首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Questions : How do gap abundance and the spatial pattern of trees and snags change throughout stand development in Picea mariana forests? Does spatial pattern differ among site types and structural components of a forest? Location : Boreal forests dominated by Picea mariana, northern Quebec and Ontario, Canada. Methods : Data on the abundance, characteristics and spatial location of trees, snags and gaps were collected along 200 m transects at 91 sites along a chronosequence. Spatial analyses included 3TLQV, NLV and autocorrelation analysis. Non‐parametric analyses were used to analyse trends with time and differences among structural components and site types. Results : Gaps became more abundant, numerous and more evenly distributed with time. At distances of 1–4 m, tree cover, sapling density and snag density became more heterogeneous with time. Tree cover appeared to be more uniform for the 10–33 m interval, although this was not significant. Patch size and variance at 1 m were greater for overstorey than for understorey tree cover. Snags were less spatially variable than trees at 1 m, but more so at intermediate distances (4–8 m). Few significant differences were found among site types. Conclusions : During stand development in P. mariana forest, gaps formed by tree mortality are filled in slowly due to poor regeneration and growth, leading to greater gap abundance and clumping of trees and snags at fine scales. At broader scales, patchy regeneration is followed by homogenization of forest stands as trees become smaller with low productivity due to paludification.  相似文献   

2.
Understanding the natural revegetation of forests disturbed by the dumping of mine wastes is vital for the success of reclamation strategies. The Gunnar gold mine tailings pond in southeast Manitoba has remained largely unvegetated since the mine was closed in 1942, with limited vegetation developed on one side of the pond. We examined the natural Picea mariana/Larix laricina forest that has developed on the pond to determine how the plant community develops and what changes in the tailings are associated with this development. Vegetation sampled along transects showed a consistent pattern of succession from Equisetum palustre to Salix spp., and Populus balsamifera, to Larix laricina and finally to P. mariana. Larix laricina and P. mariana are moving into the site at the rate of 1.5 m per year with L. laricina invading 4 years ahead of P. mariana. Both tree species show a similar pattern of annual growth, showing positive correlations with spring precipitation, a pattern also occurring on L. laricina growing on a nearby site. The establishment of E. palustre was accompanied by initially rapid decreases in compaction and conductivity of the tailings, and an increase in inorganic nitrogen. Surface organic matter depth, coarse organic matter mass, and soil organic carbon increased at a constant rate, whereas subsurface coarse organic matter had an initial rapid increase followed by a gradual increase. As fern allies (and specifically members of the Equisetaceae family) have a number of properties that facilitate succession on mine wastes, their use should be explored further.  相似文献   

3.
Fire severity is predicted to increase in boreal regions due to global warming. We hypothesized that these extreme events will alter regeneration patterns of black spruce (Picea mariana). To test this hypothesis, we monitored seed dispersal and seedling emergence, survival and growth for 6 years from 2005 to 2010 after the 2004 wildfire on Poker Flat, interior Alaska, using 96 1 × 1 m plots. A total of 1,300 seedlings of black spruce and three broad-leaved deciduous trees (Populus tremuloides, Betula papyrifera, and Salix spp.) were recorded. Black spruce seedlings colonized burned and unburned ground surfaces for the first 2 years after the wildfire and established on any topographical surface, while the broad-leaved trees emerged less in areas of lower elevation, slope gradient and canopy openness and only on burned surfaces. Vascular plant cover on the ground floor increased the seedling establishment of black spruce and broad-leaved trees, most likely because of seed-trap effects. Black spruce grew faster on burned surface than on unburned surfaces. However, broad-leaved trees grew faster than black spruce on burned surfaces. Black spruce regenerates even after severe wildfire when the microtopography restricts the colonization of broad-leaved trees. The regeneration trajectories are determined soon after wildfire by a combination of seed limitation for black spruce and habitat preference for broad-leaved trees.  相似文献   

4.
Question: Does the increase in Populus tremuloides cover within the Picea mariana–feathermoss domain enhance establishment and growth conditions for Abies balsamea regeneration? Location: Boreal forest of northwest Quebec, Canada. Method: To document the effect of Populus tremuloides on A. balsamea regeneration, mixed stands with a heterogeneous presence of P. tremuloides adjacent to Picea mariana‐dominated stands were selected. Abies balsamea regeneration, understorey environment and canopy composition were characterized from 531 sampling units distributed along transects covering the mixed–coniferous gradient. Abundance of understorey A. balsamea regeneration was described using three height groups: seedling (<30 cm), small sapling (30 to <100 cm) and tall sapling (100 to 300 cm). Growth characteristics were measured from 251 selected individuals of A. balsamea (<3 m). Results: Results showed that A. balsamea regeneration was generally more abundant when P. tremuloides was present in the canopy. Differences between seedling and sapling abundance along the mixed–coniferous gradient suggest that while establishment probably occurs over a wide range of substrates, the better growth conditions found under mixed stands ensure a higher survival rate for A. balsamea seedlings. Conclusions: The abundant A. balsamea regeneration observed within mixed stands of the Picea mariana–feathermoss domain suggests that the increase in P. tremuloides cover, favoured by intensive management practices and climatic change, could contribute to acceleration of the northward expansion of the A. balsamea–Betula papyrifera domain into the northern boreal forest dominated by Picea mariana.  相似文献   

5.
Abstract. Betula papyrifera (White birch) is a common tree throughout the boreal forest of Canada; makes up 12% of the total tree volume in insular Newfoundland. It forms pure stands after harvesting and wildfire disturbance and it is a common component in most softwood stands. Little is known regarding the environmental impact of whole-tree or conventional harvesting of this species and variation in impact related to variation in soil and site conditions. This study investigates litter and organic matter production and related site ecology in nine medium to high quality Betula papyrifera stands in three locations in central Newfoundland on a variety of land form and drainage conditions. Three sites, Badger West (BW), Moose Pond (MP) and Middleton Lake (ML) were selected. The ML site has the highest quality (with the best height/age ratio, 18 m/60 yr, and height/DBH ratio, 18 m/30 cm, followed by MP and BW. Litter depth on well developed moders or mulls was usually 2 - 3 cm and varied from 1 - 15 cm. Forest floor depths (measured in 324 profiles) rarely reached 20 cm and was commonly 5 - 10 cm; it varied with position and site. Total and available nutrients indicate that B. papyrifera produces one of the highest -quality organic matter types of the local forest types and is important in improving site quality. The mean N-concentration in green foliage (2.21%) and trapped litter (1.03%) was highest at the best quality site ML, followed by MP and BW. The concentration of calcium, 0.85%, was highest at the poorest quality site. Four years after harvesting, litter depth significantly decreased in all sites and treatments with the exception of the BW whole-tree harvest treatment. Total forest floor depth significantly decreased at all sites in the stem-only harvest treatment as well as the MP whole-tree harvest treatment. There was a significant decrease in available nitrogen following harvesting in both treatments at both the MP and BW sites. Change in available phosphorus was insignificant, with the exception of an increase in the MP stem-only harvest treatment. There was a significant decrease in available potassium at both the ML and BW whole-tree harvest treatments, but a significant increase in the stem-only harvest treatments at ML and MP. There was a significant decrease in available calcium in both treatments at both the MP and BW sites.  相似文献   

6.
We quantified the effect of stand age and tree species composition on canopy transpiration (EC) by analysing transpiration per unit leaf area (EL) and canopy stomatal conductance (GS) for boreal trees comprising a five stand wildfire chronosequence. A total of 196 sap flux sensors were used on 90 trees consisting of Betula papyrifera Marsh (paper birch; present in the youngest stand), Populus tremuloides Michx (quaking aspen), Pinus banksiana Lamb. (jack pine), and Picea mariana (Mill.) (black spruce). While fine roots were positively correlated with stand EC; leaf area index, basal area, and sapwood area were not. Stands less than 70 years old were dominated by Populus tremuloides and Pinus banksiana and stands greater than 70 years old were composed almost entirely of Picea mariana. As Populus tremuloides and Pinus banksiana increased in size and age, they displayed an increasing sapwood to leaf area ratio (AS : AL), a constant minimum leaf water potential (ΨL), and a constant proportionality between GS at low vapour pressure deficit (Dj GSref) and the sensitivity of GS to D (–δ). In contrast, AS : AL, minimum ΨL, and the proportionally between –δ and GSref decreased with height and age in Picea mariana. A GS model that included the effects of D, AS : AL, tree height, and for Picea mariana an increasing soil to leaf water potential gradient with stand age, was able to capture the effects of contrasting hydraulic properties of Picea mariana, Populus tremuloides and Pinus banksiana during stand development after wildfire.  相似文献   

7.
With rapid climate warming, ecosystems will probably exhibit complex dynamics because local factors and life history attributes of species mediate the effects of regional climate change. To assess the relative importance of local vs. regional processes on permafrost formation in boreal peatlands, I sampled for permafrost and factors affecting its formation in 38 collapse scars across a 4 °C mean annual temperature (MAT) gradient in the discontinuous permafrost zone of northern Manitoba, Canada. Three complimentary approaches were used to model factors important to permafrost formation at both local and regional scales. In the first analysis, a mechanistic, spatial model of permafrost formation was developed as a function of Picea mariana size and proximity. In the second approach, permafrost formation was modelled as a function of two local factors, diameter of Picea mariana trees and emergent organic matter depth, and the regional factor, mean annual temperature (MAT). Finally, published aerial photography data were used to determine whether the proportion of bogs with permafrost changes across a MAT gradient. Results show that permafrost formation in boreal permafrost peatlands is best described as a locally driven process within regional climatic constraints. At local scales of 1–2 meters, the spatial and size distributions of trees controlled the spatial distribution of permafrost. At regional scales, tree size was a significantly better predictor than emergent organic matter or MAT. These results suggest that transient models of discontinuous permafrost based only on climate may poorly predict changes in vegetation and permafrost.  相似文献   

8.
The objective of this study was to characterize the effects of soil burn severity and initial tree composition on long-term forest floor dynamics and ecosystem biomass partitioning within the Picea mariana [Mill.] BSP-feathermoss bioclimatic domain of northwestern Quebec. Changes in forest floor organic matter and ecosystem biomass partitioning were evaluated along a 2,355-year chronosequence of extant stands. Dendroecological and paleoecological methods were used to determine the time since the last fire, the soil burn severity of the last fire (high vs. low severity), and the post-fire tree composition of each stand (P. mariana vs. Pinus banksiana Lamb). In this paper, soil burn severity refers to the thickness of the organic matter layer accumulated above the mineral soil that was not burned by the last fire. In stands originating from high severity fires, the post-fire dominance by Pinus banksiana or P. mariana had little effect on the change in forest floor thickness and tree biomass. In contrast, stands established after low severity fires accumulated during the first century after fire 73% thicker forest floors and produced 50% less tree biomass than stands established after high severity fires. Standing tree biomass increased until approximately 100 years after high severity fires, and then decreased at a logarithmic rate in the millennial absence of fire. Forest floor thickness also showed a rapid initial accumulation rate, and continued to increase in the millennial absence of fire at a much slower rate. However, because forest floor density increased through time, the overall rate of increase in forest floor biomass (58 g m−2 y−1) remained constant for numerous centuries after fire (700 years). Although young stands (< 200 years) have more than 60% of ecosystem biomass locked-up in living biomass, older stands (> 200 years) sequester the majority (> 80%) of it in their forest floor. The results from this study illustrate that, under similar edaphic conditions, a single gradient related to time since disturbance is insufficient to account for the full spectrum of ecosystem biomass dynamics occurring in eastern boreal forests and highlights the importance of considering soil burn severity. Although fire severity induces diverging ecosystem biomass dynamics in the short term, the extended absence of fire brings about a convergence in terms of ecosystem biomass accumulation and partitioning.  相似文献   

9.
The observed long-term decrease in the regional fire activity of Eastern Canada results in excessive accumulation of organic layer on the forest floor of coniferous forests, which may affect climate–growth relationships in canopy trees. To test this hypothesis, we related tree-ring chronologies of black spruce (Picea mariana (Mill.) B.S.P.) to soil organic layer (SOL) depth at the stand scale in the lowland forests of Quebec’s Clay Belt. Late-winter and early-spring temperatures and temperature at the end of the previous year’s growing season were the major monthly level environmental controls of spruce growth. The effect of SOL on climate–growth relationships was moderate and reversed the association between tree growth and summer aridity from a negative to a positive relationship: trees growing on thin organic layers were thus negatively affected by drought, whereas it was the opposite for sites with deep (>20–30 cm) organic layers. This indicates the development of wetter conditions on sites with thicker SOL. Deep SOL were also associated with an increased frequency of negative growth anomalies (pointer years) in tree-ring chronologies. Our results emphasize the presence of nonlinear growth responses to SOL accumulation, suggesting 20–30 cm as a provisional threshold with respect to the effects of SOL on the climate–growth relationship. Given the current climatic conditions characterized by generally low-fire activity and a trend toward accumulation of SOL, the importance of SOL effects in the black spruce ecosystem is expected to increase in the future.  相似文献   

10.
Eighteen black spruce (Picea mariana) stands, representing postfire ages of 26 to 120 yr, were surveyed for understorey vegetation and site/microsite characteristics at two spatial scales. This enabled comparison of within- versus among-stand compositional variation.Detrended correspondence analysis (DCA) ordination among the 18 stands revealed a complex age/moisture gradient. DCA ordination among 1 800 quadrats within the stands indicated a similar gradient with much compositional overlap. Quadrats were grouped, using two-way indicator species analysis (TWINSPAN), into 9 classes each representing a phase in understorey vegetation composition. These phases shifted in abundance from young to old stands with a high degree of concordance among replicates in the same age class. Understorey succession is strongly linked to the stages in tree growth, mortality and thinning coupled with the accumulation of site moisture.Abbreviations DCA Detrended Corrospondence Analysis  相似文献   

11.
Abstract. Species composition, detritus, and soil data from 97 boreal forest stands along a transect in central Canada were analysed using Correspondence Analysis to determine the dominant environmental/site variables that differentiate these forest stands. Picea mariana stands were densely clustered together on the understorey DCA plot, suggesting a consistent understorey species composition (feather mosses and Ericaceae), whereas Populus tremuloides stands had the most diverse understorey species composition (ca. 30 species, mostly shrubs and herbs). Pinus banksiana stands had several characteristic species of reindeer lichens (Cladina spp.), but saplings and Pinus seedlings were rare. Although climatic variables showed large variation along the transect, the CCA results indicated that site conditions are more important in determining species composition and differentiating the stand types. Forest floor characteristics (litter and humus layer, woody debris, and drainage) appear to be among the most important site variables. Stands of Picea had significantly higher average carbon (C) densities in the combined litter and humus layer (43530 kg‐C.ha‐1) than either Populus (25 500 kg‐C.ha‐1) or Pinus (19 400 kg‐C.ha‐1). The thick surface organic layer in lowland Picea stands plays an important role in regulating soil temperature and moisture, and organic‐matter decomposition, which in turn affect the ecosystem C‐dynamics. During forest succession after a stand‐replacing disturbance (e.g. fires), tree biomass and surface organic layer thickness increase in all stand types as forests recover; however, woody biomass detritus first decreases and then increases after ca. 80 yr. Soil C densities show slight decrease with ages in Populus stands, but increase in other stand types. These results indicate the complex C‐transfer processes among different components (tree biomass, detritus, forest floor, and soil) of boreal ecosystems at various stages of succession.  相似文献   

12.
Wood ash amendment to forest soils contributes to the sustainability of the growing bioenergy industry, not only through decreased wood ash waste disposal in landfills but also by increasing soil/site productivity and tree growth. However, tree growth studies to date have reported variable responses to wood ash, highlighting the need to identify proper application rates under various soil/site conditions to maximize their benefits. We explored the influence of tree species, wood ash nutrient application rates, time since application, stand development stage, and initial (i.e., before wood ash application) soil pH and N on short‐term tree growth response to wood ash amendment across eight unique study sites spanning five Canadian Provinces. Jack pine (Pinus banksiana Lamb) had the most positive response to wood ash amendment compared to white (Picea glauca Moench), hybrid (Picea engelmannii x glauca Parry), and black spruce (Picea mariana Miller), where increasing nutrient application rates increased height growth response. In comparison, black spruce had the most negative response to wood ash amendment, where increasing nutrient application rates slightly decreased height growth response. Site as a random effect explained additional variation, highlighting the importance of other unidentified site characteristics. By examining trends in short‐term growth response across multiple studies with variable site characteristics, we found growth response differed by tree species and nutrient application rates, and that jack pine is a promising candidate for wood ash amendment. These results contribute to our knowledge of optimal wood ash amendment practices and environmentally sustainable bioenergy production.  相似文献   

13.
Tree vigor and height growth in Black Spruce   总被引:1,自引:0,他引:1  
Summary The relationship between tree height and tree vigor was examined in order to test the hypothesis that increased height results in a reduction in photosynthate availability for growth due to an increase in respiratory load of the sapwood. Various vigor indices were measured on black spruce [Picea mariana (Mill.) B. S. P.] trees on a wide range of sites and ages. The relationship between these vigor indices and tree height and site quality were then evaluated through correlation and regression analyses. Vigor indices based on meristematic activity such as specific volume increment and height growth rate were generally more strongly correlated than foliage based indices (i.e. Waring vigor estimates). Both tree height and site index were found to have a significant effect on specific volume increment and height growth rate. However the height effect decreased with a decrease in site quality, and became insignificant (P <0.05) on the poorer sites. The full regression model, allowing the height effect to vary between different site quality groups, explained 82% and 72% of the variability in specific volume increment and height growth rate, respectively. The results support the hypothesis that increases in the ratio of respiration to photosynthesis in trees as they increase in size is largely a function of tree height. Possible explanations for the decreased height effect on poor sites are also discussed.  相似文献   

14.
Every other week over their second growing season, stem height, collar diameter, shoot and root dry masses, number of lateral roots and length of the tap root were measured on nursery grown seedlings ofAbies balsamea L. Mill.,Pinus banksiana Lamb.,Pinus resinosa Ait.,Picea mariana Mill. BSP andPicea glauca Moench Voss. Root elongation, branching and mycorrhizal development were also recorded.Given species showed distinct seasonal growth patterns. The rate and timing of maximum root growth (mg/dry weight/week) differed markedly between species.Except for the increase in height ofPinus banksiana, root and shoot growth were not negatively correlated.The results are discussed in relation to the performance of tree seedlings in the nursery.  相似文献   

15.
We aimed to detect the trajectories of forest-floor vegetation recovery in a Picea mariana forest after a wildfire. Since fire severity in boreal forests is expected to increase because of climate changes, we investigated the effects of ground-surface burn severity, a surrogate for overall fire severity, on the revegetation. We annually monitored vegetation <1.3 m high in 80 1 m × 1 m quadrats at Poker Flat Research Range (65°12′N, 147°46′W, 650 m a.s.l.) near Fairbanks, interior Alaska, where a large wildfire occurred in the summer of 2004, from 2005 to 2009. Sphagnum mosses were predominant on the unburned ground surface. In total, 66 % of the ground surface was burned completely by the wildfire. Total plant cover increased from 48 % in 2005 to 83 % in 2009. The increase was derived mostly by the vegetative reproduction of shrubs on the unburned surface and by the immigration of non-Sphagnum mosses and deciduous trees on the burned surface. Deciduous trees, which had not been established before the wildfire, colonized only on the burned surface and grew faster than P. mariana. Although species richness decreased with increasing slope gradient, these deciduous trees became established even on steep slopes. The wildfire that completely burned the ground surface distorted the revegetation, particularly on steep slopes. The restoration of the Sphagnum surface was a prerequisite after the severe wildfire occurred, although the Sphagnum cover had difficulty returning to predominance in the short term.  相似文献   

16.
Question: Does the facilitative effect of cushion plants increase with elevation as a result of increases in environmental harshness? Does this hypothesis apply in the Sino‐Himalayan Mountains? Location: Lakaka Pass on the Baima Snow Mountains (28°20′N, 99°05′E), SW China. Methods: We evaluated the spatial association of several plant species with the cushion plant Arenaria polytrichoides (Caryophyllaceae) at two elevations (4500 m and 4700 m) in the study site and monitored temperature, moisture and nutritional status of soil beneath and outside the cushions. Results: While 14 species grow more frequently associated with the cushions at the higher elevation, at the lower site only three species were positively associated with cushions. Eleven of the species that occurred at both elevations changed their spatial association from neutral or negative with cushions at the lower site to positive at the higher elevation site. Substrate temperatures were rather similar between the cushions and areas of bare ground. Cushions maintained higher moisture than areas of bare ground at both elevations. Soils beneath cushions contained significantly more available nitrogen and potassium compared to open areas at the higher elevation. Conclusions: Our results show that facilitation by A. polytrichoides cushions increases with elevation in the Sino‐Himalayan region. This facilitation effect of A. polytrichoides cushions is probably due to the improved nutrient availability provided by cushion plants in the higher elevation, and these conditions probably permit increased plant recruitment, growth and survival.  相似文献   

17.
The factors controlling the degree of hypolimnetic ammonia accumulation in Lake Onogawa are discussed based on periodic observations since 1993. The standing stock of ammonia in the bottom 9 m of the water column was a good measurement for determining the extent of the hypolimnetic ammonia accumulation. It varied threefold from 144 mmol m−2 in 1998 to 429 mmol m−2 in 1996. The correlation between the annual maxima of the ammonia standing stocks and the annual maxima of the thickness of anoxic layers was significant at P = 0.01. This fact suggests that the degree of development of the anoxic layer is the primary factor controlling the extent of hypolimnetic ammonia accumulation. Sporadic local heavy rainfalls in 1998 perturbed the water column, and the formation of the anoxic layer was postponed more than one month, resulting in a lower level of hypolimnetic ammonia accumulation in 1998. A thick mineral deposit apparently formed during the local heavy rainfall and seemed to enclose the freshly deposited organic matter, which might be an effective source material of the hypolimnetic ammonia, and resulted in a low level of ammonia accumulation in 1999. By 2000, the lake seems to have recovered from the perturbation, suggesting that the major part of the hypolimnetic ammonia is derived from fresh organic matter deposited within a year. Received: March 11, 2001 / Accepted: August 26, 2001  相似文献   

18.
Stand structure was studied with special reference to growth and mortality patterns of sapling and understorey trees in a coniferousPicea jezoensis andAbies sachalinensis forest in Taisetsuzan National Park, Hokkaido, northern Japan.Picea jezoensis was dominant in the basal area, whileA. sachalinensis was abundant in large numbers in the canopy. Estimated mortalities increased significantly with diameter at breast height (DBH) for bothP. jezoensis andA. sachalinensis in the canopy, but the tendency was different between the two species.Picea jezoensis had a lower mortality rate thanA. sachalinensis, especially at small DBH classes. The spatial distribution of understorey individuals ofA. sachalinensis did not show any significant correlation with the spatial distribution of canopy gaps, but that ofP. jezoensis showed a significant correlation.Abies sachalinensis can grow higher thanP. jezoensis under suppressed conditions; whileP. jezoensis requires canopy gaps for steady height growth. This growth pattern leads to a different waiting height in the understorey (≥2 m in height and 10 cm in diameter at breast height).Abies sachalinensis waited for an improvement in light conditions at higher strata (max. 7 m), whileP. jezoensis waited at lower strata (max. 3 m). The estimated mortality of understoreyA. sachalinensis increased with size, while that of understoreyP. jezoensis decreased. Therefore,P. jezoensis gives priority to survival whileA. sachalinensis gives priority to understorey growth. The difference in the ‘waiting pattern’ between the two species in the understorey was considered a significant feature for the canopy recruitment process ofP. jezoensis andA. sachalinensis.  相似文献   

19.
We studied the relationship between the coexistence of tree species and the dynamics of organic matter in forests. A tropical peat swamp forest was selected as a model ecosystem, where abiotic factors, such as geological topography or parent rock types, are homogeneous and only biological processes create habitat heterogeneity. The temporal or spatial variation of the ground elevation of peat soils is mainly caused by changes in the balance between organic matter inputs to soils and decomposition, which is affected by the growth and death of influential trees. To clarify the processes of elevation dynamics, we measured the microtopography around some tree groups, estimated organic matter (in the form of litter and roots) in soils under three kinds of microtopographic conditions, measured decomposition rates and detected dominant species' shifting distribution patterns in different stages of growth in relation to the locations of tree groups creating specific microtopographic conditions. We found that growth or death of buttressed trees has the greatest effects on the rising or sinking of ground surfaces through changes in litter supply and root production. We discuss here the possibility of extending our model to other forest types.  相似文献   

20.
Question: How do spatial patterns and associations of canopy and understorey vegetation vary with spatial scale along a gradient of canopy composition in boreal mixed‐wood forests, from younger Aspen stands dominated by Populus tremuloides and P. balsamifera to older Mixed and Conifer stands dominated by Picea glauca? Do canopy evergreen conifers and broad‐leaved deciduous trees differ in their spatial relationships with understorey vegetation? Location: EMEND experimental site, Alberta, Canada. Methods: Canopy and understorey vegetation were sampled in 28 transects of 100 contiguous 0.5 m × 0.5 m quadrats in three forest stand types. Vegetation spatial patterns and relationships were analysed using wavelets. Results: Boreal mixed‐wood canopy and understorey vegetation are patchily distributed at a range of small spatial scales. The scale of canopy and understorey spatial patterns generally increased with increasing conifer presence in the canopy. Associations between canopy and understorey were highly variable among stand types, transects and spatial scales. Understorey vascular plant cover was generally positively associated with canopy deciduous tree cover and negatively associated with canopy conifer tree cover at spatial scales from 5–15 m. Understorey non‐vascular plant cover and community composition were more variable in their relationships with canopy cover, showing both positive and negative associations at a range of spatial scales. Conclusions: The spatial structure and relation of boreal mixed‐wood canopy and understorey vegetation varied with spatial scale. Differences in understorey spatial structure among stand types were consistent with a nucleation model of patch dynamics during succession in boreal mixed‐wood forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号