rac1 signaling, toward membrane ruffling, cell-cell adhesion, and migration. These data show that the C-terminal, hypervariable domain of Rac1 encodes two distinct binding motifs for signaling proteins and regulates intracellular targeting and differential signaling in a unique and non-redundant fashion. 相似文献
13.
C-terminal domain of the Epstein-Barr virus LMP2A membrane protein contains a clustering signal 总被引:2,自引:0,他引:2 下载免费PDF全文
The latency-regulated transmembrane protein LMP2A interferes with signaling from the B-cell antigen receptor by recruiting the tyrosine kinases Lyn and Syk and by targeting them for degradation by binding the cellular E3 ubiquitin ligase AIP4. It has been hypothesized that this constitutive activity of LMP2A requires clustering in the membrane, but molecular evidence for this has been lacking. In the present study we show that LMP2A coclusters with chimeric rat CD2 transmembrane molecules carrying the 27-amino-acid (aa) intracellular C terminus of LMP2A and that this C-terminal domain fused to the glutathione-S-transferase protein associates with LMP2A in cell lysates. This molecular association requires neither the cysteine-rich region between aa 471 and 480 nor the terminal three aa 495 to 497. We also show that the juxtamembrane cysteine repeats in the LMP2A C terminus are the major targets for palmitoylation but that this acylation is not required for targeting of LMP2A to detergent-insoluble glycolipid-enriched membrane microdomains. 相似文献
14.
15.
Nguyen PA Soto CS Polishchuk A Caputo GA Tatko CD Ma C Ohigashi Y Pinto LH DeGrado WF Howard KP 《Biochemistry》2008,47(38):9934-9936
The M2 protein from influenza A is a pH-activated proton channel that plays an essential role in the viral life cycle and serves as a drug target. Using spin labeling EPR spectroscopy, we studied a 38-residue M2 peptide spanning the transmembrane region and its C-terminal extension. We obtained residue-specific environmental parameters under both high- and low-pH conditions for nine consecutive C-terminal sites. The region forms a membrane surface helix at both high and low pH, although the arrangement of the monomers within the tetramer changes with pH. Both electrophysiology and EPR data point to a critical role for residue Lys 49. 相似文献
16.
In this study the thermal and denaturant induced unfolding of apolipoprotein A-I (apo A-I) and the monomer form of apolipoprotein A-I(Milano) (apo A-I(M)) was followed. Dimer apo A-I(M) was reduced with dithiothreitol, which was present in the protein solutions in all experiments. Thermal denaturation is followed by differential scanning calorimetry (DSC) and far-UV and near-UV CD. Both apo A-I and monomer apo A-IM have a broad asymmetric DSC peak that could be deconvoluted into three non two-state transitions, apo A-I being more stable than the monomer apo A-IM. Estimation of melting of tertiary structure by near-UV CD is lower than that for secondary structure determined from far-UV. This together with the non two-state unfolding of the proteins observed with DSC is indicative of unfolding via a molten globular-like state. Apo A-I and monomer apo A-I(M) are equally susceptible to guanidinum chloride, half-unfolded at 1.2 M denaturant. The presence of 0.5 and 1.0 M denaturant, lower and equalize the denaturation temperatures of the proteins, respectively. 相似文献
17.
R W James D Hochstrasser J D Tissot M Funk R Appel F Barja C Pellegrini A F Muller D Pometta 《Journal of lipid research》1988,29(12):1557-1571
The protein heterogeneity of fractions isolated by immunoaffinity chromatography on anti-apolipoprotein A-I and anti-apolipoprotein A-II affinity columns was analyzed by high resolution two-dimensional gel electrophoresis. The two-dimensional gel electrophoresis profiles of the fractions were analyzed and automatically compared by the computer system MELANIE. Fractions containing apolipoproteins A-I + A-II and only A-I as the major protein components have been isolated from plasma and from high density lipoproteins prepared by ultracentrifugation. Similarities between the profiles of the fractions, as indicated by two-dimensional gel electrophoresis, suggested that those derived from plasma were equivalent to those from high density lipoproteins (HDL), which are particulate in nature. The established apolipoproteins (A-I, A-II, A-IV, C, D, and E) were visible and enriched in fractions from both plasma and HDL. However, plasma-derived fractions showed a much greater degree of protein heterogeneity due largely to enrichment in bands corresponding to six additional proteins. They were present in trace amounts in fractions isolated from HDL and certain of the proteins were visible in two-dimensional gel electrophoresis profiles of the plasma. These proteins are considered to be specifically associated with the immunoaffinity-isolated particles. They have been characterized in terms of Mr and pI. Computer-assisted measurements of protein spot-staining intensities suggest an asymmetric distribution of the proteins (as well as the established apolipoproteins), with four showing greater prominence in particles containing apolipoprotein A-I but no apolipoprotein A-II. 相似文献
18.
Apolipoprotein A-I (apoA-I) is the main protein of plasma high-density lipoproteins (HDL, or good cholesterol) that remove excess cell cholesterol and protect against atherosclerosis. In hereditary amyloidosis, mutations in apoA-I promote its proteolysis and the deposition of the 9-11 kDa N-terminal fragments as fibrils in vital organs such as kidney, liver, and heart, causing organ damage. All known amyloidogenic mutations in human apoA-I are clustered in two residue segments, 26-107 and 154-178. The X-ray crystal structure of the C-terminal truncated human protein, Δ(185-243)apoA-I, determined to 2.2 ? resolution by Mei and Atkinson, provides the structural basis for understanding apoA-I destabilization in amyloidosis. The sites of amyloidogenic mutations correspond to key positions within the largely helical four-segment bundle comprised of residues 1-120 and 144-184. Mutations in these positions disrupt the bundle structure and destabilize lipid-free apoA-I, thereby promoting its proteolysis. Moreover, many mutations place a hydrophilic or Pro group in the middle of the hydrophobic lipid-binding face of the amphipathic α-helices, which will likely shift the population distribution from HDL-bound to lipid-poor/free apoA-I that is relatively unstable and labile to proteolysis. Notably, the crystal structure shows segment L44-S55 in an extended conformation consistent with the β-strand-like geometry. Exposure of this segment upon destabilization of the four-segment bundle probably initiates the α-helix to β-sheet conversion in amyloidosis. In summary, we propose that the amyloidogenic mutations promote apoA-I proteolysis by destabilizing the protein structure not only in the lipid-free but also in the HDL-bound form, with segment L44-S55 providing a likely template for the cross-β-sheet conformation. 相似文献
19.
Davidson WS Arnvig-McGuire K Kennedy A Kosman J Hazlett TL Jonas A 《Biochemistry》1999,38(43):14387-14395
Site-directed mutagenesis and detailed fluorescence studies were used to study the structure and dynamics of recombinant human proapolipoprotein (proapo) A-I in the lipid free state and in reconstituted high-density lipoprotein (rHDL) particles. Five different mutants of proapoA-I, each containing a single tryptophan residue, were produced in bacteria corresponding to each of the naturally occurring Trp residues (position -3 in the pro-segment, 8, 50, 72, and 108) in the N-terminal half of the protein. Structural analyses indicated that the conservative Phe-Trp substitutions did not perturb the conformation of the mutants with respect to the wild-type protein. Steady-state fluorescence studies indicated that all of the Trp residues exist in nonpolar environments that are highly protected from solvent in both the lipid-free and lipid-bound forms. Time-resolved lifetime and anisotropy studies indicated that the shape of the monomeric form of proapoA-I is a prolate ellipsoid with an axial ratio of about 6:1. In addition, the region surrounding Trp 108 appears to be more mobile than the rest of the protein in the lipid-free state. However, in rHDL particles, no significant domain motion was detected for any of the Trp residues. The results presented in this work are consistent with a model for monomeric lipid-free proapoA-I in which the N-terminal half of the molecule is organized into a bundle of helices. 相似文献
20.
Merz F Hoffmann A Rutkowska A Zachmann-Brand B Bukau B Deuerling E 《The Journal of biological chemistry》2006,281(42):31963-31971
In bacteria, ribosome-bound Trigger Factor assists the folding of newly synthesized proteins. The N-terminal domain (N) of Trigger Factor mediates ribosome binding, whereas the middle domain (P) harbors peptidyl-prolyl isomerase activity. The function of the C-terminal domain (C) has remained enigmatic due to structural instability in isolation. Here, we have characterized a stabilized version of the C domain (C(S)), designed on the basis of the recently solved atomic structure of Trigger Factor. Strikingly, only the isolated C(S) domain or domain combinations thereof (NC(S), PC(S)) revealed substantial chaperone activity in vitro and in vivo. Furthermore, to disrupt the C domain without affecting the overall Trigger Factor structure, we generated a mutant (Delta53) by deletion of the C-terminal 53 amino acid residues. This truncation caused the complete loss of the chaperone activity of Trigger Factor in vitro and severely impaired its function in vivo. Therefore, we conclude that the chaperone activity of Trigger Factor critically depends on its C-terminal domain as the central structural chaperone module. Intriguingly, a structurally similar module is found in the periplasmic chaperone SurA and in MPN555, a protein of unknown function. We speculate that this conserved module can exist solely or in combination with additional domains to fulfill diverse chaperone functions in the cell. 相似文献