首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Climate change will affect tree species growth and distribution; however, under the same climatic conditions species may differ in their response according to site conditions. We evaluated the climate‐driven patterns of growth for six dominant deciduous tree species in the southern Appalachians. We categorized species into two functional groups based on their stomatal regulation and xylem architecture: isohydric, diffuse porous and anisohydric, ring porous. We hypothesized that within the same climatic regime: (i) species‐specific differences in growth will be conditional on topographically mediated soil moisture availability; (ii) in extreme drought years, functional groups will have markedly different growth responses; and (iii) multiple hydroclimate variables will have direct and indirect effects on growth for each functional group. We used standardized tree‐ring chronologies to examine growth of diffuse‐porous (Acer, Liriodendron, and Betula) and ring‐porous (Quercus) species vs. on‐site climatic data from 1935 to 2003. Quercus species growing on upslope sites had higher basal area increment (BAI) than Quercus species growing on mesic, cove sites; whereas, Acer and Liriodendron had lower BAI on upslope compared to cove sites. Diffuse‐porous species were more sensitive to climate than ring porous, especially during extreme drought years. Across functional groups, radial growth was more sensitive to precipitation distribution, such as small storms and dry spell length (DSL), rather than the total amount of precipitation. Based on structural equation modeling, diffuse‐porous species on upslope sites were the most sensitive to multiple hydroclimate variables (r2 = 0.46), while ring‐porous species on upslope sites were the least sensitive (r2 = 0.32). Spring precipitation, vapor pressure deficit, and summer storms had direct effects on summer AET/P, and summer AET/P, growing season small storms and DSL partially explained growth. Decreasing numbers of small storms and extending the days between rainfall events will result in significant growth reduction, even in regions with relatively high total annual rainfall.  相似文献   

2.
Question: Is stomatal regulation specific for climate and tree species, and does it reveal species‐specific responses to drought? Is there a link to vegetation dynamics? Location: Dry inner alpine valley, Switzerland Methods: Stomatal aperture (θE) of Pinus sylvestris, Quercus pubescens, Juniperus communis and Picea abies were continuously estimated by the ratio of measured branch sap flow rates to potential transpiration rates (adapted Penman‐Monteith single leaf approach) at 10‐min intervals over four seasons. Results: θE proved to be specific for climate and species and revealed distinctly different drought responses: Pinus stomata close disproportionately more than neighbouring species under dry conditions, but has a higher θE than the other species when weather was relatively wet and cool. Quercus keeps stomata more open under drought stress but has a lower θE under humid conditions. Juniperus was most drought‐tolerant, whereas Picea stomata close almost completely during summer. Conclusions: The distinct microclimatic preferences of the four tree species in terms of θE strongly suggest that climate (change) is altering tree physiological performances and thus species‐specific competitiveness. Picea and Pinus currently live at the physiological limit of their ability to withstand increasing temperature and drought intensities at the sites investigated, whereas Quercus and Juniperus perform distinctly better. This corresponds, at least partially, with regional vegetation dynamics: Pinus has strongly declined, whereas Quercus has significantly increased in abundance in the past 30 years. We conclude that θE provides an indication of a species' ability to cope with current and predicted climate.  相似文献   

3.
Understanding seedling performance across resource gradients is crucial for defining the regeneration niche of plant species under current environmental conditions and for predicting potential changes under a global change scenario. A 2‐year field experiment was conducted to determine how seedling survival and growth of two evergreen and two deciduous Quercus species vary along gradients of light and soil properties in two Mediterranean forests with contrasting soils and climatic conditions. Half the seedlings were subjected to an irrigation treatment during the first year to quantify the effects on performance of an alteration in the summer drought intensity. Linear and non‐linear models were parameterized and compared to identify major resources controlling seedling performance. We found both site‐specific and general patterns of regeneration. Strong site‐specificity was found in the identity of the best predictors of seedling survival: survival decreased linearly with increasing light (i.e. increasing desiccation risk) in the drier site, whereas it decreased logistically with increasing spring soil water content (i.e. increasing waterlogging risk) in the wetter site. We found strong empirical support for multiple resource limitation at the drier site, the response to light being modulated by the availability of soil resources (water and P). Evidence for regeneration niche partitioning among Quercus species was only found at the wetter site. However, at both sites Quercus species shared the same response to summer drought alleviation through water addition: increased first‐year survival but not final survival (i.e. after two years). This suggests that extremely dry summers (i.e. the second summer in the experiment) can cancel out the positive effects of previous wetter summers. Therefore, an increase in the intensity and frequency of summer drought with climate change might cause a double negative impact on Quercus regeneration, due to a general reduction in survival probability and the annulment of the positive effects of (infrequent) ‘wet’ years. Overall, results presented in this study are a major step towards the development of a mechanistic model of Mediterranean forest dynamics that incorporates the idiosyncrasies and generalities of tree regeneration in these systems, and that allow simulation and prediction of the ecological consequences of resource level alterations due to global change.  相似文献   

4.
5.
RAO  P. B.; SINGH  S. P. 《Annals of botany》1985,56(6):783-794
The responses of Pimis roxburghii (chir pine), an early successionalspecies, andQuercus leucotrichophora(banj oak), a late successionalspecies were compared in terms of seed germination and seedlinggrowth. Seed germination was observed on single-factor gradientsof temperature, water stress, seed desiccation and light, andseedling growth on gradients of shade and soil moisture. Thesuppression of germination caused by continuous dark and far-redwas greater in Pinus than in Quercus. Pinus seed germinationshowed wider response breadth on gradients of water stress andseed desiccation, and narrower response breadth on the gradientof light quality, compared withQuercus. In terms of seedlinggrowth, the response breadth of Pinus was wider on the gradientof soil moisture and narrower on the gradient of shade comparedwith Quercus. Under higher soil moisture stress, the seedlingsof both species attained similar heights, butQuercus seedlingsachieved higher dry weights, a higher root: shoot ratio andlower leaf weight ratio than Pinus.  相似文献   

6.
Under future climate drought‐induced tree mortality may result in the contraction of species ranges and the reorganization of community composition where abundant and peripheral species exchange their patterns of dominance. Predicting these changes will be challenging because the future suitable habitat may be a mismatch for the current bioclimatic envelope because of discrepancies between the realized and fundamental niche. Here we evaluate the extent of the discrepancy, as applied to tree species in relation to their relative field‐recorded drought sensitivities and their observed range‐wide environmental moisture envelopes. The hypothesis tested was that different species levels of drought‐induced damage at sites where they co‐occur will be positively associated with the minimum moisture availability in the most drought‐prone part of each species current geographic range. We tested the hypothesis using drought damage measurements for 13 Australian Myrtaceae (including Eucalyptus) tree species at a site where all co‐occur, together with 120 years of climate data across their geographical ranges. With limited statistical power the results generated only modest support for the hypothesis suggesting limited capacity to predict future distributions under climate change scenarios. In spite of the poor dispersal capacities of Eucalyptus and allied genera, but consistent with knowledge of breeding systems and genetic variability within Eucalyptus, the findings also suggest that many species have a capacity for rapid adaptive response to climate change, including the vicissitudes of the late Quaternary.  相似文献   

7.
Drought entails important effects on tree physiology, which may result in short‐ to long‐term radial growth decreases. While the majority of studies have focused on annual drought‐related variability of growth, relatively little is known about sustained growth decreases following drought years. We apply a statistical framework to identify climatic factors that induce abrupt growth decreases and may eventually result in tree mortality. We used tree‐ring data from almost 500 standing dead trees and 200 living trees in eight sites of the Swiss network of strict forest reserves, including four of the most important Central European tree species (Abies alba, Picea abies, Fagus sylvatica and Quercus spp.). First, to assess short‐term growth responses to drought under various climate and site conditions, we calculated correlations and linear mixed‐effects models between ring‐width indices (RWIs) and drought based on the Standardized Precipitation Evapotranspiration Index (SPEI). Second, to quantify drought effects on abrupt growth decreases, we applied distributed lag nonlinear models (DLNMs), which account for both delayed effects and the nonlinear relationship between the SPEI and the occurrence of abrupt growth decreases. Positive correlations between RWIs and the SPEI indicated short‐term growth responses of all species, particularly at arid sites. Results of the DLNMs revealed species‐specific growth responses to drought. For Quercus spp., abrupt growth decreases were more likely to occur several years following severe drought, whereas for P. abies, A. alba, and F. sylvatica abrupt growth decreases started frequently immediately in the drought year. We conclude that the statistical framework allows for quantifying the effects of drought intensity on the probability of abrupt growth decreases, which ultimately contributes to an improved understanding of climate impacts on forest community dynamics.  相似文献   

8.
Winter cold limits temperate plant performance, as does summer water stress in drought‐prone ecosystems. The relative impact of seasonal extremes on plant performance has received considerable attention for individual systems. An integrated study compiling the existing literature was needed to identify overall trends. First, we conducted a meta‐analysis of the impacts of summer and winter on ecophysiology for three woody plant functional types (winter deciduous angiosperms, evergreen angiosperms and conifers), including data for 210 records from 75 studies of ecosystems with and without summer drought across the temperate zone. Second, we tested predictions by conducting a case study in a drought‐prone Mediterranean ecosystem subject to winter freezing. As indicators of physiological response of leaves and xylem to seasonal stress, we focused on stomatal conductance (gs), percent loss of stem xylem hydraulic conductivity (PLC) and photochemical efficiency of photosystem II (Fv/Fm). Our meta‐analysis showed that in ecosystems without summer drought, gs was higher during summer than winter. By contrast, in drought‐prone ecosystems many species maintained open stomata during winter, with potential strong consequences for plant carbon gain over the year. Further, PLC tended to increase and Fv/Fm to decrease from summer to winter for most functional types and ecosystems due to low temperatures. Overall, deciduous angiosperms were most sensitive to climatic stress. Leaf gas exchange and stem xylem hydraulics showed a coordinated seasonal response at ecosystems without summer drought. In our Mediterranean site subjected to winter freezing the species showed similar responses to those typically found for ecosystems without summer drought. We conclude that winter stress is most extreme for systems without summer drought and systems with summer drought and winter freezing, and less extreme for drought‐prone systems without freezing. In all cases the evergreen species show less pronounced seasonal responses in both leaves and stems than deciduous species.  相似文献   

9.
Water use patterns of four co-occurring chaparral shrubs   总被引:9,自引:0,他引:9  
Summary Mixed stands of chaparral in California usually contain several species of shrubs growing close to each other so that aerial branches and subterranean roots overlap. There is some evidence that roots are stratified relative to depth. It may be that root stratification promotes sharing of soil moisture resources. We examined this possibility by comparing seasonal water use patterns in a mixed stand of chaparral dominated by four species of shrubs: Quercus durata, Heteromeles arbutifolia, Adenostoma fasciculatum, and Rhamnus californica. We used a neutron probe and soil phychrometers to follow seasonal depletion and recharging of soil moisture and compared these patterns to seasonal patterns of predawn water potentials, diurnal leaf conductances, and diurnal leaf water potentials. Our results indicated that 1) Quercus was deeply rooted, having high water potentials and high leaf conductances throughout the summer drought period, 2) Heteromeles/Adenostoma were intermediate in rooting depth, water potentials, and leaf conductances, and 3) Rhamnus was shallow rooted, having the lowest water potentials and leaf conductances. During the peak of the drought, predawn water potentials for Quercus corresponded to soil water potentials at or below a depth of 2 m, predawn water potentials of Heteromeles/ Adenostoma corresponded to a depth of 0.75 m, and predawn water potentials of Rhamnus corresponded to a depth of 0.5 m. This study supports the concept that co-occurring shrubs of chaparral in California utilize a different base of soil moisture resources.  相似文献   

10.
This study analyses how coexisting evergreen and deciduous oaks adjust their phenology to cope with the stressful Mediterranean summer conditions. We test the hypothesis that the vegetative and reproductive growth of the winter deciduous (Quercus faginea Lam.) is more affected by summer drought than that of the evergreen [Quercus ilex L. subsp. ballota (Desf.) Samp.]. First, we assessed the complete aboveground phenology of both species during two consecutive years. Shoot and litter production and bud, acorn and secondary growth were monitored monthly. Second, we identified several parameters affected by summer conditions: apical bud size, individual leaf area (LA), leaf mass per area (LMA) and acorn yield in both species, and leaf-fall in Q. faginea; and analysed their variation over 10 years. Q. ilex performed up to 25% of shoot growth and most leaf development during summer, whereas Q. faginea completed most of both phenophases during spring. Secondary growth was arrested in summer under drought conditions. Approximately, 30–40% of bud and 40–50% of acorn growth was undertaken during summer in both species. Summer drought related to differences in LA, LMA and leaf senescence, but not to acorn yield. Both species had similar year-to-year patterns of acorn production, though yields were always lower in Q. faginea. Bud size decreased severely in both species during extremely dry years. In Q. ilex, bud size tended to alternate between years of large and small buds, and these patterns were followed by opposite trends in stem length. In Q. faginea, bud size was more stable through time. Q. ilex was more phenologically active during summer than Q. faginea, indicating a higher tolerance to drought. Furthermore, bud and fruit growth (the only two phenophases that both species performed during summer) were more severely affected by summer drought in Q. faginea than in the evergreen. The differential effects of summer drought on key phenophases for the persistence (bud growth) and colonization ability (fruit production) of both species may have consequences for their coexistence.  相似文献   

11.
Question: Are species‐specific regeneration strategies and competition the dominant processes facilitating species coexistence in a Quercus liaotungensis dominated temperate deciduous forest? Location: Dongling Mountains, North China, 1300 m a.s.l. Methods: Ripley's K‐function was used to characterize the spatial patterns and spatial associations of two dominant tree species, Quercus liaotungensis and Betula dahurica, and a common subcanopy species, Acer mono, at different growth stages (adult, sapling, seedling). Results: Seedlings, saplings and adults of all three species exhibited clumped distributions at most spatial scales. Quercus seedlings and saplings were positively associated with conspecific adult trees and spatially independent of dead trees suggesting that seed dispersal and vegetative regeneration influenced the spatial patterning of Quercus trees. Betula seedlings and saplings were positively associated with both live and dead trees of conspecific adults at small scales (<5 m) but negatively associated with live and dead trees of other species indicating sprouting as an important mechanism of reproduction. Saplings of Acer had a strong spatial dependence on the distribution of conspecific adult trees indicating its limited seed dispersal range. Negative associations between adult trees of Betula and Quercus demonstrated interspecific competition at local scales (<5 m). Conclusions: Different regeneration strategies among the three species play an important role in regulating their spatial distribution patterns, while competition between individuals of Betula and Quercus at the adult stage also contributes to spatial patterning of these communities. The recruitment limitations of Betula and Quercus may affect the persistence of these species and the long‐term dynamics of the forest.  相似文献   

12.
As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2 and thereby slow rising CO2 concentrations. Forests’ ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree‐ring records. Yet typical tree‐ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals’ size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species like Acer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92–95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses related to climate change alone.  相似文献   

13.
Araucaria araucana (Araucaria) is a long‐lived conifer growing along a sharp west–east biophysical gradient in the Patagonian Andes. The patterns and climate drivers of Araucaria growth have typically been documented on the driest part of the gradient relying on correlations with meteorological records, but the lack of in situ soil moisture observations has precluded an assessment of the growth responses to soil moisture variability. Here, we use a network of 21 tree‐ring width chronologies to investigate the spatiotemporal patterns of tree growth through the entire gradient and evaluate their linkages with regional climate and satellite‐observed surface soil moisture variability. We found that temporal variations in tree growth are remarkably similar throughout the gradient and largely driven by soil moisture variability. The regional spatiotemporal pattern of tree growth was positively correlated with precipitation (r = 0.35 for January 1920–1974; P < 0.01) and predominantly negatively correlated with temperature (r = ?0.38 for January–March 1920–1974; P < 0.01) during the previous growing season. These correlations suggest a temporally lagged growth response to summer moisture that could be associated with known physiological carry‐over processes in conifers and to a response to moisture variability at deeper layers of the rooting zone. Notably, satellite observations revealed a previously unobserved response of Araucaria growth to summer surface soil moisture during the current rather than the previous growing season (r = 0.65 for 1979–2000; P < 0.05). This new response has a large spatial footprint across the mid‐latitudes of the South American continent (35°–45°S) and highlights the potential of Araucaria tree rings for palaeoclimatic applications. The strong moisture constraint on tree growth revealed by satellite observations suggests that projected summer drying during the coming decades may result in regional growth declines in Araucaria forests and other water‐limited ecosystems in the Patagonian Andes.  相似文献   

14.
Tree species inhabiting riparian forests under Mediterranean climate have evolved to face summer water shortage but may fail to cope with future increases in drought severity. Thus, understanding tree growth phenological variations in response to environmental conditions is necessary to assess the impact of seasonal drought in riparian forests. In this study, we investigated the response of stem radial growth to climate in the narrow-leaved ash (Fraxinus angustifolia) over its distribution in southern Europe. We simulated intra- and inter-annual growth patterns using the Vaganov-Shashkin (VS) model considering five sites subjected to summer drought but showing different climate conditions. The growth pattern in this species varied from unimodal in cool-wet sites to facultative bimodal in warm-dry sites. Bimodal patterns were characterized by two growth peaks coinciding with favorable climate conditions in spring and autumn. The spring growth peak occurs earlier (May) in warm-dry sites than in wet-cool sites (June–July). The variation in the season growth length and growth timing suggests different strategies adopted by this species to cope with summer drought. The VS model revealed different growth patterns across which would be relevant in predicting the response of this and other riparian tree species to climate warming and aridification. Differences in the length of the growing season, timings of growth peaks and the shift from unimodal to bimodal growth patterns should be considered when assessing growth adjustments to future climate scenarios.  相似文献   

15.
Abstract. Question: Is the facilitative effect of nurse shrubs on early recruitment of trees mediated by a ‘canopy effect’(microclimate amelioration and protection from herbivores), a ‘soil effect’(modification of soil properties), or both? Location: Two successional montane shrublands at the Sierra Nevada Protected Area, SE Spain. Method: Seedlings of Quercus and Pinus species were planted in four experimental treatments: (1) under shrubs; (2) in open interspaces without vegetation; (3) under shrubs where the canopies were removed; (4) in open interspaces but covering seedlings with branches, mimicking a shrub canopy. Results: Both effects benefited seedling performance. However, microclimatic amelioration due to canopy shading had the strongest effect, which was particularly pronounced in the drier site. Below‐ground, shrubs did not modify soil physical characteristics, organic matter, total N and P, or water content, but significantly increased available K, which has been shown to improve seedling water‐use efficiency under drought conditions. Conclusions: We propose that in Mediterranean montane ecosystems, characterised by a severe summer drought, pioneer shrubs represent a major safe site for tree early recruitment during secondary succession, improving seedling survival during summer by the modification of both the above‐and below‐ground environment.  相似文献   

16.
Questions: (1) How have the composition and structure of undisturbed upland Quercus forests changed over 50 years across a large region and moisture gradient; (2) What factors are associated with long‐term and broad‐scale changes in these forests? Location: Oklahoma, USA. Methods: We re‐sampled 30 forest stands originally sampled in the 1950s across a large geographical area and compared basal area, tree density, and sapling density between the sampling periods using paired t‐tests, CCA, and DCA. We examined vegetation dynamics in the context of drought indices compiled for the sample period. Results: Total and Quercus stellata basal area and tree density increased, but Q. stellata and Q. marilandica sapling density decreased. Juniperus virginiana and woody species richness increased for all measures. DCA indicated that re‐sampled stands generally changed from Q. stellata–Q. marilandica‐dominated forests to forests with greater woody species richness and more J. virginiana. Q. stellata remained a dominant tree species; otherwise, composition shifted towards mesophytic and invasive woody species. Measurements taken in the 1950s immediately followed a major drought; whereas subsequent decades were significantly moister. Conclusions: Fire exclusion and drought may have played an important role in driving changes towards lower dominance by Quercus, increased importance of mesophytic and invasive species, and greater woody species richness. These phenomena are similar to those found in Quercus‐dominated forests throughout the northern hemisphere.  相似文献   

17.
Questions: For eucalypt savanna in northeast Australia subject to multi‐year rainfall deficits this paper asks whether (1) dominant tree species (Ironbarks, Boxes) are more drought susceptible than the sub‐dominant Bloodwoods; (2) whether soil moisture is beyond wilting point in surface soil layers but available at depth; (3) soil conditions (moisture availability and texture) are related to tree death during drought; (4) the root systems of the Boxes and Ironbarks are shallower than the Bloodwoods; and the survivors of drought within species have deeper root systems than those that died. Location: Central Queensland, Australia. Methods: Patterns of tree death between eucalypt species were compared from field data collected after drought. Soil conditions during drought were described and compared with patterns of tree death for the Ironbark Eucalyptus melanophloia. The basal area and orientation of coarse roots were measured on upturned trees after broad‐scale tree clearing, and compared between species, and between live and dead trees with tree size as a covariate. Results: Drought‐induced tree death was higher for dominant Ironbark‐Box than for sub‐dominant Bloodwoods. During a moderate to severe drought in 2004, 41% of 100 cm deep subsoils had soil matric potential less than‐5600 kPa. The drought hardy Bloodwoods had a greater root basal area and particularly so for vertical roots compared to the drought sensitive Ironbark‐Box. Within species there was no significant difference in root basal area characteristics between trees that were recently killed by drought and those that remained relatively healthy. Surface soil moisture availability was lower where tree densities were high, and tree death increased as surface soil moisture became less available. Tree death was also greater as the clay content of sub‐soils increased. Discussion: The study suggests species with roots confined to upper soil layers will suffer severe water stress. The results strongly indicate that root architecture, and the way it facilitates water use during drought, is important for the relative dominance of the tree species. Patchiness in drought‐induced tree death seems to be at least partially a product of heterogeneity in sub‐soil conditions and competition for soil moisture.  相似文献   

18.
Question: How to improve reforestation success of Quercus pyrenaica. Location: 1800 m a.s.L, southern Spain. Methods: One‐year‐old Quercus pyrenaica seedlings were planted using two treatments: (1) bare soil, using a 30‐cm diameter augur bit (conventional technique) and (2) under the canopy of a pioneer shrub, Salvia lavandulifolia, using a 12‐cm diameter augur bit. Survival and growth were monitored for six years. Our hypothesis is that the use of shrubs as nurse plants is an alternative technique of reforestation with higher success than traditional techniques, in which pre‐existing vegetation is usually considered a source of competition. The rationale for the study was that for environments with a dry season, pre‐existing vegetation buffers summer drought stress, ameliorates the water status of seedlings and thus usually increases seedling recruitment. Results: Quercus survival was 6.3 × higher when planted under individuals of the pioneer shrub as compared to open areas. Quercus seedlings under shrubs also had shoots 1.8 X longer, while the number of shoots per plant did not differ among treatments. The first summer was the period with the highest mortality (49.1% of seedlings). Summer drought was the main cause of mortality. Conclusions: The use of shrubs as nurse plants for Q.pyrenaica reforestation is a viable technique to increase establishment success. The technique could be similarly useful in other environments with a dry period and for other Quercus species. In addition, this technique offers the advantage of following natural succession, thus minimizing the impact in the community.  相似文献   

19.
We used 179 tree ring chronologies of Douglas‐fir [Pseudotsuga menziesii (Mirb.) Franco] from the International Tree‐Ring Data Bank to study radial growth response to historical climate variability. For the coastal variety of Douglas‐fir, we found positive correlations of ring width with summer precipitation and temperature of the preceding winter, indicating that growth of coastal populations was limited by summer dryness and that photosynthesis in winter contributed to growth. For the interior variety, low precipitation and high growing season temperatures limited growth. Based on these relationships, we chose a simple heat moisture index (growing season temperature divided by precipitation of the preceding winter and current growing season) to predict growth response for the interior variety. For 105 tree ring chronologies or 81% of the interior samples, we found significant linear correlations with this heat moisture index, and moving correlation functions showed that the response was stable over time (1901–1980). We proceeded to use those relationships to predict regional growth response under 18 climate change scenarios for the 2020s, 2050s, and 2080s with unexpected results: for comparable changes in heat moisture index, the most southern and outlying populations of Douglas‐fir in Mexico showed the least reduction in productivity. Moderate growth reductions were found in the southern United States, and strongly negative response in the central Rocky Mountains. Growth reductions were further more pronounced for high than for low elevation populations. Based on regional differences in the slope of the growth–climate relationship, we propose that southern populations are better adapted to drought conditions and could therefore contain valuable genotypes for reforestation under climate change. The results support the view that climate change may impact species not just at the trailing edges but throughout their range due to genetic adaptation of populations to local environments.  相似文献   

20.
Abstract. Succession, changes in the distribution pattern of forest vegetation, and Pinus forest survival following pine wilt disease were clarified based on phytosociological analysis and vegetation maps. Survival of Pinus forests was restricted to the early successional stages, which were located on ridges and the upper part of slopes. Subsequent to pine wilt disease, the succession progressed from early to late substages of Pinus forest, mixed deciduous and evergreen Quercus, to evergreen Quercus forest. Succession occurs in abandoned pine forests which apparently are in a bad state and are vulnerable to attacks by pine wilt disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号