首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three expedition huts in the Ross Sea region of Antarctica, built between 1901 and 1911 by Robert F. Scott and Ernest Shackleton, sheltered and stored the supplies for up to 48 men for 3 years during their explorations and scientific investigation in the South Pole region. The huts, built with wood taken to Antarctica by the early explorers, have deteriorated over the past decades. Although Antarctica has one of the coldest and driest environments on earth, microbes have colonized the wood and limited decay has occurred. Some wood in contact with the ground contained distinct microscopic cavities within secondary cell walls caused by soft rot fungi. Cadophora spp. could be cultured from decayed wood and other woods sampled from the huts and artifacts and were commonly associated with the soft rot attack. By using internal transcribed spacer sequences of ribosomal DNA and morphological characteristics, several species of Cadophora were identified, including C. malorum, C. luteo-olivacea, and C. fastigiata. Several previously undescribed Cadophora spp. also were found. At the Cape Evans and Cape Royds huts, Cadophora spp. commonly were isolated from wood in contact with the ground but were not always associated with soft rot decay. Pure cultures of Cadophora used in laboratory decay studies caused dark staining of all woods tested and extensive soft rot in Betula and Populus wood. The presence of Cadophora species, but only limited decay, suggests there is no immediate threat to the structural integrity of the huts. These fungi, however, are widely found in wood from the historic huts and have the capacity to cause extensive soft rot if conditions that are more conducive to decay become common.  相似文献   

2.
The penetration of enzymes into wood cell walls during white rot decay is an open question. A postembedding immunoelectron microscopic technique was the method of choice to answer that question. Infiltration of pine wood specimens with a concentrated culture filtrate greatly improved the labeling density and, thereby, reproducibility. Characterization of the concentrated culture filtrate by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting (immunoblotting) revealed three closely spaced proteins of molecular weights about 42,000 showing immunoreactivity against anti-lignin peroxidase serum. It was shown by immunogold labeling that lignin peroxidase of Phanerochaete chrysosporium is located on the surface of the wood cell wall or within areas of heavy attack. It did not diffuse into undecayed parts of the cell wall. The reasons for preventing lignin peroxidase from penetrating wood cell walls during white rot decay are discussed.  相似文献   

3.
The distribution of lignin peroxidase during degradation of both wood and woody fragments by the white rot fungus Phanerochaete chrysosporium was investigated by using anti-lignin peroxidase in conjunction with postembedding transmission electron microscopy and immuno-gold labeling techniques. The enzyme was localized in the peripheral regions of the fungal cell cytoplasm in association with the cell membrane, fungal cell wall, and extracellular slime materials. In solid wood, lignin peroxidase was detected in low concentrations associated with both superficial and degradation zones within secondary cell walls undergoing fungal attack. A similar but much greater level of extracellular peroxidase activity was associated with wood fragments degraded by the fungus grown under liquid culture conditions optimal for production of the enzyme. Efforts to infiltrate degraded wood pieces with high levels of lignin peroxidase showed the enzyme to be restricted to superficial regions of wood decay and to penetrate wood cell walls only where the wall structure had been modified. In this respect the enzyme was able to penetrate characteristic zones of degradation within the secondary walls of fibers to sites of lignin attack. This suggests a possibility for a close substrate-enzyme association during wood cell wall degradation.  相似文献   

4.
Three expedition huts in the Ross Sea region of Antarctica, built between 1901 and 1911 by Robert F. Scott and Ernest Shackleton, sheltered and stored the supplies for up to 48 men for 3 years during their explorations and scientific investigation in the South Pole region. The huts, built with wood taken to Antarctica by the early explorers, have deteriorated over the past decades. Although Antarctica has one of the coldest and driest environments on earth, microbes have colonized the wood and limited decay has occurred. Some wood in contact with the ground contained distinct microscopic cavities within secondary cell walls caused by soft rot fungi. Cadophora spp. could be cultured from decayed wood and other woods sampled from the huts and artifacts and were commonly associated with the soft rot attack. By using internal transcribed spacer sequences of ribosomal DNA and morphological characteristics, several species of Cadophora were identified, including C. malorum, C. luteo-olivacea, and C. fastigiata. Several previously undescribed Cadophora spp. also were found. At the Cape Evans and Cape Royds huts, Cadophora spp. commonly were isolated from wood in contact with the ground but were not always associated with soft rot decay. Pure cultures of Cadophora used in laboratory decay studies caused dark staining of all woods tested and extensive soft rot in Betula and Populus wood. The presence of Cadophora species, but only limited decay, suggests there is no immediate threat to the structural integrity of the huts. These fungi, however, are widely found in wood from the historic huts and have the capacity to cause extensive soft rot if conditions that are more conducive to decay become common.  相似文献   

5.
The cellular distribution of laccase L1 during degradation of wood chips by Rigidoporus lignosus, a tropical white rot fungus, was investigated by using anti-laccase L1 polyclonal antisera in conjunction with immunolabeling techniques. The enzyme was localized in the fungal cytoplasm and was associated with the plasmalemma and the fungal cell wall. An extracellular sheath, often observed around fungal cells, often contained laccase molecules. Diffusion of laccase within apparently unaltered wood was seldom observed. The enzyme penetrated all degraded cell walls, from the secondary wall toward the primary wall, including the middle lamella. Xylem cells showing advanced stages of decay were sometimes devoid of significant labeling. These data suggest that the initial attack on wood was not performed by laccase L1 of R. lignosus. Previous alteration of the lignocellulose complex may facilitate the movement of laccase within the wood cell walls. This immunogold study revealed that laccase localization during wood degradation seems limited not in space but in time.  相似文献   

6.
The cellular distribution of laccase L1 during degradation of wood chips by Rigidoporus lignosus, a tropical white rot fungus, was investigated by using anti-laccase L1 polyclonal antisera in conjunction with immunolabeling techniques. The enzyme was localized in the fungal cytoplasm and was associated with the plasmalemma and the fungal cell wall. An extracellular sheath, often observed around fungal cells, often contained laccase molecules. Diffusion of laccase within apparently unaltered wood was seldom observed. The enzyme penetrated all degraded cell walls, from the secondary wall toward the primary wall, including the middle lamella. Xylem cells showing advanced stages of decay were sometimes devoid of significant labeling. These data suggest that the initial attack on wood was not performed by laccase L1 of R. lignosus. Previous alteration of the lignocellulose complex may facilitate the movement of laccase within the wood cell walls. This immunogold study revealed that laccase localization during wood degradation seems limited not in space but in time.  相似文献   

7.
The natural durability of four Argentinean species of Prosopis and one of Acacia was evaluated in laboratory tests, according to European standards, using three brown rot and one white rot fungi. These tests were complemented by assessing the wood chemical composition. All the species were from moderately slightly durable to very durable (classes 4–1), and in all cases the heartwood was the most resistant to fungal attack. Chemical extractives content (organic, aqueous, tannic and phenolic) was higher in the heartwood. However, species durability was not related to extractive contents nor with wood density. Instead, it is possible that extractives could contribute to natural durability in different ways, including the effects related to the antioxidant properties of some of them.  相似文献   

8.
Dead wood is an important habitat for forest organisms, and wood decay fungi are the principal agents determining the dead wood properties that influence the communities of organisms inhabiting dead wood. In this study, we investigated the effects of wood decomposer fungi on the communities of myxomycetes and bryophytes inhabiting decayed logs. On 196 pine logs, 72 species of fungi, 34 species and seven varieties of myxomycetes, and 16 species of bryophytes were identified. Although white rot was the dominant decay type in sapwood and heartwood, brown and soft rots were also prevalent, particularly in sapwood. Moreover, white rot and soft rot were positively and brown rot negatively correlated with wood pH. Ordination analyses clearly showed a succession of cryptogam species during log decomposition and showed significant correlations of communities with the pH, water content, and decay type of wood. These analyses indicate that fungal wood decomposer activities strongly influence the cryptogam communities on dead wood.  相似文献   

9.
The white rot fungi used in this study caused two different forms of degradation. Phanerochaete chrysosporium, strain BKM-F-1767, and Phellinus pini caused a preferential removal of lignin from birch wood, whereas Trametes (Coriolus) versicolor caused a nonselective attack of all cell wall components. Use of polyclonal antisera to H8 lignin peroxidase and monoclonal antisera to H2 lignin peroxidase followed by immunogold labeling with protein A-gold or protein G-gold, respectively, showed lignin peroxidase extra-and intracellularly to fungal hyphae and within the delignified cell walls after 12 weeks of laboratory decay. Lignin peroxidase was localized at sites within the cell wall where electron-dense areas of the lignified cell wall layers remained. In wood decayed by Trametes versicolor, lignin peroxidase was located primarily along the surface of eroded cell walls. No lignin peroxidase was evident in brown-rotted wood, but slight labeling occurred within hyphal cells. Use of polyclonal antisera to xylanase followed by immunogold labeling showed intense labeling on fungal hyphae and surrounding slime layers and within the woody cell wall, where evidence of degradation was apparent. Colloidal-gold-labeled xylanase was prevalent in wood decayed by all fungi used in this study. Areas of the wood with early stages of cell wall decay had the greatest concentration of gold particles, while little labeling occurred in cells in advanced stages of decay by brown or white rot fungi.  相似文献   

10.
Wood decay under the microscope   总被引:3,自引:0,他引:3  
Many aspects of the interactions between host wood structure and fungal activity can be revealed by high resolution light microscopy, and this technique has provided much of the information discussed here. A wide range of different types of decay can result from permutations of host species, fungal species and conditions within wood. Within this spectrum, three main types are commonly recognised: brown rot, white rot and soft rot. The present review explores parts of the range of variation that each of these encompasses and emphasizes that degradation modes appear to reflect a co-evolutionary adaptation of decay fungi to different wood species or the lignin composition within more primitive and advanced wood cell types. One objective of this review is to provide evidence that the terms brown rot, white rot and soft rot may not be obsolete, but rigid definitions for fungi that are placed into these categories may be less appropriate than thought previously. Detailed knowledge of decomposition processes does not only aid prognosis of decay development in living trees for hazard assessment but also allows the identification of wood decay fungi that can be used for biotechnology processes in the wood industry. In contrast to bacteria or commercial enzymes, hyphae can completely ramify through solid wood. In this review evidence is provided that wood decay fungi can effectively induce permeability changes in gymnospermous heartwood or can be applied to facilitate the identification of tree rings in diffuse porous wood of angiosperms. The specificity of their enzymes and the mild conditions under which degradation proceeds is partly detrimental for trees, but also make wood decay fungi potentially efficient biotechnological tools.  相似文献   

11.
Safranine is an azo dye commonly used for plant microscopy, especially as a stain for lignified tissues such as xylem. Safranine fluorescently labels the wood cell wall, producing green/yellow fluorescence in the secondary cell wall and red/orange fluorescence in the middle lamella (ML) region. We examined the fluorescence behavior of safranine under blue light excitation using a variety of wood- and fiber-based samples of known composition to interpret the observed color differentiation of different cell wall types. We also examined the basis for the differences in fluorescence emission using spectral confocal microscopy to examine lignin-rich and cellulose-rich cell walls including reaction wood and decayed wood compared to normal wood. Our results indicate that lignin-rich cell walls, such as the ML of tracheids, the secondary wall of compression wood tracheids, and wood decayed by brown rot, tend to fluoresce red or orange, while cellulose-rich cell walls such as resin canals, wood decayed by white rot, cotton fibers and the G-layer of tension wood fibers, tend to fluoresce green/yellow. This variation in fluorescence emission seems to be due to factors including an emission shift toward red wavelengths combined with dye quenching at shorter wavelengths in regions with high lignin content. Safranine fluorescence provides a useful way to differentiate lignin-rich and cellulose-rich cell walls without counterstaining as required for bright field microscopy.  相似文献   

12.
A breakthrough for wood decay fungi   总被引:1,自引:0,他引:1  
  相似文献   

13.
Wood-decaying basidiomycetes are some of the most effective bioconverters of lignocellulose in nature, however the way they alter wood crystalline cellulose on a molecular level is still not well understood. To address this, we examined and compared changes in wood undergoing decay by two species of brown rot fungi, Gloeophyllum trabeum and Meruliporia incrassata, and two species of white rot fungi, Irpex lacteus and Pycnoporus sanguineus, using X-ray diffraction (XRD) and 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. The overall percent crystallinity in wood undergoing decay by M. incrassata, G. trabeum, and I. lacteus appeared to decrease according to the stage of decay, while in wood decayed by P. sanguineus the crystallinity was found to increase during some stages of degradation. This result is suggested to be potentially due to the different decay strategies employed by these fungi. The average spacing between the 200 cellulose crystal planes was significantly decreased in wood degraded by brown rot, whereas changes observed in wood degraded by the two white rot fungi examined varied according to the selectivity for lignin. The conclusions were supported by a quantitative analysis of the structural components in the wood before and during decay confirming the distinct differences observed for brown and white rot fungi. The results from this study were consistent with differences in degradation methods previously reported among fungal species, specifically more non-enzymatic degradation in brown rot versus more enzymatic degradation in white rot.  相似文献   

14.
木材腐朽菌在森林生态系统中的功能   总被引:22,自引:1,他引:22  
魏玉莲  戴玉成 《应用生态学报》2004,15(10):1935-1938
木材腐朽菌是森林生态系统的重要组成部分,在森林生态系统中起着极为重要的降解还原作用,主要包括担子菌门非褶菌目、子囊菌门盘菌纲和半知菌类的部分真菌,能全部或部分降解木材中的木质素、纤维素和半纤维素,其降解机制有3种:白色腐朽、褐色腐朽和软腐朽.木材腐朽菌与生态系统中其它生物关系密切,为很多昆虫、鸟类提供营养,有些昆虫也能使木腐菌得到传播.保护木材腐朽菌的生物多样性是保护森林生态系统、维护生态系统健康的重要因素.  相似文献   

15.
When lodgepole pines (Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson) that are killed by the mountain pine beetle (Dendroctonus ponderosae) and its fungal associates are not harvested, fungal decay can affect wood and fibre properties. Ophiostomatoids stain sapwood but do not affect the structural properties of wood. In contrast, white or brown decay basidiomycetes degrade wood. We isolated both staining and decay fungi from 300 lodgepole pine trees killed by mountain pine beetle at green, red, and grey stages at 10 sites across British Columbia. We retained 224 basidiomycete isolates that we classified into 34 species using morphological and physiological characteristics and rDNA large subunit sequences. The number of basidiomycete species varied from 4 to 14 species per site. We assessed the ability of these fungi to degrade both pine sapwood and heartwood using the soil jar decay test. The highest wood mass losses for both sapwood and heartwood were measured for the brown rot species Fomitopsis pinicola and the white rot Metulodontia and Ganoderma species. The sap rot species Trichaptum abietinum was more damaging for sapwood than for heartwood. A number of species caused more than 50% wood mass losses after 12 weeks at room temperature, suggesting that beetle-killed trees can rapidly lose market value due to degradation of wood structural components.  相似文献   

16.
Deadwood is an important habitat for bryophytes in boreal and subalpine forests. The type of decay in wood (white, brown, and soft rot) caused by fungal colonizers has been revealed to affect bryophyte communities. However, little is known about the effects of decay type on the growth of bryophytes. We tested the effect of wood decay type on gametophyte growth for two common bryophyte species, Scapania bolanderi Austin and Pleurozium schreberi (Brid.) Mitt., which dominate the logs in subalpine coniferous forest on Mt. Ontake, in central Honshu, Japan. We used pot culture experiments in an open-sky nursery field. After eight months of cultivation, the growth of S. bolanderi was larger on brown rot wood than white rot wood, but the growth of P. schreberi was not. Mixed cultures of the two species also showed greater growth on brown rot wood. However, growth of S. bolanderi was significantly smaller than P. schreberi in mixed culture. These results suggest that brown rot wood enhances growth of S. bolanderi, but growth may be reduced under competition from P. schreberi. The results are in agreement with the field observation that brown rot wood has a positive association with S. bolanderi coverage on deadwood.  相似文献   

17.
Evidence of fungal activity expressed as typical decay patterns is described from silicified podocarpaceous wood from the Eocene of Patagonia, Argentina. Decay features consist of tracheids of the secondary xylem that are degraded, resulting in thin-celled, lignin-free, translucent, circular to elliptical areas, some of which have cells devoid of all cell wall components including lignin, hemicellulose, and cellulose, and other areas that show only partial simultaneous decay of all cell wall layers. These patterns conform to the white rot and its variant white pocket rot decay patterns produced by basidiomycetes and ascomycetes in gymnosperm and angiosperm wood in modern terrestrial ecosystems. Coagulated opaque bodies in the lumen of some cells and enlarged secondary walls may represent host reactions to infection or remains of metabolic products of fungal enzymatic activity. Similar decay patterns and reaction features have been described from fossil woods ranging in age from the Devonian to the present. This record expands the fossil record of wood rot fungi and underscores their importance as drivers of biological cycles in ancient terrestrial ecosystems.  相似文献   

18.
This study evaluated the decay resistance of ash (Fraxinus excelsior L.), beech (Fagus sylvatica L.), and maple (Acer platanoides L.) wood impregnated by a full cell process with N-methylol melamine (NMM) and combined NMM-metal complex dye (NMM-BS) in aqueous solutions. Basidiomycete decay testing involved incubation with Coniophora puteana (brown rot) and Trametes versicolor (white rot) according to a modified EN 113 (1996) standard, while for the soft rot fungal resistance was evaluated following the standard ENv 807 (2001). NMM and NMM-BS modifications at a WPG range of 7–11% provided decay protection against brown rot resulting in a mass loss less than the required limit (3%). The NMM and NMM-BS modified wood showed increased resistance to white rot decay; however, a higher WPG is needed to prohibit attack from this hardwood specific fungus. The metal-complex dye alone revealed biocidal effects against basidiomycetes. An increased WPG in NMM or NMM-BS had a positive impact against soft rot decay and the lowest mass losses after 32 weeks of exposure were obtained with NMM modification at about 18–21% WPG. NMM modification at this WPG range, however, was not sufficient to protect the wood from soft rot decay. The wood of beech and maple showed slightly higher resistance to all decay types than ash, probably due to the poorer degree of modification of the latter.  相似文献   

19.
Fast-growing plant wood Populus ussuriensis Kom, and Micheliamacclurel wood were respectively modified by formation of wood-polymer composite to improve their decay resistance. Two functional monomers, glycidyl methacrylate and ethylene glycol dimethacrylate, added with a few Azo-bis-isobutryonitrile as initiator, and maleic anhydride as catalyst, were first impregnated into wood cell lumen under a vacuum-pressure condition, and then in-situ polymerized into copolymers through a catalyst-thermal treatment. The decay resistances of untreated wood and wood-polymer composites were assessed by weight loss and compared by SEM observations. SEM and FTIR analysis indicated that the in-situ polymerized copolymers fully filled up wood cell lumen and also grafted onto wood cell walls, resulting in the blockage of passages for microorganisms and moisture to wood cell walls. Thus, the decay resistance of poplar wood-polymer composite and Micheliamacclurel wood-polymer composite against brown rot fungus and white rot fungus in terms of weight loss achieved 3.43–3.92% and 1.04–1.33%, improved 95.06–95.18% and 95.10–95.35% than those of untreated poplar wood and Micheliamacclurel wood, respectively; and also respectively higher than that of boron-treated wood. The SEM observations for the decayed poplar wood, Micheliamacclurel wood and their corresponding treated wood also showed the remarkable improvement of decay resistance of wood after such treatment, which effectively protected wood from degradation by fungi.  相似文献   

20.
Test blocks of beech (Fagus sylvatica) and Scots pine (Pinus sylvestris) were buried in fresh, brackish, and seawater anaerobic muds for periods ranging between 1 and 18 months. At appropriate time intervals the test blocks were recovered and examined for changes in weight and for bacterial attack of lignified wood cell walls. Only small weight losses occurred. Scanning electron microscopy studies revealed that there was extensive superficial bacterial erosion of beech wood cell walls. The decay patterns are illustrated by micrographs and discussed in relation to other types of bacterial attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号