首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Duodenal cytochrome b (Dcytb) is a mammalian plasma ferric reductase enzyme that catalyses the reduction of ferric to ferrous ion in the process of iron absorption. The current study investigates the relationship between Dcytb, iron, dehydroascorbate (DHA) and Hif-2α in cultured cell lines.

Methods

Dcytb and Hif-2α protein expression was analysed by Western blot technique while gene regulation was determined by quantitative PCR. Functional analyses were carried out by ferric reductase and 59Fe uptake assays.

Results

Iron and dehydroascorbic acid treatment of cells inhibited Dcytb mRNA and protein expression. Desferrioxamine also enhanced Dcytb mRNA level after cells were treated overnight. Dcytb knockdown in HuTu cells resulted in reduced mRNA expression and lowered reductase activity. Preloading cells with DHA (to enhance intracellular ascorbate levels) did not stimulate reductase activity fully in Dcytb-silenced cells, implying a Dcytb-dependence of ascorbate-mediated ferrireduction. Moreover, Hif-2α knockdown in HuTu cells led to a reduction in reductase activity and iron uptake.

Conclusions

Taken together, this study shows the functional regulation of Dcytb reductase activity by DHA and Hif-2α.

General significance

Dcytb is a plasma membrane protein that accepts electrons intracellularly from DHA/ascorbic acid for ferrireduction at the apical surface of cultured cells and enterocytes.  相似文献   

2.
Stimulation of root Fe(III) reductase activity by iron additions to iron-deficient growth media may be the result of iron activation of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase required for ethylene biosynthesis. Two different ethylene inhibitors, aminooxyacetic acid (AOA) (20 m; ACC synthase inhibitor) and cobalt (3 m CoCl2; ACC oxidase inhibitor), were used to study the effects of iron supply and cobalt inhibition on ethylene action in controlling the activity of Fe(III)-chelate reductase in pea (Pisum sativum L.) roots. Supplying 20 gm m Fe(III)-N,N-ethylenebis[2-(2-hydroxypheyl)-glycine [Fe(III)-EDDHA] to either cobalt-treated, iron-deficient Sparkle (normal parent) or E107 (brz mutant genotype) pea seedlings reversed the negative effects of cobalt on root Fe(III)-reductase activity. Re-supplying 20 m Fe(III)-EDDHA to iron-deficient, AOA-treated seedlings did not enhance root Fe(III)-reductase. Apparently, cobalt competes with iron for the active site in ACC oxidase during ethylene synthesis. Inhibition of root reductase activity by cobalt treatment lowered manganese, zinc, magnesium and potassium content of mutant E107 pea seedlings. In contrast, iron enhancement of root reductase activity in iron-deficient, cobalt-treated E107 seedlings resulted in higher seedling accumulations of manganese, zinc, magnesium and potassium. These results support the hypothesis that root cell plasma membrane reductase activity plays a role in cation uptake by root cells.  相似文献   

3.
The development of plasma membrane-associated iron(III) reductase activity was characterized in root systems of Pisum sativum during the first 2 wk of growth, as plants were challenged with iron-deficiency stress. Plants of a parental genotype (cv. Sparkle) and a functional iron-deficiency mutant genotype (E107) were grown hydroponically with or without supplemental iron. Iron(III) reductase activity was visualized by placing the roots in an agarose matrix containing 0.2 idm Fe(III)-ethylenediaminetetraacetic acid and 0.3 mM Na2-bathophenanthrolinedisulfonic acid (BPDS). Red staining patterns, resulting from the formation of Fe(II)-BPDS, were used to identify iron(III)-reducing regions. Iron(III) reduction was extensive on roots of E107 as early as d 7, but not until d 11 for -Fe-treated Sparkle. Roots of +Fe-treated Sparkle showed limited regions of reductase activity throughout the period of study. For secondary lateral roots, iron(III) reduction was found for all growth types except + Fe-treated Sparkle. Treating Sparkle plants alternately to a cycle of iron deficiency, iron sufficiency, and iron deficiency revealed that reductase activity at a given root zone could be alternatively present, absent, and again present. Our results suggest that for Pisum roots grown under the present conditions, iron-deficiency stress induces the activation of iron(III) reductase capacity within 2 d.  相似文献   

4.
Four strains of the green sulfur bacterium Chlorobium were studied in respect to nitrogen nutrition and nitrogen fixation. All strains grew on ammonia, N2, or glutamine as sole nitrogen sources; certain strains also grew on other amino acids. Acetylene-reducing activity was detectable in all strains grown on N2 or on amino acids (except for glutamine). In N2 grown Chlorobium thiosulfatophilum strain 8327 1 mM ammonia served to switch-off nitrogenase activity, but the effect of ammonia was much less dramatic in glutamate or limiting ammonia grown cells. The glutamine synthetase inhibitor methionine sulfoximine inhibited ammonia switch-off in all but one strain. Cell extracts of glutamate grown strain 8327 reduced acetylene and required Mg2+ and dithionite, but not Mn2+, for activity. Partially purified preparations of Rhodospirillum rubrum nitrogenase reductase (iron protein) activating enzyme slightly stimulated acetylene reduction in extracts of strain 8327, but no evidence for an indigenous Chlorobium activating enzyme was obtained. The results suggest that certain Chlorobium strains are fairly versatile in their nitrogen nutrition and that at least in vivo, nitrogenase activity in green bacteria is controlled by ammonia in a fashion similar to that described in nonsulfur purple bacteria and in Chromatium.Non-common abbreviations MSX Methionine sulfoximine - MOPS 3-(N-morpholino) propane sulfonic acid This paper is dedicated to Professor Norbert Pfennig on the occasion of his 60th birthday  相似文献   

5.
Bacteroids of Bradyrhizobium japonicum strain CB1809, unlike CC705, do not have a high level of constitutive nitrate reductase (NR; EC 1.7.99.4) in the soybean (Glycine max. Merr.) nodule. Ex planta both strains have a high activity of NR when cultured on 5 mM nitrate at 2% O2 (v/v). Nitrite reductase (NiR) was active in cultured cells of bradyrhizobia, but activity with succinate as electron donor was not detected in freshly-isolated bacteroids. A low activity was measured with reduced methyl viologen. When bacteroids of CC705 were incubated with nitrate there was a rapid production of nitrite which resulted in repression of NR. Subsequently when NiR was induced, nitrite was utilized and NR activity recovered. Nitrate reductase was induced in bacteroids of strain CB1809 when they were incubated in-vitro with nitrate or nitrite. Increase in NR activity was prevented by rifampicin (10 g· ml-1) or chloramphenicol (50 g·ml-1). Nitrite-reductase activity in bacteroids of strain CB1809 was induced in parallel with NR. When nitrate was supplied to soybeans nodulated with strain CC705, nitrite was detected in nodule extracts prepared in aqueous media and it accumulated during storage (1°C) and on further incubation at 25°C. Nitrite was not detected in nodule extracts prepared in ethanol. Thus nitrite accumulation in nodule tissue appears to occur only after maceration and although bacteroids of some strains of B. japonicum have a high level of a constitutive NR, they do not appear to reduce nitrate in the nodule because this anion does not gain access to the bacteroid zone. Soybeans nodulated with strains CC705 and CB1809 were equally sensitive to nitrate inhibition of N2 fixation.Abbreviations NR nitrate reductase - NiR nitrite reductase - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

6.

Background

Iron has an integral role in numerous cellular reactions and is required by virtually all organisms. In physiological conditions, iron is abundant in a largely insoluble ferric state. Ferric reductases are an essential component of iron uptake by cells, reducing iron to the soluble ferrous form. Cytochromes b561 (cyts-b561) are a family of ascorbate reducing transmembrane proteins found in most eukaryotic cells. The identification of the ferric reductase duodenal cytochrome b (dcytb) and recent observations that other cyts-b561 may be involved in iron metabolism have opened novel perspectives for elucidating their physiological function.

Methodology/Principal Findings

Here we have identified a new member of the cytochrome b561 (Sjcytb561) family in the pathogenic blood fluke Schistosoma japonicum that localises to the outer surface of this parasitic trematode. Heterologous expression of recombinant Sjcyt-b561 in a Saccharomyces cerevisiae mutant strain that lacks plasma membrane ferrireductase activity demonstrated that the molecule could rescue ferric reductase activity in the yeast.

Significance/Conclusions

This finding of a new member of the cytochrome b561 family further supports the notion that a ferric reductase function is likely for other members of this protein family. Additionally, the localisation of Sjcytb561 in the surface epithelium of these blood-dwelling schistosomes contributes further to our knowledge concerning nutrient acquisition in these parasites and may provide novel targets for therapeutic intervention.  相似文献   

7.
1) Rhodobacter capsulatus (formerly Rhodopseudomonas capsulata) strain 37b4 was subjected to transposon Tn5 mutagenesis. 2) Kanamycin-resistant transconjugants were screened for their inability to reduce trimethylamine-N-oxide (TMAO) as judged by the lack of alkali production during anaerobic growth on plates containing glucose as carbon source and cresol red as pH indicator. 3) Of 6 mutants examined, all were found to have considerably decreased levels of methylviologen-dependent TMAO reductase activity and dimethylsulphoxide (DMSO) reductase activity. 4) Periplasmic fractions of one of these mutants (DK9) and of the parent strain were subjected to sodium dodecylsulphate polyacrylamide gel electrophoresis. The gels were stained for TMAO-reductase and DMSO-reductase. With the wild-type strain, only a single polypeptide band, Mr=46,000, stained for TMAO and DMSO reductase activity. In mutant DK9 this band was not detectable. 5) In contrast to the parent strain, harvested washed cells of mutant DK9 were unable to generate a cytoplasmic membrane potential in the presence of TMAO or DMSO under dark anaerobic conditions. 6) In contrast to the parent strain, DK9 was unable to grow in dark anaerobic culture with fructose as the carbon source and TMAO as oxidant.Abbreviations TMAO trimethylamine-N-oxide - DMSO dimethylsulphoxide - PMS phenazine methosulphate - cytoplasmic membrane potential  相似文献   

8.
Cucumber, as a strategy I plant, and Maize as a strategy II plant, were cultivated in hydroponic culture in the presence of a ferrated siderophore mixture (1 M) from a culture of Penicillium chrysogenumisolated from soil. The siderophore mixture significantly improved the iron status of these plants as measured by chlorophyll concentration to the same degree as a 100-fold higher FeEDTA supply. Analysis of the siderophore mixture from P. chrysogenum by HPLC and electrospray mass spectrometry revealed that besides the trihydroxamates, coprogen and ferricrocin, large amounts of dimerum acid and fusarinines were present which represent precursor siderophores or breakdown products of coprogen. In order to prove the iron donor properties of dimerum acid and fusarinines for plants, purified coprogen was hydrolyzed with ammonia and the hydrolysis products consisting of dimerum acid and fusarinine were used for iron uptake by cucumber and maize. In short term experiments radioactive iron uptake and translocation rates were determined using ferrioxamine B, coprogen and hydrolysis products of coprogen. While the trihydroxamates revealed negligible or intermediate iron uptake rates by both plant species, the fungal siderophore mixture and the ammoniacal hydrolysis products of coprogen showed high iron uptake, suggesting that dimerum acid and fusarinines are very efficient iron sources for plants. Iron reduction assays using cucumber roots or ascorbic acid also showed that iron bound to hydrolysis products of coprogen was more easily reduced compared to iron bound to trihydroxamates. Ligand exchange studies with epi-hydroxymugineic acid and EDTA showed that iron was easily exchanged between coprogen hydrolysis products and phytosiderophores or EDTA. The results indicate that coprogen hydrolysis products are an excellent source for Fe nutrition of plants.  相似文献   

9.
After uptake of microbial ferrisiderophores, iron is assumed to be released by reduction. Two ferrisiderophore-reductase activities were identified in Escherichia coli K-12. They differed in cellular location, susceptibility to amytal, and competition between oxygen and ferrichrome-iron(III) reduction. The ferrisiderophore reductase associated with the 40,000×g sediment (membrane-bound enzyme) was inhibited by 10 mM amytal in contrast to the ferrisiderophore reductase present in the 100,000×g supernatant (soluble enzyme). Reduction by the membrane-bound enzyme followed sigmoid kinetics, but was biphasic in the case of the soluble enzyme. The soluble reductase could be assigned to a protein consisting of a single polypeptide of M r 26000. Reduction of iron(III) by the purified enzyme depended on the addition of NADH or NADPH which were equally active reductants. The cofactor FMN and to a lesser degree FAD stimulated the reaction. Substrate specificity of the soluble reductase was low. In addition to the hydroxamate siderophores arthrobactin, schizokinen, fusigen, aerobactin, ferrichrome, ferrioxamine B, coprogen, and ferrichrome A, the iron(III) complexes of synthetic catecholates, dihydroxy benzoic acid, and dicitrate, as well as carrier-free iron(III) were accepted as substrates. Both ferrisiderophore reductases were not controlled by the fur regulatory system and were not suppressed by anaerobic growth.Abbreviations DHB dihydroxybenzoic acid - MECAM 1,3,5-N,N,N-tris-(2,3-dihydroxybenzoyl)-triamino-methylbenzene - MECAMS 2,3-dihydroxy-5-sulfonyl-derivative of MECAM  相似文献   

10.
In this study, we cultivated from subsurface sediments an anaerobic clostridial consortium that was composed of a fermentative Fe-reducer Clostridium species (designated as strain FGH) and a novel sulfate-reducing bacterium belonging to the clostridia family Vellionellaceae (designated as strain RU4). In pure culture, Clostridium sp. strain FGH mediated the reductive dissolution/transformation of iron oxides during growth on peptone. When Clostridium sp. FGH was grown with strain RU4 on peptone, the rates of iron oxide reduction were significantly higher. Iron reduction by the consortium was mediated by multiple mechanisms, including biotic reduction by Clostridium sp. FGH and biotic/abiotic reactions involving biogenic sulfide formed by strain RU4. The Clostridium sp. FGH produced hydrogen during fermentation, and the presence of hydrogen inhibited growth and iron reduction activity. The sulfate-reducing partner strain RU4 was stimulated by the presence of H2and generated reactive sulfide which promoted the chemical reduction of the iron oxides. Characterization of Fe(II) mineral products showed the formation of nanoparticulate magnetite during ferrihydrite reduction, and the precipitation of iron sulfides during goethite and hematite reduction. The results suggest an important pathway for iron reduction and secondary mineralization by fermentative sulfate-reducing microbial consortia through syntrophy-driven biotic/abiotic reactions with biogenic sulfide.

Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the supplemental file.  相似文献   


11.
12.
Summary Iron tolerance of rice (Oryza sativa L.) was investigated using an oxygen depleted hydroculture system. Treatment with high concentrations of Fe2+ induced yellowing and bronzing symptoms as well as iron coatings at the root surface. Root and shoot growth were inhibited by increasing iron concentration in the medium. All symptoms were more pronounced in an iron sensitive cultivar (IR 64) compared to an iron tolerant one (IR 9764-45-2). Superoxide dismutase and peroxidase activity of root extracts of IR 97 were about twice that of IR 64 in untreated control plants. No significant increase of peroxidase activity was detected with increasing iron concentration in the medium. Catalase activity of IR 64 was slightly higher than that of IR 97, independent of iron concentration.Abbreviations SOD Superoxide dismutase (EC 1.15.1.1) - POD peroxidase (EC 1.11.1.7) - EDTA ethylenediamintetraacetic acid - fwt fresh weight - Hepes (N-[2-hydroxyethyl]piperazine-N-[2-ethanesulfonic acid]) - BSA bovine serum albumin - IR 97 IR 9764-45-2 an iron tolerant rice cultivar - IR 64 iron sensitive rice cultivar - PM plasma membrane  相似文献   

13.
Plasma membranes isolated from wild-type Saccharomyces cerevisiae crude membrane fractions catalyzed NADH oxidation using a variety of electron acceptors, such as ferricyanide, cytochrome c, and ascorbate free radical. Plasma membranes from the deletion mutant strain coq3, defective in coenzyme Q (ubiquinone) biosynthesis, were completely devoid of coenzyme Q6 and contained greatly diminished levels of NADH–ascorbate free radical reductase activity (about 10% of wild-type yeasts). In contrast, the lack of coenzyme Q6 in these membranes resulted in only a partial inhibition of either the ferricyanide or cytochrome-c reductase. Coenzyme Q dependence of ferricyanide and cytochrome-c reductases was based mainly on superoxide generation by one-electron reduction of quinones to semiquinones. Ascorbate free radical reductase was unique because it was highly dependent on coenzyme Q and did not involve superoxide since it was not affected by superoxide dismutase (SOD). Both coenzyme Q6 and NADH–ascorbate free radical reductase were rescued in plasma membranes derived from a strain obtained by transformation of the coq3 strain with a single-copy plasmid bearing the wild type COQ3 gene and in plasma membranes isolated form the coq3 strain grown in the presence of coenzyme Q6. The enzyme activity was inhibited by the quinone antagonists chloroquine and dicumarol, and after membrane solubilization with the nondenaturing detergent Zwittergent 3–14. The various inhibitors used did not affect residual ascorbate free radical reductase of the coq3 strain. Ascorbate free radical reductase was not altered significantly in mutants atp2 and cor1 which are also respiration-deficient but not defective in ubiquinone biosynthesis, demonstrating that the lack of ascorbate free radical reductase in coq3 mutants is related solely to the inability to synthesize ubiquinone and not to the respiratory-defective phenotype. For the first time, our results provide genetic evidence for the participation of ubiquinone in NADH–ascorbate free radical reductase, as a source of electrons for transmembrane ascorbate stabilization.  相似文献   

14.
Permethrin resistance in the Learn-PyR strain of house fly was examined in four genetically derived substrains, each being homozygous for a different resistant autosome of the Learn-PyR strain. The resistance of these derivative strains was characterized toxicologically and biochemically. The relative levels of resistance to permethrin conferred by each autosome were 5>3>1>2. Three factors were associated with resistance: (1) increased mixed-function oxidase (MFO) activity associated with elevated levels of cytochrome P-450, cytochrome b5, and NADPH-cytochrome c reductase (P-450 reductase) activity; (2) target-site insensitivity (kdr); and (3) decreased cuticular penetration. Permethrin resistance factors on chromosome 1 consisted of a piperonyl butoxide (PB)-suppressible mechanism correlated with increased levels of cytochromes P-450 and b5; on chromosome 2, a PB-suppressible mechanism associated with elevated amounts of cytochrome P-450; on chromosome 3, decreased cuticular penetration, kdr, and increased amounts of P-450 reductase activity; and on chromosome 5, a largely PB-suppressible mechanism correlated with elevated levels of cytochrome P-450 and P-450 reductase activity.  相似文献   

15.
Ex planta, bacteroids of the sulla-symbiont Rhizobium hedysari strain HCNT 1 terminated reduction of nitrite at nitrous oxide irrespective of the presence or absence of acetylene. Nitrate was not reduced during the experimental period, but slight nitrate reductase activity occurred if incubation with nitrate was prolonged (up to 15 h). As was observed in free-living cells, exposure of the bacteroids to the metal chelator, diethyldithiocarbamate, prevented reduction of nitrite, indicating the presence of a copper-containing nitrite reductase. Pulses of 10–75 M nitrite transiently impeded O2 uptake in bacteroids, which resumed consumption of O2 when the nitrite had been reduced. Exposure to >1.0 mM nitrite for 24h greatly inhibited nitrogenase activity (assayed as acetylene reduction activity) of bacteroids in planta. Exposure to the same concentrations of nitrite after 1h of incubation in the presence of acetylene almost completely stopped ongoing ethylene production in bacteroids of strain HCNT 1 extracted from nodules. Free cells of the non-nitrite-reducing R. hedysari strain CC 1335 were lacking in nitrogenase (acetylene-reduction) activity, whereas identically cultured (low-oxygen) strain HCNT 1 cells reduced both nitrite and acetylene.Abbreviations PMS phenazine methosulfate - DDC diethyldithiocarbamate  相似文献   

16.
Rhizobium hedysari strain HCNT 1 rapidly reduced nitrite to N2O, only slowly reduced nitrate to nitrite and did not exhibit nitrous oxide reductase activity. Nitrite reduction in this rhizobium strain may be a detoxification mechanism for conversion of nitrite, which inhibits O2 uptake, to non-toxic N2O. Concentrations of nitrite as small as 3 M diminished O2 uptake in whole cells. The bacterium did not couple energy conservation with nitrate or nitrite reduction. Cells neither grew anaerobically at the expense of these nitrogen oxides nor translocated protons during reduction of nitrite. Induction of nitrite reductase activity was not a response to the presence of nitrate or nitrite, but occurred instead when the O2 concentration in culture atmospheres fell to <16.5% of air saturation. Sensitivity of cytochrome o, which is synthesized only in cells grown under O2-limited conditions, may account for the toxicity of nitrite in strain HCNT 1.  相似文献   

17.
Summary Cultured carrot cells (Daucus carota L.) reduced nitrate to nitrite at a slow rate (0.4 moles/g dry wt · h) without any additions to the reaction medium. This rate was doubled or tripled in presence of 100 M NADH. Ethanol and other alcohols stimulated the basal rate 8–10-fold. Isolated carrot plasma membranes also reduced nitrate to nitrite at a rate of 80 nmoles/mg protein · h. This plasma membrane-bound nitrate reductase activity was estimated to be 1.7% of the total activity. Nitrate reduction by carrot cells was inhibited 56% by sodium tungstate, 57% by potassium cyanide, and 87% by gold chloride. It was stimulated by plasma membrane electron transport inhibitors (retinoic acid and chloroquine) and ATPase inhibitors (diethylstilbestrol). From differential effects of some stimulators or inhibitors in the presence or absence of NADH, it can be implied that the nitrate reductase activity of cultured carrot cells was due to a transmembrane enzyme exhibiting an exogenous nitrate reductase activity when NADH was added.Abbreviation DMSO dimethyl sulfoxide - SHAM salicyl hydroxamic acid  相似文献   

18.
Iron uptake in pseudorevertants of Escherichia coli K-12 strains which lack the ability to synthesize enterochelin, 2,3-dihydroxybenzoate, and the ferrienterochelin receptor protein was characterized. In four independent pseudorevertants, the suppressor mutations which permitted growth in iron-poor environments appeared to be located in ompB, the regulatory locus for the porin proteins. Unlike wild-type cells, the pseudorevertants were unable to utilize ferrienterochelin and could acquire iron from citrate without induction by prior growth in citrate. The energy requirements of the pseudorevertant system appeared to be identical to those of the enterochelin system. Evidence that loss of the porin proteins results in the secretion by the pseudorevertants of a molecule with siderophore activity is presented; this siderophore is able to remove iron from the non-biological iron chelators nitrilotriacetic acid and , -dipyridyl but not from the siderophores ferrichrome and enterochelin.  相似文献   

19.
Pathways of succinyl-Coenzyme A (succinyl-CoA) formation in various photosynthetic bacteria were investigated through several approaches, including determination of activity levels of relevant enzymes. Extracts of photosynthetically grown cells of representative Rhodospirillaceae and Chromatium vinosum showed -ketoglutarate dehydrogenase (KGD) activities sufficient to account for generation of the succinyl-CoA required for biosynthetic metabolism. Except as noted below, the observed ratios of fumarate reductase/succinate dehydrogenase activities were low, consistent with the conclusion that these organisms produce succinyl-CoA oxidatively from -ketoglutarate (KG), rather than by reductive metabolism of fumarate. On the other hand, the green bacterium Chlorobium limicola appears to produce succinyl-CoA by the reductive pathway; in this organism, KGD activity could not be detected, and a high fumarate reductase/succinate dehydrogenase ratio was observed. Results obtained with Rhodopseudomonas gelatinosa suggest that this otherwise typical member of the Rhodospirillaceae may be able to generate succinyl-CoA via both arms of the citric acid cycle, that is, oxidatively from KG, and reductively from fumarate. To further explore the several physiological roles of the conversion: KGsuccinyl-CoA in Rhodopseudomonas capsulata, a mutant (strain KGD 11) almost completely blocked in KGD activity was isolated and studied in detail. Under anaerobic photosynthetic conditions, KGD 11 grows readily on succinate as the sole carbon source; in contrast to the wild type parent, however, it cannot grow with l-glutamate as the source of carbon. The R. capsulata parental strain can grow in darkness as an aerobic heterotroph on various carbon/energy sources including pyruvate, D,L-malate, or succinate. Mutant KGD 11, however, is unable to grow aerobically on the substrates noted. These results indicate that the energy for aerobic dark growth of R. capsulata is provided by respiratory phosphorylation fueled by citric acid cycle function, and that this requires a substantial level of KGD activity. The present findings also indicate that citric acid cycle sequences in most of the Rhodospirillaceae prominently used in current research are geared to operate in the oxidative direction, as in nonphotosynthetic aerobic heterotrophs.Abbreviations CoA coenzyme A - FR fumarate reductase - KG -ketoglutarate - KGD -ketoglutarate dehydrogenase - SD succinate dehydrogenase  相似文献   

20.
Tama C. Fox  R. L. Travis 《Protoplasma》1991,161(2-3):160-167
Summary Endoplasmic reticulum vesicles from both corn and kidney bean roots are capable of reducing ferrirhodotorulic acid, a fungal iron chelator, in vitro, using NADH as the reductant. In magnesium containing linear 15–45% sucrose density gradients, the activity was in a wide, high density band. The activity shifted in density to 1.07–1.08 when EDTA was included instead of magnesium. No plasma membrane reducing activity was found, even with iron deficient plants, using both NADH and NADPH as electron donors. It is speculated that the Eo value for ferrirhodotorulic acid, –0.36 V, may be too low for this chelate to be reduced by the iron deficiency induced iron chelate reductase found in the plasma membrane of nonpoaceous plants. Most of the activity was in the microsomal fraction rather than the soluble fraction.Abbreviations EDTA ethylene diamine tetraacetic acid - DTT dithiothreitol - PMSF phenylmethylsulfonyl fluoride - PVPP polyvinyl polypyrrolidone - BPDS bathophenanthroline disulfonate - MES 2-(n-morpholino)ethanesulfonic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号