首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rehabilitation of post‐mining lands frequently aims to create “self‐sustaining” systems. Where native vegetation is the designated post‐mining land use, it is generally assumed that rehabilitation that is similar to local native ecosystems is more likely to be sustainable. I compared landscape functionality, plant community composition, and vegetation structure in (1) reference sites representing pre‐mining native forest; (2) reference sites representing potential landscape analogues for the post‐mining landscape; and (3) a 23‐year chronosequence of post‐mining rehabilitation on the Weipa bauxite plateau, Cape York Peninsula, Australia. The trends across the post‐mining chronosequence indicate that vegetation growth is rapid in the first 5–8 years, and then slows with mean height approaching an asymptote after approximately 15 years. Landscape function indices showed a response that coincided with vegetation growth. Vegetation composition was significantly different from reference native forest. Most importantly, from the perspective of creating self‐sustaining ecosystems, the contribution of local framework species to vegetation in rehabilitation was significantly lower than in reference native forest. I discuss the results in relation to theoretical models of succession and conclude that without management intervention, differences between post‐mining rehabilitation and native forest are likely to be persistent.  相似文献   

2.
毛乌素沙地南缘植被景观格局演变与空间分布特征   总被引:5,自引:0,他引:5  
周淑琴  荆耀栋  张青峰  吴发启 《生态学报》2013,33(12):3774-3782
以1991、1999和2007年TM/ETM+影像为数据源,利用RS和GIS技术提取研究区植被覆盖度信息,将其按地貌分区,计算景观格局指数,分析植被景观格局变化特征.结果表明:(1) 1999年是研究区16a植被景观结构变化的转折点,植被覆盖状况前期恶化后期好转.1991-1999年两区极低和低级植被覆盖度占绝对优势,继续增强,风沙区55%-70%,丘陵区70%-80%.高等级比例均在5%以下,持续下滑.2007年两区的优势级别提升为低级和中级,风沙区比例55%,丘陵区70%.极低级别比例减小,风沙区40%-20%,丘陵区50%-15%.高级比例不同程度增大.(2)1999年前后植被景观格局反向演变,两区变化趋势基本相同程度不同.植被多样性和均匀度先减小后增大,等级问交替分布规律先弱后强.风沙区景观形状由复杂到简单,破碎度先增后减;丘陵区破碎度持续增大,形状变化微小.整体上来看,风沙区植被多样性高整体性好,植被均匀度指数大,交替分布规律明显,丘陵区植被格局较差.但外界对风沙区的干扰比丘陵区强烈.(3)植被景观格局演变过程中始终保持多核心模式,核心面积、形状甚至类型发生不同程度的变化.风沙区核心多为无植被斑块,丘陵区多为高植被覆盖度斑块.核心外围植被分布具有梯度性.  相似文献   

3.
Question: Coastal dune systems are characterized by a natural mosaic that promotes species diversity. This heterogeneity often represents a severe problem for traditional mapping or ground survey techniques. The work presented here proposes to apply a very detailed CORINE land cover map as baseline information for plant community sampling and analysis in a coastal dune landscape. Location: Molise coast, Central Italy. Method: We analysed through an error matrix the coherence between land cover classes and vegetation types identified through a field survey. The CORINE land cover map (scale 1: 5000) of the Molise coast was used with the CORINE legend expanded to a fourth level of detail for natural and semi‐natural areas. Vegetation data were collected following a random stratified sampling design using the CORINE land cover classes as strata. An error matrix was used to compare, on a category‐by‐category basis, the relationship between vegetation types (obtained by cluster analyses of sampling plots) and land cover classes of the same area. Results: The coincidence between both classification approaches is quite good. Only one land cover class shows a very weak agreement with its corresponding vegetation type; this result was interpreted as being related to human disturbance. Conclusions: Since it is based on a standard land cover classification, the proposal has a potential for application to most European coastal systems. This method could represent a first step in the environmental planning of coastal systems.  相似文献   

4.
Plastic pollution is distributed across the globe, but compared with marine environments, there is only rudimentary understanding of the distribution and effects of plastics in other ecosystems. Here, we review the transport and effects of plastics across terrestrial, freshwater and marine environments. We focus on hydrological catchments as well‐defined landscape units that provide an integrating scale at which plastic pollution can be investigated and managed. Diverse processes are responsible for the observed ubiquity of plastic pollution, but sources, fluxes and sinks in river catchments are poorly quantified. Early indications are that rivers are hotspots of plastic pollution, supporting some of the highest recorded concentrations. River systems are also likely pivotal conduits for plastic transport among the terrestrial, floodplain, riparian, benthic and transitional ecosystems with which they connect. Although ecological effects of micro‐ and nanoplastics might arise through a variety of physical and chemical mechanisms, consensus and understanding of their nature, severity and scale are restricted. Furthermore, while individual‐level effects are often graphically represented in public media, knowledge of the extent and severity of the impacts of plastic at population, community and ecosystem levels is limited. Given the potential social, ecological and economic consequences, we call for more comprehensive investigations of plastic pollution in ecosystems to guide effective management action and risk assessment. This is reliant on (a) expanding research to quantify sources, sinks, fluxes and fates of plastics in catchments and transitional waters both independently as a major transport routes to marine ecosystems, (b) improving environmentally relevant dose–response relationships for different organisms and effect pathways, (c) scaling up from studies on individual organisms to populations and ecosystems, where individual effects are shown to cause harm and; (d) improving biomonitoring through developing ecologically relevant metrics based on contemporary plastic research.  相似文献   

5.
Riverine landscape dynamics and ecological risk assessment   总被引:7,自引:0,他引:7  
1. The aim of ecological risk assessments is to evaluate the likelihood that ecosystems are adversely affected by human‐induced disturbance that brings the ecosystem into a new dynamic equilibrium with a simpler structure and lower potential energy. The risk probability depends on the threshold capacity of the system (resistance) and on the capacity of the system to return to a state of equilibrium (resilience). 2. There are two complementary approaches to assessing ecological risks of riverine landscape dynamics. The reductionist approach aims at identifying risk to the ecosystem on the basis of accumulated data on simple stressor–effect relationships. The holistic approach aims at taking the whole ecosystem performance into account, which implies meso‐scale analysis. 3. Landscape patterns and their dynamics represent the physical framework of processes determining the ecosystem's equilibrium. Assessing risks of landscape dynamics to riverine ecosystems implies addressing complex interactions of system components (e.g. population dynamics and biogeochemical cycles) occurring at multiple scales of space and time. 4. One of the most important steps in ecological risk assessment is to establish clear assessment endpoints (e.g. vital ecosystem and landscape attributes). Their formulation must recognise that riverine ecosystems are dynamic, structurally complex and composed of both deterministic and stochastic components. 5. Remote sensing (geo)statistics and geographical information systems are primary tools for quantifying spatial and temporal components of riverine ecosystem and landscape attributes. 6. The difficulty to experiment at the riverine landscape level means that ecological risk management is heavily dependent on models. Current models are targeted towards simulating ecological risk at levels ranging from single species to habitats, food webs and meta‐populations to ecosystems and entire riverine landscapes, with some including socio‐economic considerations.  相似文献   

6.
Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology   总被引:4,自引:0,他引:4  
This contribution proposes the meta‐ecosystem concept as a natural extension of the metapopulation and metacommunity concepts. A meta‐ecosystem is defined as a set of ecosystems connected by spatial flows of energy, materials and organisms across ecosystem boundaries. This concept provides a powerful theoretical tool to understand the emergent properties that arise from spatial coupling of local ecosystems, such as global source–sink constraints, diversity–productivity patterns, stabilization of ecosystem processes and indirect interactions at landscape or regional scales. The meta‐ecosystem perspective thereby has the potential to integrate the perspectives of community and landscape ecology, to provide novel fundamental insights into the dynamics and functioning of ecosystems from local to global scales, and to increase our ability to predict the consequences of land‐use changes on biodiversity and the provision of ecosystem services to human societies.  相似文献   

7.
Abstract. We propose a hierarchical approach for plant functional classification in disturbed ecosystems to be used for vegetation modelling and global plant trait comparisons. Our framework is based on the persistence of plants at different levels of organization. We assume that the main parameters to determine persistence in chronically disturbed ecosystems are those related to: I ndividual‐persistence capacity, P ropagule‐persistence capacity (persistence at the population level), C ompetitive capacity (persistence at the community level) and D ispersal capacity (persistence at the landscape level). The IPCD approach is illustrated for fire‐prone and grazed ecosystems from the Mediterranean region and Australia and by assuming a binary classification of the four traits determining persistence which give a total 16 possible functional types. The IPCD framework provides a simple structured and synthetic view from which more elaborated schemes can be developed.  相似文献   

8.
Aim Intraspecific variation in patch occupancy often is related to physical features of a landscape, such as the amount and distribution of habitat. However, communities occupying patchy environments typically exhibit non‐random distributions in which local assemblages of species‐poor patches are nested subsets of assemblages occupying more species‐rich patches. Nestedness of local communities implies interspecific differences in sensitivity to patchiness. Several hypotheses have been proposed to explain interspecific variation in responses to patchiness within a community, including differences in (1) colonization ability, (2) extinction proneness, (3) tolerance to disturbance, (4) sociality and (5) level of adaptation to prevailing environmental conditions. We used data on North American mammals to compare the performance of these ‘ecological’ hypotheses and the ‘physical landscape’ hypothesis. We then compared the best of these models against models that scaled landscape structure to ecologically relevant attributes of individual species. Location North America. Methods We analysed data on prevalence (i.e. proportion of patches occupied in a network of patches) and occupancy for 137 species of non‐volant mammals and twenty networks consisting of four to seventy‐five patches. Insular and terrestrial networks exhibited significantly different mean levels of prevalence and occupancy and thus were analysed separately. Indicator variables at ordinal and family levels were included in models to correct for effects caused by phylogeny. Akaike's information criterion was used in conjunction with ordinary least squares and logistic regression to compare hypotheses. Results A patch network's physical structure, indexed using patch area and isolation, received the greatest support among models predicting the prevalence of species on insular networks. Niche breadth (diet and habitat) received the greatest support for predicting prevalence of species occupying terrestrial networks. For both insular and terrestrial systems, physical features (patch area and isolation) received greater support than any of the ecological hypotheses for predicting species occupancy of individual patches. For terrestrial systems, scaling patch area by its suitability to a focal species and by individual area requirements of the species, and scaling patch isolation by species‐specific dispersal ability and niche breadth, resulted in models of patch occupancy that were superior to models relying solely on physical landscape features. For all selected models, unexplained levels of variation were high. Main conclusions Stochasticity dominated the systems we studied, indicating that random events are probably quite important in shaping local communities. With respect to deterministic factors, our results suggest that forces affecting species prevalence and occupancy may differ between insular and terrestrial systems. Physical features of insular systems appeared to swamp ecological differences among species in determining prevalence and occupancy, whereas species with broad niches were disproportionately represented in terrestrial networks. We hypothesize that differential extinction over long time periods in highly variable networks has driven nestedness of mammalian communities on islands, whereas differential colonization over shorter time‐scales in more homogeneous networks probably governed the local structure of terrestrial communities. Our results also demonstrate that integration of a species' ecological traits with physical features of a patch network is superior to reliance on either factor separately when attempting to predict the species' probability of patch occupancy in terrestrial systems.  相似文献   

9.
Despite a long history of disturbance–recovery research, we still lack a generalizable understanding of the attributes that drive community recovery potential in seafloor ecosystems. Marine soft‐sediment ecosystems encompass a range of heterogeneity from simple low‐diversity habitats with limited biogenic structure, to species‐rich systems with complex biogenic habitat structure. These differences in biological heterogeneity are a product of natural conditions and disturbance regimes. To search for unifying attributes, we explore whether a set of simple traits can characterize community disturbance–recovery potential using seafloor patch‐disturbance experiments conducted in two different soft‐sediment landscapes. The two landscapes represent two ends of a spectrum of landscape biotic heterogeneity in order to consider multi‐scale disturbance–recovery processes. We consider traits at different levels of biological organization, from the biological traits of individual species, to the traits of species at the landscape scale associated with their occurrence across the landscape and their ability to be dominant. We show that in a biotically heterogeneous landscape (Kawau Bay, New Zealand), seafloor community recovery is stochastic, there is high species turnover, and the landscape‐scale traits are good predictors of recovery. In contrast, in a biotically homogeneous landscape (Baltic Sea), the options for recovery are constrained, the recovery pathway is thus more deterministic and the scale of recovery traits important for determining recovery switches to the individual species biological traits within the disturbed patch. Our results imply that these simple, yet sophisticated, traits can be effectively used to characterize community recovery potential and highlight the role of landscapes in providing resilience to patch‐scale disturbances.  相似文献   

10.
In general, community similarity is thought to decay with distance; however, this view may be complicated by the relative roles of different ecological processes at different geographical scales, and by the compositional perspective (e.g. species, functional group and phylogenetic lineage) used. Coastal salt marshes are widely distributed worldwide, but no studies have explicitly examined variation in salt marsh plant community composition across geographical scales, and from species, functional and phylogenetic perspectives. Based on studies in other ecosystems, we hypothesized that, in coastal salt marshes, community turnover would be more rapid at local versus larger geographical scales; and that community turnover patterns would diverge among compositional perspectives, with a greater distance decay at the species level than at the functional or phylogenetic levels. We tested these hypotheses in salt marshes of two regions: The southern Atlantic and Gulf Coasts of the United States. We examined the characteristics of plant community composition at each salt marsh site, how community similarity decayed with distance within individual salt marshes versus among sites in each region, and how community similarity differed among regions, using species, functional and phylogenetic perspectives. We found that results from the three compositional perspectives generally showed similar patterns: there was strong variation in community composition within individual salt marsh sites across elevation; in contrast, community similarity decayed with distance four to five orders of magnitude more slowly across sites within each region. Overall, community dissimilarity of salt marshes was lowest on the southern Atlantic Coast, intermediate on the Gulf Coast, and highest between the two regions. Our results indicated that local gradients are relatively more important than regional processes in structuring coastal salt marsh communities. Our results also suggested that in ecosystems with low species diversity, functional and phylogenetic approaches may not provide additional insight over a species-based approach.  相似文献   

11.
Reliable vegetation maps are an important component of any long‐term landscape planning initiatives. A number of approaches are available but one, in particular, pattern recognition (segmentation) combined with modelling from floristic site data, is currently being used to map vegetation across NSW. An independent assessment of this approach based on a review of the Greater Hunter Native Vegetation Mapping (GHM_v4) was undertaken in order to assess its ability to cater for regional, local, strategic and landscape planning. The validation process tested 2151 locations across the Upper Hunter Valley region of New South Wales (NSW), Australia. The results suggest that mapping at the coarsest level of NSW vegetation classification, the Formation, is generally poor, with only Dry Sclerophyll Forest and Woodland modelled with some level of reliability. The modelled mapping of individual plant community types (PCTs) was found to be highly inaccurate with only 17% of validation points attributed as ‘correct’ and a further 13% ‘essentially correct’. Therefore, a majority of PCTs were mapped with an accuracy of less than 30%. The results of this validation suggest that the GHM_v4 is of such a low level of accuracy within the upper Hunter as to be inherently unusable for broad‐scale regional and local landscape planning or environmental assessment, including locating compensatory offsets for the loss of native vegetation due to developments. The GHM_v4 methods of pattern recognition of mainly SPOT5 satellite imagery combined with modelling from plot data have not produced reliable vegetation maps of plant community types. Yet this mapping programme is extending across NSW and could be misused for environmental decisions or as a regulation.  相似文献   

12.
Our focus here is on how vegetation management can be used to manipulate the balance of ecosystem services at a landscape scale. Across a landscape, vegetation can be maintained or restored or modified or removed and replaced to meet the changing needs of society, giving mosaics of vegetation types and ‘condition classes’ that can range from intact native ecosystems to highly modified systems. These various classes will produce different levels and types of ecosystem services and the challenge for natural resource management programs and land management decisions is to be able to consider the complex nature of trade-offs between a wide range of ecosystem services. We use vegetation types and their condition classes as a first approximation or surrogate to define and map the underlying ecosystems in terms of their regulating, supporting, provisioning and cultural services. In using vegetation as a surrogate, we believe it is important to describe natural or modified (e.g. agronomic) vegetation classes in terms of structure – which in turn is related to ecosystem function (rooting depth, nutrient recycling, carbon capture, water use, etc.). This approach enables changes in vegetation as a result of land use to be coupled with changes to surface and groundwater resources and other physical and chemical properties of soils.For Australian ecosystems an existing structural classification based on height and cover of all vegetation layers is suggested as the appropriate functional vegetation classification. This classification can be used with a framework for mapping and manipulating vegetation condition classes. These classes are based on the degree of modification to pre-existing vegetation and, in the case of biodiversity, this is the original vegetation. A landscape approach enables a user to visualise and evaluate the trade-offs between economic and environmental objectives at a spatial scale at which the delivery of ecosystem services can meaningfully be influenced and reported. Such trade-offs can be defined using a simple scoring system or, if the ecological and socio-economic data exist in sufficient detail, using process-based models.Existing Australian databases contain information that can be aggregated at the landscape and water catchment scales. The available spatial information includes socio-economic data, terrain, vegetation type and cover, soils and their hydrological properties, groundwater quantity and surface water flows. Our approach supports use of this information to design vegetation management interventions for delivery of an appropriate mix of ecosystem services across landscapes with diverse land uses.  相似文献   

13.
Human activities are altering the fundamental geography of biogeochemicals. Yet we lack an understanding of how the spatial patterns in organismal stoichiometry affect biogeochemical processes and the tools to predict the impacts of global changes on biogeochemical processes. In this contribution we develop stoichiometric distribution models (StDMs), which allow us to map spatial structure in resource elemental composition across a landscape and evaluate spatial responses of consumers. We parameterise StDMs for a consumer‐resource (moose‐white birch) system and demonstrate that we can develop predictive models of resource stoichiometry across a landscape and that such models could improve our predictions of consumer space use. With results from our study system application, we argue that explicit consideration of the spatial patterns in organismal elemental composition may uncover emergent individual, population, community and ecosystem properties that are not revealed at the local extents routinely used in ecological stoichiometry. We discuss perspectives for further developments and application of StDMs to advance three emerging frameworks for spatial ecosystem ecology in an era of global change; meta‐ecosystem theory, macroecological stoichiometry and remotely sensed biogeochemistry. Progress on these emerging frameworks will allow for the integration of ecological stoichiometry and individual space use and fitness.  相似文献   

14.
Fluvial landscape ecology: addressing uniqueness within the river discontinuum   总被引:19,自引:1,他引:18  
1. As rivers and streams are patchy and strongly hierarchical systems, a hierarchical patch dynamics perspective can be used as a framework for visualising interactions between structure and function in fluvial landscapes. The perspective is useful for addressing fundamental attributes of lotic ecosystems, such as heterogeneity, hierarchy, directionality and process feedback occurring across spatial scales and for illustrating spatio‐temporal linkages between disparate concepts in lotic system ecology such as the River Continuum Concept, the Serial Discontinuity Concept, the Flood Pulse Concept and the Hyporheic Corridor Concept. 2. At coarse spatial scales, the hierarchical patch dynamics perspective describes each river network as a unique, patchy discontinuum from headwaters to mouth. The discontinuum is comprised of a longitudinal series of alternating stream segments with different geomorphological structures. Each confluence in the steam network further punctuates the discontinuum because the sudden change in stream characteristics can create a `gap' in the expected pattern of downstream transitions. The discontinuum view recognises general trends in habitat characteristics along the longitudinal profile, but creates a framework for studying and understanding the ecological importance of each stream's individual pattern of habitat transitions along longitudinal, lateral or vertical vectors at any scale. 3. Object‐oriented modelling and programming techniques provide a means for developing robust, quantitative simulation models that describe the dynamic structure of patch hierarchies. Such models can simulate how the structure and function of lotic ecosystems are influenced by the landscape context of the system (the ecological conditions within which the system is set) and the metastructure (structural characteristics and juxtaposition) of finer‐scale patches comprising the system. 4. A simple object‐oriented, multiscale, discontinuum model of solute transformation and biological response along a stream channel illustrates how changing the branching pattern of a stream and the arrangement of its component patches along the downstream profile will result in substantial changes in predicted patterns of solute concentration and biotic community structure. 5. The importance of context, structure, and metastructure in determining lotic ecosystem function serves to underscore 27 ) concept that `every stream is likely to be individual.' Advancing the discipline of fluvial landscape ecology provides an excellent opportunity to develop general concepts and tools that address the individual character of each stream network and integrate the concept of `uniqueness within the river discontinuum' into our ecological understanding of rivers and streams.  相似文献   

15.
The relative roles of top‐down (consumer‐driven) and bottom‐up (resource‐driven) forcing in exploited marine ecosystems have been much debated. Examples from a variety of marine systems of exploitation‐induced, top‐down trophic forcing have led to a general view that human‐induced predator perturbations can disrupt entire marine food webs, yet other studies that have found no such evidence provide a counterpoint. Though evidence continues to emerge, an unresolved debate exists regarding both the relative roles of top‐down versus bottom‐up forcing and the capacity of human exploitation to instigate top‐down, community‐level effects. Using time‐series data for 104 reef communities spanning tropical to temperate Australia from 1992 to 2013, we aimed to quantify relationships among long‐term trophic group population density trends, latitude, and exploitation status over a continental‐scale biogeographic range. Specifically, we amalgamated two long‐term monitoring databases of marine community dynamics to test for significant positive or negative trends in density of each of three key trophic levels (predators, herbivores, and algae) across the entire time series at each of the 104 locations. We found that trophic control tended toward bottom‐up driven in tropical systems and top‐down driven in temperate systems. Further, alternating long‐term population trends across multiple trophic levels (a method of identifying trophic cascades), presumably due to top‐down trophic forcing, occurred in roughly fifteen percent of locations where the prerequisite significant predator trends occurred. Such alternating trophic trends were significantly more likely to occur at locations with increasing predator densities over time. Within these locations, we found a marked latitudinal gradient in the prevalence of long‐term, alternating trophic group trends, from rare in the tropics (<5% of cases) to relatively common in temperate areas (~45%). Lastly, the strongest trends in predator and algal density occurred in older no‐take marine reserves; however, exploitation status did not affect the likelihood of alternating long‐term trophic group trends occurring. Our data suggest that the type and degree of trophic forcing in this system are likely related to one or more covariates of latitude, and that ecosystem resiliency to top‐down control does not universally vary in this system based on exploitation level.  相似文献   

16.
Ungulate herbivory can fundamentally affect terrestrial vegetation at the landscape and regional levels, but its impact has never been analyzed from meta‐community perspectives. Here, we study a meta‐community of forest ground‐layer plants in a warm‐temperate region along a clear gradient of deer density interplaying with gradients of other environmental factors (forest type, sky openness and topographic wetness). Canonical corresponding analysis showed that deer density was the most important determinant of species distributions. These distributions conformed to a two‐directional filtering model, which selects for competitive species at low deer density but favours herbivory‐tolerant plants at high deer density, with these two directions counterbalancing each other when herbivory is intermediary. This resulted in a bi‐directionally nested meta‐community, in which local species richness was highest at intermediate levels of deer density, conforming also to the intermediate disturbance hypothesis. Our results suggest that herbivory can be the most important driver of meta‐community structure in mesic systems; this contrasts with the results of earlier studies conducted in harsh environments, where species sorting by abiotic factors at early life stages reduced the role of biotic interactions, including herbivory.  相似文献   

17.
Many wetlands harbour highly diverse biological communities and provide extensive ecosystem services; however, these important ecological features are being altered, degraded and destroyed around the world. Despite a wealth of research on how animals respond to anthropogenic changes to natural wetlands and how they use created wetlands, we lack a broad synthesis of these data. While some altered wetlands may provide vital habitat, others could pose a considerable risk to wildlife. This risk will be heightened if such wetlands are ecological traps – preferred habitats that confer lower fitness than another available habitat. Wetlands functioning as ecological traps could decrease both local and regional population persistence, and ultimately lead to extinctions. Most studies have examined how animals respond to changes in environmental conditions by measuring responses at the community and population levels, but studying ecological traps requires information on fitness and habitat preferences. Our current lack of knowledge of individual‐level responses may therefore limit our capacity to manage wetland ecosystems effectively since ecological traps require different management practices to mitigate potential consequences. We conducted a global meta‐analysis to characterise how animals respond to four key drivers of wetland alteration: agriculture, mining, restoration and urbanisation. Our overarching goal was to evaluate the ecological impacts of human alterations to wetland ecosystems, as well as identify current knowledge gaps that limit both the current understanding of these responses and effective wetland management. We extracted 1799 taxon‐specific response ratios from 271 studies across 29 countries. Community‐ (e.g. richness) and population‐level (e.g. density) measures within altered wetlands were largely comparable to those within reference wetlands. By contrast, individual fitness measures (e.g. survival) were often lower, highlighting the potential limitations of using only community‐ and population‐level measures to assess habitat quality. Only four studies provided habitat‐preference data, preventing investigation of the potential for altered wetlands to function as ecological traps. This is concerning because attempts to identify ecological traps may detect previously unidentified conservation risks. Although there was considerable variability amongst taxa, amphibians were typically the most sensitive taxon, and thus, may be a valuable bio‐indicator of wetland quality. Despite suffering reduced survival and reproduction, measures such as time to and mass at metamorphosis were similar between altered and reference wetlands, suggesting that quantifying metamorphosis‐related measures in isolation may not provide accurate information on habitat quality. Our review provides the most detailed evaluation to date of the ecological impacts of human alterations to wetland ecosystems. We emphasise that the role of wetlands in human‐altered ecosystems can be complex, as they may represent important habitat but also pose potential risks to animals. Reduced availability of natural wetlands is increasing the importance of altered wetlands for aquatic animals. Consequently, we need to define what represents habitat quality from the perspective of animals, and gain a greater understanding of the underlying mechanisms of habitat selection and how these factors could be manipulated. Furthermore, strategies to enhance the quality of these wetlands should be implemented to maximise their conservation potential.  相似文献   

18.
Coastal marshes are important carbon sinks facing serious threats from climatic stressors. Current research reveals that the growth of individual marsh plants is susceptible to a changing climate, but the responses of different marsh systems at a landscape scale are less clear. Here, we document the multi‐decadal changes in the phenology and the area of the extensive coastal marshes in Louisiana, USA, a representative of coastal ecosystems around the world that currently experiencing sea‐level rise, temperature warming, and atmospheric CO2 increase. The phenological records are constructed using the longest continuous satellite‐based record of the Earth's ecosystems, the Landsat data, and an advanced modeling technique, the nonlinear mixed model. We find that the length of the growing seasons of the intermediate and brackish marshes increased concomitantly with the atmospheric CO2 concentration over the last 30 years, and predict that such changes will continue and accelerate in the future. These phenological changes suggest a potential increase in CO2 uptake and thus a negative feedback mechanism to climate change. The areas of the freshwater and intermediate marshes were stable over the period studied, but the areas of the brackish and saline marshes decreased substantially, suggesting ecosystem instability and carbon storage loss under the anticipated sea‐level rise. The marshes' phenological shifts portend their potentially critical role in climate mitigation, and the different responses among systems shed light on the underlying mechanisms of such changes.  相似文献   

19.
Abstract. Loss of environmental services provided by forests is a non‐linear process in Jambi Province, Sumatra, Indonesia. Intermediate‐intensity land‐use types in the form of complex agroforests have maintained global environmental benefits under a sustainable and profitable land use regime. Conversion to tree crop monocultures, however, poses a challenge to the environmental stakeholders and an opportunity from to stakeholders in the private economy. We quantified environmental indicators, as well as profitability and sustainability of a range of existing and possible production systems. Criteria and indicators were used at plot to landscape scales, taking into account local, national and global perspectives. Agronomic sustainability and profitability were assessed at plot level as they are of primarily local concern, while environmental services of forests, such as plant species and functional type richness, carbon stocks, greenhouse gas emissions, and trans‐boundary haze, which are of national and global concern, were assessed at landscape level. Quantitative trade‐offs and complementarities were analysed between global environmental benefits and local profitability. The current trend towards simplification of the complex agro‐ecosystems and inherent loss of environmental services of forests is driven by profitability. The sequence in which environmental services of forests are lost is: standing carbon stocks, biodiversity, and low or negative greenhouse gas emissions.  相似文献   

20.
Climate change and species invasions represent key threats to global biodiversity. Subarctic freshwaters are sentinels for understanding both stressors because the effects of climate change are disproportionately strong at high latitudes and invasion of temperate species is prevalent. Here, we summarize the environmental effects of climate change and illustrate the ecological responses of freshwater fishes to these effects, spanning individual, population, community and ecosystem levels. Climate change is modifying hydrological cycles across atmospheric, terrestrial and aquatic components of subarctic ecosystems, causing increases in ambient water temperature and nutrient availability. These changes affect the individual behavior, habitat use, growth and metabolism, alter population spawning and recruitment dynamics, leading to changes in species abundance and distribution, modify food web structure, trophic interactions and energy flow within communities and change the sources, quantity and quality of energy and nutrients in ecosystems. Increases in temperature and its variability in aquatic environments underpin many ecological responses; however, altered hydrological regimes, increasing nutrient inputs and shortened ice cover are also important drivers of climate change effects and likely contribute to context‐dependent responses. Species invasions are a complex aspect of the ecology of climate change because the phenomena of invasion are both an effect and a driver of the ecological consequences of climate change. Using subarctic freshwaters as an example, we illustrate how climate change can alter three distinct aspects of species invasions: (1) the vulnerability of ecosystems to be invaded, (2) the potential for species to spread and invade new habitats, and (3) the subsequent ecological effects of invaders. We identify three fundamental knowledge gaps focused on the need to determine (1) how environmental and landscape characteristics influence the ecological impact of climate change, (2) the separate and combined effects of climate and non‐native invading species and (3) the underlying ecological processes or mechanisms responsible for changes in patterns of biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号