首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim Tropical dry forests in the Caribbean have an uniquely short, shrubby structure with a high proportion of multiple‐stemmed trees compared to dry forests elsewhere in the Neotropics. Previous studies have shown that this structure can arise without the loss of main stems from cutting, grazing, or other human intervention. The Caribbean has a high frequency of hurricanes, so wind may also influence forest stature. Furthermore, these forests also tend to grow on soils with low amounts of available phosphorus, which may also influence structure. The objective of this study was to assess the role of high winds in structuring dry forest, and to determine whether soil nutrient pools influence forest response following hurricane disturbance. Location Guánica Forest, Puerto Rico. Methods Over 2000 stems in five plots were sampled for hurricane effects within 1 week after Hurricane Georges impacted field sites in 1998. Sprout initiation, growth, and mortality were analysed for 1407 stems for 2 years after the hurricane. Soil nutrient pools were measured at the base of 456 stems to assess association between nutrients and sprout dynamics. Results Direct effects of the hurricane were minimal, with stem mortality at < 2% and structural damage to stems at 13%, although damage was biased toward stems of larger diameter. Sprouting response was high – over 10 times as many trees had sprouts after the hurricane as before. The number of sprouts on a stem also increased significantly. Sprouting was common on stems that only suffered defoliation or had no visible effects from the hurricane. Sprout survival after 2 years was also high (> 86%). Soil nutrient pools had little effect on forest response as a whole, but phosphorus supply did influence sprout dynamics on four of the more common tree species. Main conclusions Hurricanes are able to influence Caribbean tropical dry forest structure by reducing average stem diameter and basal area and generating significant sprouting responses. New sprouts, with ongoing survival, will maintain the high frequency of multi‐stemmed trees found in this region. Sprouting is not limited to damaged stems, indicating that trees are responding to other aspects of high winds, such as short‐term gravitational displacement or sway. Soil nutrients play a secondary role in sprouting dynamics of a subset of species. The short, shrubby forest structure common to the Caribbean can arise naturally as a response to hurricane winds.  相似文献   

2.
Resprouting can be an important means of regeneration for forest tree species resulting in multi-stemmed architecture, especially at less productive or frequently disturbed sites. However, the cost of resprouting may be traded off against growth or reproduction. In subtropical coastal forest in South Africa, trees grow on steep, sandy dunes with unstable soils and low to moderate nutrient availability. These coastal forests experience seasonally strong anticyclonic winds from August through October. We examined the hypothesis that basal resprouting resulting in multiple stems causes lower rates of sexual reproduction and recruitment by individuals. We examined whether trees traded off resprouting against seed output, seed size, seedling abundance and recruitment by seedlings. Species were designated as good and poor resprouters based on their frequency of multi-stemmed individuals at Cape Vidal. Good resprouters had more stems, produced less seed and had lower seed mass than poor resprouters, and had lower seedling abundance and fewer individuals in small diameter classes than large diameter classes. Seedling abundance in good resprouters was not influenced by the availability of understorey gaps. Good resprouters were most abundant on dune crests and seaward slopes that were exposed to sea winds. Persistence of established individuals by producing multiple stems from basal resprouts is important where a chronic disturbance regime potentially reduces the survivorship of single-stemmed individuals and thereby their opportunities for reproduction. Good resprouters appear to trade-off recruitment of new individuals for multiple stems that increase the persistence of established ones against disturbance. We conclude that multi-stemming arising from basal resprouts has evolved to promote individual persistence under low to moderate intensity but pervasive wind stress.  相似文献   

3.
Tree hollows are a critical but diminishing resource for a wide range of fauna around the world. Conservation of these fauna depends on sustainable management of tree species that produce the hollows on which they depend. This study addressed the need for empirical data about intraspecific and interspecific variation in hollow occurrence and abundance in woodland trees in Australia. We measured and performed hollow surveys on 1817 trees of seven species of woodland Eucalyptus in central‐western New South Wales, Australia. Trees were surveyed at 51 one‐hectare sites and about 30% of trees surveyed had multiple stems. Generalized linear mixed models that accounted for nestedness of stems within trees and trees within sites detected a significant amount of variation in hollow occurrence and abundance. Models for individual tree stems of live trees showed hollow probability and abundance increased with diameter at breast height (DBH) and with increasing senescence (form). Stems of Eucalyptus microcarpa Maiden had a higher probability of having hollows than similar DBH stems of Eucalyptus camaldulensis Dehnh., Eucalyptus melliodora A.Cunn. ex Schauer or Eucalyptus populnea ssp. bimbil L.A.S.Johnson & K.D.Hill. Dead stems in live trees were more likely to have hollows than live stems of similar DBH. Each stem in a multi‐stemmed tree had a lower probability of hollow occurrence and lower abundance of hollows than single‐stemmed trees of similar DBH. For stems of dead trees, hollow occurrence and abundance increased with DBH and differed depending on stage of senescence. A comparison of our data with other studies indicates regional variation of hollow abundances within tree species.  相似文献   

4.
In theory, resprouting enables species with low reproductive output (i.e., few seedlings) to persist. The advantage conferred by seedling sprouts on tree species persistence was evaluated in a subtropical coastal dune forest in South Africa. Species with a higher frequency of seedling sprouts demonstrated greater persistence as evidenced by a larger proportion of seedlings >1 year old and a larger seedling bank than species with few seedling sprouts. Resprouted seedlings had a larger basal diameter than true seedlings. Although resprouting resulted in the maintenance of multiple stems in some seedlings, the proportion of multi‐stemmed seedlings was low. Multi‐stemming was not a favoured form of seedling growth except in one species that occupied relatively open sites. Despite the apparent difference among species in resprouting ability, we found that seedling resprouting was not phylogenetically constrained. These results demonstrate that seedling sprouts form an important component of seedling banks in coastal dune forest.  相似文献   

5.
Question: Do New Zealand tree ferns have recognizable shade tolerance niches? Location: Lowland temperate rain forest of New Zealand (41°20′S, 174°58′E). Methods: Growth, death and recruitment of five tree fern species were estimated from a 38‐year record of stem heights, collected within a 2.25‐ha block of forest, and electron transport rates (ETR) of photosystem II of fronds were measured. Results: Two species of Cyathea were comparatively common (603 and 351 stems in total) and two were comparatively rare (155 and 17 stems in total) on the site. The common species had lower rates of growth, recruitment and mortality than the rare species, had skewed age distributions typical of shade‐tolerant species and were probably recruited soon after a catastrophic earthquake in 1855. The two rare species were failing to recruit under closed forests; their age distributions indicated that all had regenerated long after the earthquake. ETR were higher for faster‐growing than for the shade‐tolerant species. A tree fern that regenerates vegetatively from aerial buds, Dicksonia squarrosa, was common on the site (361 stems in total). Its age distribution suggested it was relatively shade tolerant, but its mortality and recruitment rates were much higher than those of the two shade‐tolerating Cyathea species, suggesting that this multi‐stemmed species functions differently from the monopodial Cyathea species. Conclusions: New Zealand Cyathea tree ferns occupy distinct niches along a shade tolerance spectrum and their relative abundances are strongly influenced by disturbance history. The study provides evidence that tree fern species differ strongly in their responses to canopy disturbance and are not ecologically equivalent.  相似文献   

6.
The ongoing climatic changes potentially affect plant growth and the functioning of temperature‐limited high‐altitude and high‐latitude ecosystems; the rate and magnitude of these biotic changes are, however, uncertain. The aim of this study was to reconstruct stand structure and growth forms of Larix sibirica (Ledeb.) in undisturbed forest–tundra ecotones of the remote Polar Urals on a centennial time scale. Comparisons of the current ecotone with historic photographs from the 1960s clearly document that forests have significantly expanded since then. Similarly, the analysis of forest age structure based on more than 300 trees sampled along three altitudinal gradients reaching from forests in the valleys to the tundra indicate that more than 70% of the currently upright‐growing trees are <80 years old. Because thousands of more than 500‐year‐old subfossil trees occur in the same area but tree remnants of the 15–19th century are lacking almost entirely, we conclude that the forest has been expanding upwards into the formerly tree‐free tundra during the last century by about 20–60 m in altitude. This upward shift of forests was accompanied by significant changes in tree growth forms: while 36% of the few trees that are more than 100 years old were multi‐stem tree clusters, 90% of the trees emerging after 1950 were single‐stemmed. Tree‐ring analysis of horizontal and vertical stems of multi‐stemmed larch trees showed that these trees had been growing in a creeping form since the 15th century. In the early 20th century, they started to grow upright with 5–20 stems per tree individual. The incipient vertical growth led to an abrupt tripling in radial growth and thus, in biomass production. Based on above‐ and belowground biomass measurements of 33 trees that were dug out and the mapping of tree height and diameter, we estimated that forest expansion led to a biomass increase by 40–75 t ha?1 and a carbon accumulation of approximately 20–40 g C m?2 yr?1 during the last century. The forest expansion and change in growth forms coincided with significant summer warming by 0.9 °C and a doubling of winter precipitation during the 20th century. In summary, our results indicate that the ongoing climatic changes are already leaving a fingerprint on the appearance, structure, and productivity of the treeline ecotone in the Polar Urals.  相似文献   

7.
Coastal dune forest succession frequently proceeds via the Acacia karroo pathway, but may become arrested. We examine whether soil fertility arrests forest succession in A. karroo stands in coastal dune forest in KwaZulu-Natal province, South Africa. We examined soil fertility of A. karroo stands, the adjacent forest, and forested dune slacks at Cape Vidal, and four rehabilitating A. karroo stands (13- to 28-yr-old) at Richards Bay. The effect of nitrogen supplementation on growth of three tree species (a forest pioneer, a late successional forest species, and A. karroo) was compared between A. karroo stands and adjacent dune forest at Cape Vidal. Soil fertility in A. karroo stands and the adjacent forest at Cape Vidal was similar and neither total nor readily mineralisable nitrogen were limiting in either habitat. At Richards Bay, where the dunes were previously strip-mined, total nitrogen accumulated rapidly (2.1–8.0 g N m−2 yr−1) and the oldest rehabilitating A. karroo stands (26–28 yr) had similar total nitrogen and other soil nutrient levels as stands twice their age at Cape Vidal. Seedling growth was unaffected by nitrogen supplementation. All species grew fastest in A. karroo stands demonstrating that soil nutrient levels in disturbed forest colonised by A. karroo are suitable for the growth of forest tree species. Soil fertility, including available nitrogen, is not limiting secondary succession at Cape Vidal, yet forest species are not replacing A. karroo stands at this site. Post-emergence factors, such as herbivory, are likely responsible for the arrested succession of forest in A. karroo stands.  相似文献   

8.
Question: Can the direct regeneration hypothesis (DRH) be used to predict post‐disturbance regeneration after fire, wind disturbance, and clearcutting in northern forests? Do life‐history traits such as regeneration strategy and shade tolerance influence post‐disturbance regeneration success of tree species? Location: Northern forests in North America. Methods: A meta‐analysis was conducted by collecting published data on pre‐ and post‐disturbance stand compositional characteristics in the northern forests. For each tree species, compositional difference (CD) was calculated as the difference between basal area proportions of the post‐ and pre‐disturbance stands, but for post‐disturbance stands <25 years of age, post‐disturbance proportions were calculated based on relative stem density. Results: Species response to disturbances was best explained by regeneration strategy, while disturbance type had no effect on CD. The proportion of broadleaf trees with either strong or weak vegetative reproduction ability increased after all disturbances. Serotinous species had CD values not significantly different from zero after fire, while CD for semi‐serotinous species was negative. The post‐disturbance proportions of non‐serotinous conifers decreased after all forms of disturbance. Conclusions: All disturbances promote broadleaf trees, regardless of regeneration strategy (suckering, sprouting, or seeding). The DRH is supported for conifers with serotinous cones after fire. Fire causes local extinction of non‐serotinous conifers, while wind and clearcutting only decrease the proportion of non‐serotinous conifers because of partial survival of seed sources and advanced regeneration. This study suggests that increasing stand‐replacing disturbances associated with global climate change will promote broadleaf trees in northern forests.  相似文献   

9.
Question: How does typhoon‐related disturbance (more specifically, disturbance in the understorey due to tree‐fall and branch‐fall) affect different species mortality rates in a vertically well‐structured forest community? Location: Cool‐temperate, old‐growth forest in the Daisen Forest Reserve, Japan. Methods: We investigated the canopy dynamics and mortality rate trends of trees ≥5 cm diameter at breast height in a 4‐ha study plot, and analysed the effects of tree diameter and spatial structure on the mortality risks for major tree species in the understorey. Results: Significant differences were found in the mortality rates and proportions of injured dead stems between census periods, which were more pronounced in the understorey than in the canopy. Acer micranthum, which showed increased mortality during typhoon disturbance periods, had a clumped distribution. In contrast, Acer japonicum and Viburnum furcatum, which showed similar mortality rates between census periods, had a loosely clumped spatial distribution and a negative association with canopy trees, respectively. In the understorey stems of Acanthopanax sciadophylloides and Fagus crenata, whose spatial distribution patterns depended on canopy gaps, significant increases in mortality rates were observed only during severe typhoon‐related disturbance periods. Conclusions: The sensitivity of trees to typhoon‐related canopy disturbance is more pronounced in the lower layers of vertically structured forest communities. Differences in mortality patterns generated through the combined effects of spatial variation in disturbance regime and species‐specific spatial distribution patterns (spatial aggregation, association with canopy trees, and canopy gap dependency) contribute to the co‐existence of understorey species in forest communities that are subject to typhoon‐related disturbance.  相似文献   

10.
Questions: Is the occurrence of vine species in neotropical rain forests primarily determined by properties of the forest (environmental factors), by properties of the trees (tree species or tree size) or are vines randomly distributed? Location: Maya Biosphere Reserve, Guatemala. Methods: In five 1‐ha plots that span variation from unlogged forest to forest impacted by recurrent human disturbance we recorded the presence of all climbing vine species on every tree. The presence of all free standing vine species and 11 environmental variables were recorded in 100‐m2 subplots. The relationship of host tree diameter and host tree identity on single tree vine species richness was investigated by GLM modelling. Partial redundancy analyses were used to partition the variation in vine species composition on two sources: environmental factors and tree species identity. Results: Single tree vine richness increased with increasing host tree DBH and differed significantly among host species. For climbing vines, the ratio of variation in subplot presence explained by tree species and by environmental variables was ca. 4:1 (in the most disturbed logged plots slightly lower), for free standing vines this ratio varied from 1:2 in the most disturbed logged plots to 9:1 in reserve plots, while a ratio of ca. 1:1 was found for all plots analysed together. Conclusion: Different tree species have different probabilities of being infested by vines. Vines see both the forest and the trees; the environment is more important in earlier developmental stages, properties of individual trees become more important from the time vines start to climb.  相似文献   

11.
Questions: Is species diversity affected in protected areas where human activities are permitted or tolerated? On plots of a fixed size, does stem density alone predict number of species? Are differences in density related to disturbance and altitude? Location: Achanakmar‐Amarkantak Biosphere Reserve, central India. Methods: 42 sites, each with three replicate 10‐m radius plots, were examined. All trees (≥ 30 cm GBH) in each plot were measured for girth at breast height. α‐diversity, species richness and evenness were calculated for each site. The sites were ordinated by Nonmetric Multidimensional Scaling (NMS) using relative importance values of component species. Correspondence Analysis was used to broadly delineate communities. Anthropogenic disturbances were recorded in terms of percentage of trees lopped, scale of lopping, number of domestic livestock dung piles and foot trails (both livestock and people) for each plot. Results: The NMS analysis exhibited a near linear arrangement of sites with no evidence of discrete vegetation zones. NMS axes were significantly related to altitude and disturbance scores. With increasing elevation, basal area increased but number of species, α‐diversity and its components declined monotonically. The number of species and indices of species diversity were positively associated with tree lopping and also with total disturbance. Number of species was controlled by stem density only in plots not dominated by Shorea robusta. Conclusions: Recent levels of human disturbance are associated with higher species diversity in this biosphere reserve. There is some evidence that stands at all altitudes follow the same successional pattern to dominance by Shorea, a successional pattern that also results in decreased diversity without disturbance.  相似文献   

12.
Question: The role edges play in mediating the effects of disturbance is unclear. Bayhead tree islands, which experience above‐ and belowground fire, contain trees that recover from disturbance by seed (Pinus elliottii var. densa) and by sprouting (Gordonia lasianthus). How does distance‐to‐edge affect survival and post‐fire response of trees with these contrasting life‐history strategies? Location: Two bayhead tree islands at Archbold Biological Station, central Florida, North America. Methods: Stem diameter, depth of peat smoldering, char height, resprouting status, and location were recorded for all Pinus and Gordonia stems ≥8 cm. Distance to the edge of the tree island was quantified using GIS. Results: The focal species showed contrasting patterns of survival across the edge‐to‐interior gradient that reflected gradients of fire severity. Survival of Gordonia was lowest in the bayhead interior where peat smolder was deepest. Conversely, survival of Pinus was lowest near the edges where char heights were greatest. The distinct types of Gordonia resprouting (crown versus basal) also showed spatially contrasting patterns. Basal resprouting dominated near the edges and was positively influenced by char height, while crown resprouting was nearly constant across the edge‐to‐interior gradient and was negatively influenced by char height. Conclusions: The spatial patterns of tree survival and resprouting observed are likely due to gradients in intensity of peat smoldering and aboveground burning, coupled with differential susceptibility to these two types of fire. Despite the rarity of fire in wetland tree islands (compared to uplands) it may play an important role in structuring the spatial distribution of trees.  相似文献   

13.
BACKGROUND AND AIMS: Sub-arctic mountain birch Betula pubescens var. pumila communities in the North Atlantic region are of variable stature, ranging from prostrate scrubs to forests with trees up to 12 m high. Four hypotheses were tested, relating growth and population characteristics of sub-arctic birch woodland and scrub to tree stature; i.e. the variable stature of birch woods is due to differences in (1) the mean growth rate; (2) the age-related patterns of growth rate; (3) the life expectancy of stems; or (4) the tree form. Methods: A stratified random sample of 300 birch trees was drawn from the total population of indigenous birch woodlands and scrub in Iceland, yielding 286 valid sample genets. The population was divided into three sub-populations with dominant trees 0-2, 2-4 and 4-12 m tall, referred to as birch scrub, birch scrub-woodland and birch forest, respectively. KEY RESULTS: Trees in the scrub population were of more contorted growth form than birch in the scrub-woodland and forest populations. Mean growth rates, mean age and median life expectancies increased significantly with sub-population of greater tree stature. At the population level, annual increment and longevity of birch stems was apparently interrelated as the stems in vigorously growing birch sub-populations had a longer life expectancy than those of slower growth. However, no difference was observed between sub-populations in age-related patterns of extension growth rate. CONCLUSIONS: The results were consistent with hypotheses (1), (3) and (4), but hypothesis (2) was rejected. Hence, mountain birch of more vigorous growth attains a greater stature than birch of lesser increment due to faster extension growth rate and a longer lifespan. In addition, the more contorted stem form of scrub populations contributes to their low stature.  相似文献   

14.
Questions: Can gender of nurse plants affect regeneration patterns and spatial population structure? Is there a seed‐seedling conflict in the regeneration process? What factors are responsible for the clumped spatial population structure observed for adult trees? Location: Mediterranean cold semi‐arid high mountains in Spain. Methods: The spatial pattern of adult Juniperus thurifera trees was studied by means of Ripley's K‐analysis. χ2 analyses were used to test for natural seedling frequency in each of three main microhabitats: (1) under female and (2) male tree canopies and (3) in open interspaces. The observed pattern was explained experimentally by studying seed and seedling survival for two years. Survival probabilities were calculated across life stages for each of three main microhabitats. Results: Adult J. thurifera trees were aggregated in space. Most seedlings were found underneath female J. thurifera trees. Experimental studies demonstrated that from seed dispersal to seedling survival all life stages showed the same positive or negative trend within a given microhabitat, indicating stage coupling and no seed‐seedling conflicts. Attraction of frugivo‐rous birds by reproductive female junipers and improvement of environmental conditions beneath tree canopies were the main factors responsible for the variation in seedling density among microhabitats; highest underneath female trees and lowest in open interspaces. Conclusions: In dioecious species, the gender of nurse plants can significantly determine the spatial population structure. In J. thurifera forests, facilitation beneath female trees occurs among all life stages without any sign of seed‐seedling conflict. The most critical factors shaping the spatial population structure were directed seed dispersal and environmental amelioration beneath female conspecific trees.  相似文献   

15.
? Premise of the study: Gravitropic movements are unexpected mechanical processes that could disturb tree design allometries derived from the physics of nonliving bodies. We investigated whether the scaling law of gravitropic performance (power of -2 of stem diameter) derived from integrative biomechanical modeling is disturbed by ontogeny or environment, then discuss the silvicultural and dendroecological consequences. ? Methods: In a beech (Fagus sylvatica) plantation, four plots with different initial planting densities evolved without any intervention for 26 yr. Regular tree inventories and a silvicultural model were used to monitor competition over time in each plot. The radial production of tension wood was quantified using a cross-section of the stems at 1.30-m height, and an integrative biomechanical model computed the tree gravitropic performance over time. ? Key results: All trees developed tension wood over the whole period, with higher amounts at the youngest age, resulting in theoretical lean corrections of ca. 20-30° on the first 4 m of the stem over the whole period. The scaling law of gravitropic performance is slightly larger than the power of -2 of stem diameter. ? Conclusions: Gravitropic performance in forest ecosystems is mainly limited by size (diameter). Ontogenic acclimation of tension wood formation allows the youngest trees to be more reactive. No additional effect of spacing was found. However, silviculture influences size and, therefore, tree reactivity at a given age. Such results will be helpful for dendroecological approaches that use wood as a marker of environmental disturbances or a trait linked to plant strategies.  相似文献   

16.
Questions: 1. Is there a primary role of disturbance at local scale and of environmental stress at regional scale? 2. Does disturbance increase or decrease environmental stress at local scale? Location: The Atlantic coastal dune system of the Aquitaine Region (France). Methods: Species biomass and 16 environmental variables were sampled in 128 quadrats along a local beach‐inland gradient and a regional North‐South gradient. Environmental data were analysed with ANOVAs and vegetation‐environment relationships with Canonical Correspondence Analysis. Results: At the local scale community composition was primarily driven by disturbance due to sand burial, whereas water and nutrient stress better explained regional differences. However, random biogeographical events are very likely to also affect community composition at the largest scale. The main interaction between environmental stress and disturbance was the mitigation of nutrient stress induced by disturbance at a local scale. This was due to a positive direct effect of sand burial and a positive indirect effect of wind (decrease in VPD by ocean spray). Although wind had also a significant effect on soil conductivity and pH, there was no evidence that these factors had any role in community composition. Conclusions: Our results support the hypothesis that disturbance had a primary role at local scale and environmental stress at regional scale but further research is needed to separate the effect of stress from that of dispersal at regional scale. We also demonstrated that environmental stress in primary succession may not always decline with decreasing disturbance.  相似文献   

17.
Abstract. Question: How does fire affect the aggregation patterns of trees in a species‐poor oak woodland? Location: East‐central Minnesota, USA. Methods: More than 10 000 trees with DBH > 2 cm (comprising more than 11 000 stems) were monitored in a 16‐ha grid on an annual basis from 1995‐ 2001 in a species‐poor temperate woodland. Different portions of the grid experienced different frequencies of controlled burns. Aggregation indices were calculated for individual species and individual size classes within species. A community‐wide aggregation index was also calculated for different burn units. Spatial data were managed, and many of the aggregation indices calculated using a GIS ArcInfo? (ESRI). Results: Fire initially increased clumping, although repeated fires reduced it, a finding that suggests a corollary to the intermediate‐disturbance hypothesis, the corollary stating that intermediate levels of disturbance are expected to maximize community‐wide patterns of aggregation. Analyses also showed that all species are aggregated at small scales, that the degree of aggregation of a stem type (species or size) declines with distance from individual stems, that the degree of aggregation of large stems is usually less than that of small stems, and that rare species are more aggregated than common species. Findings from this study are consistent with those from similar studies in other temperate and tropical forests, woodlands, and savannas. Conclusion: The spatial patterns of trees in this woodland are dynamic, continually changing in response to the relative strengths of the often opposing forces of competition, which tends to reduce clumping, and disturbance, which, at low and intermediate frequencies, tends to increase it.  相似文献   

18.
Aims Buttresses are prevalent and are important to many ecological processes in tropical rainforests but are overlooked in many rainforest studies. Based on a buttress survey in a 20-hectare plot, this study aims to answer the following questions: (I) Is buttress forming a fixed species characteristic? (ii) Is there any phylogenetic signal for buttress forming across a broad taxonomic scale? (iii) Is buttress forming an inherent feature or simply induced by environmental factors, and how is this relevant to the size of the tree?Methods We surveyed buttresses for all 95940 trees with diameter at breast height (DBH) ≥10mm in a 20-ha tropical dipterocarp rainforest in Xishuangbanna, SW China. The occurrence of buttresses was compared across different taxa and across different tree-size classes. A phylogenetic analysis was conducted among buttressed and non-buttressed species in order to understand the evolutionary background of buttress formation.Important findings This preliminary study showed that buttress trees are very abundant (making up 32% of trees with ≥100mm DBH) in this 20-ha tropical rainforest situated at the northern edge of the tropics. Fifty-one percent of the 468 tree species in the plot had stems that produced buttresses. Large trees were more likely to develop buttresses than smaller ones. We found that although buttress formation is not a fixed species characteristic, there is a strong phylogenetic signal for buttress formation in larger species.  相似文献   

19.
The aim of this paper is to develop biomass models for commonly multi-stemmed Prosopis juliflora/pallida trees. The data were collected on three of the Cape Verde islands (Maio, Santiago and Santo Antao). The dataset covers 240 trees containing 1,882 stems with stem diameter at breast height over 2 cm; of that 255 individual tree stems were sampled destructively. These calibration data were used to construct stem and tree-level models for estimation of total aboveground biomass and its fine and course fractions with diameter threshold of 5 cm. A set of parameterized biomass models for multi-stemmed Prosopis spp. trees suited for biomass estimation at tree and stem levels using appropriate set of independent variables, commonly available in forest inventory programs, was created. The effect of site (island) on tree allometry was not detected. The two-phase construction of tree biomass models based on destructive sampling limited to individual stems combined with a routine field measurement of entire multi-stemmed tree specimen represents a practicable approach leading to biomass and carbon assessment that may be generally suited for tree species with complex multi-stemmed growth form similar to that of Prosopis spp.  相似文献   

20.
Question: Abrupt increments in tree radial growth chronology are associated with gap formations derived from disturbances. If a forest has been primarily controlled by fine‐scale disturbances such as single tree‐fall, do these release events spatio‐temporally synchronize at a fine scale such as 10 m and 5 years? Is it possible to quantify spatio‐temporal patterns of synchronicity from tree rings and long‐term inventories, and associate them with spatial forest patch dynamics? How and to what extent can we reconstruct the fine‐scale synchronized growth and spatio‐temporal forest patch dynamics from currently available information? Location: Cores were taken from Abies sachalinensis trees in a coniferous/deciduous mixed forest in the Shiretoko Peninsula, Hokkaido, northern Japan. Methods: We first eliminated short‐term fluctuations and highlighted growth trends over the mid‐term using a time‐series smoothing technique. This helped identify release events, we then conducted fine‐scale spatial analyses on released A. sachalinensis primarily with cluster analysis. Results: We specified the unit scale of synchronicity at 10 m, and classified released A. sachalinensis trees into spatially separated regions. Only once during the recent 50 years was extensive synchronicity over 40 m found. Most of the released A. sachalinensis were isolated, with non‐released A. sachalinensis present in nearby, implying imperfect synchronization. The ambiguous 20–30 m A. sachalinensis patches present in the current forest were the result of connected and overlapping patches smaller than 10 m associated with different disturbances and different responses of understorey trees. Conclusion: Tree‐ring series, long‐term census and fine‐scale spatio‐temporal analyses revealed that this forest community has been controlled by two types of disturbance: frequent small disturbances such as single tree‐fall and less frequent multiple tree‐falls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号