共查询到20条相似文献,搜索用时 0 毫秒
1.
Simons AM 《Journal of evolutionary biology》2007,20(2):813-817
According to life-history theory, the evolution of offspring size is constrained by the trade-off between allocation of resources to individual offspring and the number of offspring produced. Existing models explore the ecological consequences of offspring size, whereas number is invariably treated simply as an outcome of the trade-off with size. Here I ask whether there is a direct evolutionary advantage of increased allocation to offspring number under environmental unpredictability. Variable environments are expected to select for diversification in the timing of egg hatch and seed germination, yet the dependence of the expression of diversification strategies, and thus parental fitness, on offspring number has not previously been recognized. I begin by showing that well-established sampling theory predicts that a target bethedging diversification strategy is more reliably achieved as offspring number increases. I then use a simulation model to demonstrate that higher offspring number leads to greater geometric mean fitness under environmental uncertainty. Natural selection is thus expected to act directly to increase offspring number under assumptions of environmental unpredictability in season quality. 相似文献
2.
The evolution of floral display is thought to be constrained by trade‐offs between the size and number of flowers; however, empirical evidence for the trade‐off is inconsistent. We examined evidence for trade‐offs and hierarchical allocation of resources within and between two populations each of the monocarpic perennials, Cardiocrinum cordatum and C. giganteum. Within all populations, flower size–number trade‐offs were evident after accounting for variation in plant size. In addition, variation in flower size explained much variation in flower‐level allocation to attraction, and female and male function, a pattern consistent with hierarchical allocation. However, between population differences in flower size (C. cordatum) and number (C. giganteum) were not consistent with size–number trade‐offs or hierarchical allocation. The population‐level difference in C. cordatum likely reflects the combined influence of a time lag between initiation and maturation of flowers, and higher light levels in one population. Thus, our study highlights one mechanism that may account for the apparent independence of flower size and number in many studies. A prediction of sex allocation theory was also supported. In C. giganteum: plants from one population invested more mass in pistils and less in stamens than did plants from the other population. Detection of floral trade‐offs in Cardiocrinum may be facilitated by monocarpic reproduction, production of a single inflorescence and ease of measuring plant size. 相似文献
3.
Kisdi E 《Journal of evolutionary biology》2007,20(5):2072-2074
In mixed or 'bet-hedging' strategies, offspring phenotypes are taken randomly from a distribution determined by the genotype and shaped by evolution. Offspring of a single parent represent a finite sample from this distribution, and therefore are subject to variability because of sampling. Contrary to a recent article by A.M. Simons (2007; J. Evol. Biol.20: 813-817), I show that selection does not favour the production of many offspring just to reduce sampling variability when such mixed strategies are used in large populations. 相似文献
4.
L. DeSoto R. Torices S. Rodríguez‐Echeverría C. Nabais 《Plant biology (Stuttgart, Germany)》2017,19(4):533-541
- The study of intraspecific seed packaging (i.e. seed size/number strategy) variation across different populations may allow better understanding of the ecological forces that drive seed evolution in plants. Juniperus thurifera (Cupressaceae) provides a good model to study this due to the existence of two subspecies differentiated by phenotypic traits, such as seed size and cone seediness (number of seeds inside a cone), across its range.
- The aim of this study was to analyse seed packaging (seed mass and cone seediness) variation at different scales (subspecies, populations and individuals) and the relationship between cone and seed traits in European and African J. thurifera populations.
- After opening more than 5300 cones and measuring 3600 seeds, we found that seed packaging traits followed different patterns of variation. Large‐scale effects (region and population) significantly contributed to cone seediness variance, while most of the seed mass variance occurred within individuals. Seed packaging differed between the two sides of the Mediterranean Sea, with African cones bearing fewer but larger seeds than the European ones. However, no differences in seed mass were found between populations when taking into account cone seediness. Larger cones contained more pulp and seeds and displayed a larger variation in individual seed mass.
- We validated previous reports on the intraspecific differences in J. thurifera seed packaging, although both subspecies followed the same seed size/number trade‐off. The higher seediness and variation in seed mass found in larger cones reveals that the positive relationship between seed and cone sizes may not be straightforward.We hypothesise that the large variation of seed size found within cones and individuals in J. thurifera, but also in other fleshy‐fruited species, could represent a bet‐hedging strategy for dispersal.
5.
A negative, genetic correlation between the total number and average size of progeny is a classical life‐history trade‐off that can greatly affect the fitness of organisms in their natural environments. This trade‐off has been investigated for animals and for sexually reproducing plants. However, evidence for a genetical size‐number trade‐off for clonal progeny in plants is still scarce. This study provides experimental evidence for such a trade‐off in the stoloniferous herb Potentilla reptans, and it studies phenotypic plasticity to light availability for the involved traits. Genotypes of P. reptans were collected from distinctively different environments, clonally replicated and exposed to high light and to shaded conditions. We found a significant negative correlation between the average size and the total number of offspring across genotypes for both light environments. Shading reduced ramet numbers, but hardly affected average ramet size. 相似文献
6.
Matthew M. Steffenson Christopher A. Brown 《Biological journal of the Linnean Society. Linnean Society of London》2013,110(4):715-727
Geographical isolation can over time accumulate life‐history variation which can eventually lead to speciation. We used five species of Vaejovis scorpions that have been isolated from one another since the Pleistocene glaciation to identify if biogeographical patterns have allowed for the accumulation of life‐history variation among species. Gravid females were captured and brought back to the lab until giving birth. Once offspring had begun to disperse, measurements of female size, reproductive investment, offspring size, offspring number, and variation in offspring size were recorded. Differences in how each species allocated energy to these variables were analysed utilizing path analysis and structural equation modelling. Female and offspring size, litter size, and total litter mass differed among species, but relative energetic investment did not. Most significant differences among species were not present after removing the effect of female size, indicating that female size is a major source of life‐history variation. Path analyses indicated that there was no size–number trade‐off within any species and that each species allocates energy toward total litter mass differently. Additionally, as offspring size increased, the variation in offspring mass decreased. These results show that each species allocates the same relative amount of energy in different ways. The variation seen could be a response to environmental variability or uncertainty, a product of maternal effects, or caused by the sufficient accumulation of genetic differences due to geographical isolation. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 715–727. 相似文献
7.
Plasticity of the phenotypic architecture of wild barley, Hordeum spontaneum, was studied in response to water and nutrient stress. Direct and indirect selection on several vegetative and reproductive traits was estimated and path analysis used to reveal how regulating pathways via maternal investment differed between environments. Vegetative traits displayed differential regulating effect on fitness across experimental environments: (1) increase in size was selected for under optimal conditions and under water stress, but not under nutrient stress; (2) allocation to root biomass was selected for under optimal conditions, but it had no effect under nutrient stress and was strongly selected against when water was limiting; (3) delayed onset of reproduction was selected under nutrient limitation whereas earlier onset was selected under water stress. The regulating effect of reproductive traits on final reproductive output also differed across treatments, operating either at the 'early' stage of plant development through varying the number of initiated spikelets per spike (no stress and water stress treatment) or at the 'late' developmental stage adjusting the fertile spikelet weight (no stress and nutrient stress treatment). Reproductive output was regulated via seed abortion under no stress and water stress treatments. Although the underlying mechanism of the regulation through abortion has yet to be discovered, the specific mechanism of abortion under water stress appears to be different from that under optimal conditions. Our results demonstrate that not only is the character architecture in wild barley plastic and sensitive to changing availability of water and nutrients, but the regulating mechanism of maternal investment is also environmentally sensitive. 相似文献
8.
9.
Raúl Cueva del Castillo Salomón Sanabria‐Urbán Martín Alejandro Serrano‐Meneses 《Ecology and evolution》2015,5(18):3914-3926
Trade‐offs between life‐history traits – such as fecundity and survival – have been demonstrated in several studies. In eusocial insects, the number of organisms and their body sizes can affect the fitness of the colony. Large‐than‐average body sizes as well as more individuals can improve a colony's thermoregulation, foraging efficiency, and fecundity. However, in bumblebees, large colonies and large body sizes depend largely on high temperatures and a large amount of food resources. Bumblebee taxa can be found in temperate and tropical regions of the world and differ markedly in their colony sizes and body sizes. Variation in colony size and body size may be explained by the costs and benefits associated with the evolutionary history of each species in a particular environment. In this study, we explored the effect of temperature and precipitation (the latter was used as an indirect indicator of food availability) on the colony and body size of twenty‐one bumblebee taxa. A comparative analysis controlling for phylogenetic effects as well as for the body size of queens, workers, and males in bumblebee taxa from temperate and tropical regions indicated that both temperature and precipitation affect colony and body size. We found a negative association between colony size and the rainiest trimester, and a positive association between the colony size and the warmest month of the year. In addition, male bumblebees tend to evolve larger body sizes in places where the rain occurs mostly in the summer and the overall temperature is warmer. Moreover, we found a negative relationship between colony size and body sizes of queens, workers, and males, suggesting potential trade‐offs in the evolution of bumblebee colony and body size. 相似文献
10.
Much theoretical evidence has demonstrated that a trade‐off between competitive and dispersal ability plays an important role in facilitating species coexistence. However, experimental evidence from natural communities is still rare. Here, we tested the competition–dispersal trade‐off hypothesis in an alpine grassland in the Tianshan Mountains, Xinjiang, China, by quantifying competitive and dispersal ability using a combination of 4 plant traits (seed mass, ramet mass, height, and dispersal mode). Our results show that the competition–dispersal trade‐off exists in the alpine grassland community and that this pattern was primarily demonstrated by forbs. The results suggest that most forb species are constrained to be either good competitors or good dispersers but not both, while there was no significant trade‐off between competitive and dispersal ability for most graminoids. This might occur because graminoids undergo clonal reproduction, which allows them to find more benign microenvironments, forage for nutrients across a large area and store resources in clonal structures, and they are thus not strictly limited by the particular resources at our study site. To the best of our knowledge, this is the first time the CD trade‐off has been tested for plants across the whole life cycle in a natural multispecies plant community, and more comprehensive studies are still needed to explore the underlying mechanisms and the linkage between the CD trade‐off and community composition. 相似文献
11.
To examine claims that reforesting degraded Imperata grassland in Leyte (Philippines) made streamflow perennial again, we studied the hydrological behaviour of a 23‐year‐old mixed‐species “reforest” between June 2013 and May 2014. Typhoon Haiyan, one of the strongest events ever, caused major damage to the site in November 2013. Average daily apparent water use (ET) was 5.0 mm day−1 pretyphoon and 3.2 mm day−1 after disturbance. Corresponding ratios of period total quickflow Qq to precipitation were 16% and 44%. Quickflow volume and peak discharge increased rapidly once a threshold value of ~250 mm for soil water storage in the top 60 cm was exceeded. Before disturbance, quickflow consisted predominantly of lateral subsurface flow due to high soil hydraulic conductivities down to 60 cm. After disturbance, shallow groundwater rose regularly to within 10 cm of the surface on foot slopes, and saturation overland flow was observed during several large storms. Comparing estimated annual ET and Qq for undisturbed conditions for the reforest and a nearby degraded Imperata grassland microcatchment suggested that the extra infiltration following reforestation (~240 mm year−1) exceeded the extra ET by the reforest (100–185 mm year−1), implying a net positive trade‐off (55–140 mm year−1) and tentatively confirming local claims of improved dry‐season flow. 相似文献
12.
The trade‐off between offspring size and number can present a conflict between parents and their offspring. Because egg size is constrained by clutch size, the optimal egg size for offspring fitness may not always be equivalent to that which maximizes parental fitness. We evaluated selection on egg size in three turtle species (Apalone mutica, Chelydra serpentina and Chrysemys picta) to determine if optimal egg sizes differ between offspring and their mothers. Although hatching success was generally greater for larger eggs, the strength and form of selection varied. In most cases, the egg size that maximized offspring fitness was greater than that which maximized maternal fitness. Consistent with optimality theory, mean egg sizes in the populations were more similar to the egg sizes that maximized maternal fitness, rather than offspring fitness. These results provide evidence that selection has maximized maternal fitness to achieve an optimal balance between egg size and number. 相似文献
13.
Burd M 《Evolution; international journal of organic evolution》2011,65(10):3002-3005
Positive correlations between pollen-ovule ratio and seed size, and negative correlations between pollen-ovule ratio and pollen grain size have been noted frequently in a wide variety of angiosperm taxa. These relationships are commonly explained as a consequence of sex allocation on the basis of a simple model proposed by Charnov. Indeed, the theoretical expectation from the model has been the basis for interest in the empirical pattern. However, the predicted relationship is a necessary consequence of the mathematics of the model, which therefore has little explanatory power, even though its predictions are consistent with empirical results. The evolution of pollen-ovule ratios is likely to depend on selective factors affecting mating system, pollen presentation and dispensing, patterns of pollen receipt, pollen tube competition, female mate choice through embryo abortion, as well as genetic covariances among pollen, ovule, and seed size and other reproductive traits. To the extent the empirical correlations involving pollen-ovule ratios are interesting, they will need explanation in terms of a suite of selective factors. They are not explained simply by sex allocation trade-offs. 相似文献
14.
YAN‐FU QU HONG LI JIAN‐FANG GAO XIANG JI 《Biological journal of the Linnean Society. Linnean Society of London》2011,104(3):701-709
We collected gravid king ratsnakes (Elaphe carinata) from three geographically separated populations in Chenzhou (CZ), Lishui (LS) and Dinghai (DH) of China to study the geographical variation in female reproductive traits and trade‐offs between the size and number of eggs. Not all reproductive traits varied among the three populations. Of the traits examined, five (egg‐laying date, post‐oviposition body mass, clutch size, egg mass and egg width) differed among the three populations. The egg‐laying date, ranging from late June to early August, varied among populations in a geographically continuous trend, with females at the most northern latitude (DH) laying eggs latest, and females at the most southern latitude (CZ) laying eggs earliest. Such a trend was less evident or even absent in the other traits that differed among the three populations. CZ and DH females, although separated by a distance of approximately 1100 km as the crow flies, were similar to each other in most traits examined. LS females were distinguished from CZ and DH females by the fact that they laid a greater number of eggs, but these were smaller. The egg size–number trade‐off was evident in each of the three populations and, at a given level of relative fecundity, egg mass was significantly greater in the DH population than in the LS population. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 701–709. 相似文献
15.
Guinnee MA Gardner A Howard AE West SA Little TJ 《Journal of evolutionary biology》2007,20(2):577-587
Offspring size can have large and direct fitness implications, but we still do not have a complete understanding of what causes offspring size to vary. Daphnia (water fleas) generally produce fewer and larger offspring when food is limited. Here, we use a mathematical model to show that this could be explained by either: (1) an advantage of producing larger eggs when food is limited; or (2) a lower boundary on egg volume (below which eggs do not have sufficient resources to be viable), that is similar in volume to the evolutionarily stable egg volume predicted by standard clutch size models. We tested the first possibilities experimentally by placing offspring from mothers kept at two food treatments (high and low - leading to relatively small and large eggs respectively) into two food treatments (same as maternal treatments, in a fully factorial design) and measuring their fitness (reproduction, age at maturity, and size at maturity). We also tested survival under starvation conditions of offspring produced from mothers at low and high food treatments. We found that (larger) offspring produced by low-food mothers actually had lower fitness as they took longer to reproduce, regardless of their current food treatment. Additionally, we found no survival advantage to being born of a food-stressed mother. Consequently, our results do not support the hypothesis that there is an advantage to producing larger eggs when food is limited. In contrast, data from the literature support the importance of a lower boundary on egg size. 相似文献
16.
Questions: Do small rocky outcrops favor forest plant colonization and establishment in grasslands? If so, what are the potential mechanisms involved in this process? Location: Araucaria forest and Campos grassland mosaic in southern Brazilian highlands (29°29′S, 50°12′W). Methods: We collected data on the density of forest woody species in plots located on rocky outcrops and in open fields subject to different management regimes. We evaluated the influence of outcrops on the density of forest plants ≤60‐cm tall, and the effects of other environmental variables and of site on plant density; we also used information on diaspore traits of the species to discuss the way in which plants disperse to the outcrops. Results: Rocky outcrops harbored a significantly higher density of forest plants than open fields, irrespective of site effect, and rock height was the best predictor for plant density on outcrops. Diaspores of all recorded species possess characteristics associated with dispersal by birds or mammals or by both. Conclusions: Small rocky outcrops markedly influence forest expansion by acting as perches for vertebrate dispersers and as nurse objects and safe sites for plants. Forest expansion starting in small outcrops possibly occurs as follows: perching of dispersers and increase of seed rain on rocks, promotion of better conditions of establishment for forest plants by nurse rocks, protection of plants sensitive to grazing and fire, and nucleation of forest vegetation. 相似文献
17.
1. Life history trade‐offs emerge when limited resources are allocated to multiple functions of an organism. Under highly competitive conditions trade‐offs can result in alternative phenotypes that differ morphologically and physiologically. Such is the case in insect species that grow under high densities, where competition for resources but also the risk of disease contagion is high, prompting important adjustments in immune response and melanic cuticular pigmentation, with consequent sacrifices in other fitness‐related traits. 2. In the present study, the potential trade‐offs between total‐ and active phenoloxidase (PO), body size and body pigmentation in Sepsis thoracica black scavenger flies that show alternative male morphs differing in cuticular pigmentation, and body size were evaluated. 3. As expected, small/dark (obsidian) males showed higher total‐PO activity than larger/orange (amber) males. A negative relationship was found between total‐PO activity and body size in females and obsidian but not amber males, suggesting that growth and immunity are more costly for the former. In contrast, density did not affect PO activity, as predicted by the density‐dependent prophylaxis hypothesis, which had not been tested in dipterans before. However, rearing density did affect the body size negatively in females and amber but not obsidian males, showing that male morph is largely determined by condition‐dependent plasticity rather than genes. 4. This study provides good evidence that trade‐offs between different life‐history traits can result in alternative resource allocation strategies, even within one species. These strategies can produce strikingly different alternative phenotypes, evincing that there is not only one optimal solution to address fitness optimisation. 相似文献
18.
Models for sex allocation assume that increased expenditure of resources on male function decreases the resources available for female function. Under some circumstances, a negative genetic correlation between investment in stamens and investment in ovules or seeds is expected. Moreover, if fitness returns for investment in male and female function are different with respect to size, sex allocation theory predicts size‐specific gender changes. We studied sex allocation and genetic variation for investment in stamens, ovules and seeds at both the flower and the plant level in a Dutch population of the wind‐pollinated and predominantly outcrossing Plantago coronopus. Data on biomass of floral structures, stamens, ovules, seedset and seedweight were used to calculate the average proportion of reproductive allocation invested in male function. Genetic variation and (genetic) correlations were estimated from the greenhouse‐grown progeny of maternal families, raised at two nutrient levels. The proportion of reproductive biomass invested in male function was high at flowering (0.86 at both nutrient levels) and much lower at fruiting (0.30 and 0.40 for the high and low nutrient treatment, respectively). Androecium and gynoecium mass exhibited moderately high levels of genetic variance, with broad‐sense heritabilities varying from 0.35 to 0.56. For seedweight no genetic variation was detected. Significant among‐family variation was also detected for the proportion of resources invested in male function at flowering, but not at fruiting. Phenotypic and broad‐sense genetic correlations between androecium and gynoecium mass were positive. Even after adjusting for plant size, as a measure of resource acquisition, maternal families that invested more biomass in the androecium also invested more in the gynoecium. This is consistent with the hypothesis that genetic variation for resource acquisition may in part be responsible for the overall lack of a negative correlation between male and female function. Larger plants had a more female‐biased allocation pattern, brought about by an increase in seedset and seedweight, whereas stamen biomass did not differ between small and large plants. These results are discussed in relation to size‐dependent sex allocation theory (SDS). Our results indicate that the studied population harboured substantial genetic variation for reproductive characters. 相似文献
19.
Question: Land‐use change has a major impact on terrestrial plant communities by affecting fertility and disturbance. We test how particular combinations of plant functional traits can predict species responses to these factors and their abundance in the field by examining whether trade‐offs at the trait level (fundamental trade‐offs) are linked to trade‐offs at the response level (secondary trade‐offs). Location: Central French Alps. Methods: We conducted a pot experiment in which we characterized plant trait syndromes by measuring whole plant and leaf traits for six dominant species, originating from contrasting subalpine grassland types. We characterized their response to nutrient availability, shading and clipping. We quantified factors linked with different land usage in the field to test the relevance of our experimental treatments. Results: We showed that land management affected nutrient concentration in soil, light availability and disturbance intensity. We identified particular suites of traits linked to plant stature and leaf structure which were associated with species responses to these environmental factors. Leaf dry matter content separates fast and slow growing species. Height and lateral spread separated tolerant and intolerant species to shade and clipping. Discussion and Conclusion: Two fundamental trade‐offs based on stature traits and leaf traits were linked to two secondary trade‐offs based on response to fertilization shade and mowing. Based on these trade‐offs, we discuss four different species strategies which could explain and predict species distributions and traits syndrome at community scale under different land‐uses in subalpine grasslands. 相似文献
20.
Organisms have to allocate limited resources among multiple life‐history traits, which can result in physiological trade‐offs, and variation in environmental conditions experienced during ontogeny can influence reproduction later in life. Food restriction may lead to an adaptive reallocation of the limited resources among traits as a phenotypically plastic adjustment, or it can act as an overall constraint with detrimental effects throughout reproductive life. In this study, we investigated experimentally the effects of food restriction during different stages of the juvenile and early adult development on body weight, survival and reproductive success in females and males of the European earwig Forficula auricularia. Individuals either received limited or unlimited access to food across three different stages of development (fully crossed) allowing us to identify sensitive periods during development and to test both additive and interactive effects of food limitation across stages on development and reproduction. Food restriction during the early and late juvenile stage had additive negative effects on juvenile survival and adult body weight. With regard to reproductive success of females which produce up to two clutches in their lifetime, restriction specifically in the late juvenile stage led to smaller first and second clutch size, lower probability of second clutch production and reduced hatching success in the second clutch. Reproductive success of females was not significantly affected when their male mates experienced food restriction during their development. Our findings in general support the ‘silver‐spoon’ hypothesis in that food restriction during juvenile development poses constraints on development and reproduction throughout life. 相似文献