首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Advances in proteomics and large scale studies of potential mitochondrial proteins have led to the identification of many novel mitochondrial proteins in need of further characterization. Among these novel proteins are three mammalian rRNA methyltransferase family members RNMTL1, MRM1, and MRM2. MRM1 and MRM2 have bacterial and yeast homologs, whereas RNMTL1 appears to have evolved later in higher eukaryotes. We recently confirmed the localization of the three proteins to mitochondria, specifically in the vicinity of mtDNA nucleoids. In this study, we took advantage of the ability of 2′-O-ribose modification to block site-specific cleavage of RNA by DNAzymes to show that MRM1, MRM2, and RNMTL1 are responsible for modification of human large subunit rRNA at residues G1145, U1369, and G1370, respectively.  相似文献   

2.
Identification of DNA Polymerase γ in Eggs of a Teleost Fish (Loach)   总被引:1,自引:0,他引:1  
DNA polymerase found in an extract from eggs of the teleost fish Misgurnus fossilis (loach) has been identified as an enzyme of the type. The enzyme was purified 4000- to 5000-fold from the extract by liquid chromatography. The DNA polymerase activity was sensitive to the inhibiting action of aphidicolin but resistant to N2-(p-n-butylphenyl)-2´- deoxyguanosine 5´-triphosphate (BuPdGTP). The enzyme activity correlates with the presence of a polypeptide with molecular mass of 120-130 kD that interacts specifically with polyclonal antibodies against calf thymus DNA polymerase as revealed by Western blotting and is presumably the catalytic subunit of the enzyme. The loach DNA polymerase possesses the 3´5´-exonuclease activity specific to single-stranded DNA and catalyzes distributive elongation of primers in primer–template complexes.  相似文献   

3.
On the basis of amplified fragment length polymorphism (AFLP) and nucleotide sequence data from nuclear ribosomal internal transcribed spacer (nrITS) and three chloroplast DNA regions (rbcL, cpITS, and trnS-psbC spacer), we investigated the species delimitation and the evolutionary lineage of Isoëtes asiatica from Hokkaido, Japan. The neighbor-joining (NJ) dendrogram based on AFLP markers revealed the well-defined clusters (bootstrap value?=?100%) of I. asiatica. Results from the principal component analysis are largely congruent with those obtained in the NJ dendrogram. The maximum parsimony analysis, based on data from nrITS and three chloroplast DNA sequences, supported a monophyly of three species, I. asiatica, Isoëtes echinospora, and Isoëtes maritima from Hokkaido, Kamchatka, and Alaska regions. The distinct species status of I. asiatica was also well supported in the combined chloroplast DNA phylogeny. Therefore, I. asiatica appear to represent example of gradual speciation due to spatial isolation of ancestral populations followed by genetic divergence. Our results also suggest that I. asiatica is probably not the ancestral diploid of the polyploids occurring in East Asia.  相似文献   

4.
The entire sequence of the mitochondrial cytochrome b gene and 2 partial sequences of the ribosomal RNA12S and 16S genes have been used to study the molecular phylogeny in 10 species of soles belonging to the genera Solea, Monochirus, Microchirus, Dicologlossa, and Synaptura from the Atlantic waters of the Gulf of Cádiz (Spain). The results obtained by means of different phylogenetic analyses (maximum likelihood, maximum parsimony, and neighbor-joining) were quite similar, supporting the monophyly of the Solea species. Nevertheless, they favor the differentiation of Dicologlossa cuneata and Dicologlossa hexophthalma in 2 distinct genera, since the most closely related species to the last one is Microchirus azevia. The fact that M. azevia is also more closely linked to Monochirus hispidus than to its congeneric Microchirus boscanion argues in favor of a taxonomic reorganization of these genera.  相似文献   

5.
This work describes the karyotype and chromosomal location of the ribosomal DNA (rDNA) of Pecten maximus and Mimachlamys varia, two commercial scallop species from Europe. According to the chromosome centromeric index values found, the karyotype of P. maximus is composed of 1 metacentric, 2 metacentric–submetacentric, 1 telocentric–subtelocentric and 15 telocentric pairs, and that of M. varia of 4 metacentric, 2 subtelocentric–submetacentric, 9 subtelocentric, 3 subtelocentric–telocentric and 1 telocentric–subtelocentric pairs. In P. maximus, 18S-28S rDNA was located by FISH on a metacentric–submetacentric pair, and in M. varia on a subtelocentric–submetacentric pair using both silver staining and FISH. PCR amplification of the 5S rDNA unit yielded a single product of about 460 bp (P. maximus) and 450 bp (M. varia), that used as probe revealed a 5S rDNA site on a telocentric pair in P. maximus and a subtelocentric pair in M. varia. Two-color FISH or sequential silver staining of 5S rDNA-FISH-metaphases corroborated that the two gene families are located on different chromosomes in both species. A comparative analysis of the data allowed the inference of karyotypic relationships within scallops.  相似文献   

6.
Abstract

It has been shown that the frequency versus size distribution of A and T overlapping and non- overlapping homopolymer tracts of N>5 in D. discoideum gene flanking and intron regions are significantly greater than in coding regions(1). In the present report we demonstrate, that a spatial periodicity exists in long A and T tracts (N> 10) in long flanking sequences by scored alignments of those tracts (N> 10) with the nucleosomal repeat. A tract spacing was found at 185–190 bp that corresponds to a maximum alignment score. This is exactly the average spacing of D. discoideum nucleosomes determined experimentally. A majority of A and T tracts in flanking sequences are often spaced by short DNA stretches and the total length of adjacent A and T tracts plus the interrupting short DNA stretch corresponds closely to the average experimentally measured nucleosomal linker DNA size in D. discoideum-42 bp. These data suggest a model which has A and T runs of N> 10 bp in flanking DNA of D. discoideum organized in a regular phase with nonhomopolymer sequences along the DNA. This model has functional implications for A and T tracts, suggesting that they are found in nucleosomal linker DNA regions of chromatin during some necessary portion(s) of the life of the cell.  相似文献   

7.
Chloroplast FDPase was purified from spinach leaves by ammonium sulfate precipitation, Sephadex G-100 chromatography and DEAE-cellulose chromatography. It was found that treatment of the spinach leaves with liquid nitrogen prior to homoge- nization facilitated the subsequent isolation process, the optimal pH for FDPase activity was 8 to 9 and the enzyme was most stable at pH 6, under which it could be stored over several months without appreciable loss of activity. Acrylamide disc electrophoresis of the final enzyme fraction showed only one essential band. The two forms of FDPase, purified spinach chloroplast FDPase and that in fresilly ruptured spinach chloroplast, behaved differently in some of their kinetic properties. Their activities depended throughout on the concentration of Mg++, but the Km (Mg++) were quite different. The Km (Mg++) of the purified enzyme was about 6.0 mM, that of FDPase in freshly ruptured chloroplasts was, however, 1.0 mM, which corresponded to the concentration of Mg+* in the stroma of illuminated chloroplasts. Mg++ concentration was a limiting factor for the activity of purified FDPase. As the amount of Mg++ in the reaction mixture was lowered, the Km and Vmax were both greatly changed. The shortage of Mg++ could not be compensated by increasing the substrate concentration. The purified FDPase was completely inhibited by 15 μ moles EDTA in the teaction mixture, whereas the FDPase in freshly ruptured chloroplasts was inhibited only 70% by 30 to 45 μ moles EDTA, which was 2 to 3 fold of the concentration sufficient to inhibit completely the activity of the purified enzyme. Moreover, the former was more stable. Its activity did not decline even after incubation for over two hours The FDPase activity was higher in chloroplasts ruptured in 0.2% (w/v) Triton X-100 than that ruptured in water. This phenomenon suggests that this enzyme in vivo might be in some way associated, at least partly; with chloroplast lamellae.  相似文献   

8.
The trophoblast Kunitz domain proteins (TKDPs) are products of the outer cells (trophoblasts) of the placenta of cattle, sheep, and related species. Most are expressed abundantly for only a few days during the time at which the ruminant conceptus is first establishing intimate contacts with the uterine lining. The TKDPs are secretory proteins that possess a carboxyl-terminal peptidase inhibitory domain related to the Kunitz family of serine peptidase inhibitors. On the amino-terminal end are one or more highly unusual regions that are unique to the TKDP genes and have no apparent similarity to any other known sequences. The TKDPs are a rather divergent family that exhibits a good deal of variation among the members. To better understand the reason for such variation, the rates of synonymous (dS) and nonsynonymous (dN), as well as radical (p NR ) and conservative (p NC ), substitutions were assessed. Phylogenetic trees revealed that the Kunitz domains represented three related groups, whereas the amino-terminal domains formed four groupings. Pairwise comparisons between Kunitz and amino-terminal domain groups demonstrated that dN was consistently greater than dS. In addition, nonsynonymous substitutions in the Kunitz domains tended to be radical (changing charge or polarity), while those in the amino-terminal domains exhibited neither a preponderance of conservative nor radical substitution rates. In summary, the rapid evolution of the TKDPs, coupled with their restricted temporal expression during development, likely reflects the establishment of protein-protein interactions that have evolved to serve the unusual synepitheliochorial placenta of ruminant ungulates. [Reviewing Editor: Dr. Martin Kreitman]  相似文献   

9.
Psyllids are insects that harbor endosymbionts (Candidatuus Carsonella ruddii) within specialized cells found in the insect's body cavity. Previous phylogenetic analyses based on endosymbiont 16S–23S ribosomal DNA and a host gene were concordant (M.L. Thao, et al., Appl. Env. Microbiol. 66:2898, 2000). Additional analyses with atpAGD and rpoBC gave similar trees showing the agreement expected from organisms that evolve through vertical transmission with no gene exchange. Received: 2 November 2000 / Accepted: 17 November 2000  相似文献   

10.
Conformational change and aggregation of native proteins are associated with many serious age-related and neurological diseases. γS-Crystallin is a highly stable, abundant structural component of vertebrate eye lens. A single F9S mutation in the N-terminal domain of mouse γS-crystallin causes the severe Opj cataract, with disruption of cellular organization and appearance of fibrillar structures in the lens. Although the mutant protein has a near-native fold at room temperature, significant increases in hydrogen/deuterium exchange rates were observed by NMR for all the well-protected β-sheet core residues throughout the entire N-terminal domain of the mutant protein, resulting in up to a 3.5-kcal/mol reduction in the free energy of the folding/unfolding equilibrium. No difference was detected for the C-terminal domain. At a higher temperature, this effect further increases to allow for a much more uniform exchange rate among the N-terminal core residues and those of the least well-structured surface loops. This suggests a concerted unfolding intermediate of the N-terminal domain, while the C-terminal domain stays intact. Increasing concentrations of guanidinium chloride produced two transitions for the Opj mutant, with an unfolding intermediate at ∼ 1 M guanidinium chloride. The consequence of this partial unfolding, whether by elevated temperature or by denaturant, is the formation of thioflavin T staining aggregates, which demonstrated fibril-like morphology by atomic force microscopy. Seeding with the already unfolded protein enhanced the formation of fibrils. The Opj mutant protein provides a model for stress-related unfolding of an essentially normally folded protein and production of aggregates with some of the characteristics of amyloid fibrils.  相似文献   

11.
Abstract

The present work shows that lead(II) can be used as a convenient structure probe to map the conformation of large RNA's and to follow discrete conformational changes at different functional states. We have investigated the conformation of the 3′ domain of the E. coli 16S rRNA (nucleotides 1295–1542) in its naked form, in the 30S subunit and in the 70S ribosome. Our study clearly shows a preferential affinity of Pb(II) for interhelical and loop regions and suggests a high sensitivity for dynamic and flexible regions. Within 30S subunits, some cleavages are strongly decreased as the result of protein-induced protection, while others are enhanced suggesting local conformational ajustments. These rearrangements occur at functionally strategic regions of the RNA centered around nucleotides 1337,1400,1500 and near the 3′ end of the RNA The association of 30S and 50S subunits causes further protections at several nucleotides and some enhanced reactivities that can be interpreted in terms of subunits interface and allosteric transitions. The binding of E. coli tRNA-Phe to the 70S ribosome results in message-independent (positions 1337 and 1397) and message-dependent (1399–1400, 1491–1492 and 1505) protections. Athird class ofprotection(1344–1345,1393–1395,1403–1409,1412–1414, 1504, 1506–1507 and 1517–1519) is observed in message-directed 30S subunits, which are induced by both tRNA binding and 50S subunit association. This extensive reduction of reactivity most probably reflects an allosteric transition rather than a direct shielding.  相似文献   

12.
Summary The nucleotide sequence of a spacer region between 16S and 23S rRNA genes from soybean chloroplasts has been determined. The spacer region is over 3000 bp long and contains two tRNA genes, coding for rRNAIle and tRNAAla which contain intervening sequences of 953 and 811 base pairs respectively. There is a strong homology between the two introns suggesting that they have a common origin. These spacer tRNAs are synthesized as part of a kb precursor molecule containing 16S and 23S rRNA sequences.  相似文献   

13.
Summary The distribution and abundance of simple repetitive sequences complementary to the synthetic oligonucleotides (GACA)4, (GATA)4, (GTG)5 and (CA)8 in the genomes of several cultivars of Beta vulgaris and in the wild beet B. vulgaris ssp. maritima were investigated. Hybridization experiments revealed that all four motifs were present, though at different abundances, in the genomes of all of the investigated beet cultivars. Considerable intraspecific variation of the resulting DNA fingerprints was observed. The extent of polymorphism depends on the oligonucleotide probe. The most informative banding patterns were obtained with the (GATA)4 probe hybridized to HinfI-, HaeIII-, or RsaI-restricted DNA, respectively. DNA fingerprinting with (GATA)4 allowed a clear differentiation of double-haploid breeding lines (DH lines). We demonstrated that the application of oligonucleotide probes for DNA fingerprinting is a sensitive tool for genome diagnosis in cultivated beet.  相似文献   

14.
We examined the effects of mutations in the Saccharomyces cerevisiae RAD27 (encoding a nuclease involved in the processing of Okazaki fragments) and POL3 (encoding DNA polymerase δ) genes on the stability of a minisatellite sequence (20-bp repeats) and microsatellites (1- to 8-bp repeat units). Both the rad27 and pol3-t mutations destabilized both classes of repeats, although the types of tract alterations observed in the two mutant strains were different. The tract alterations observed in rad27 strains were primarily additions, and those observed in pol3-t strains were primarily deletions. Measurements of the rates of repetitive tract alterations in strains with both rad27 and pol3-t indicated that the stimulation of microsatellite instability by rad27 was reduced by the effects of the pol3-t mutation. We also found that rad27 and pol3-01 (an allele carrying a mutation in the “proofreading” exonuclease domain of DNA polymerase δ) mutations were synthetically lethal.All eukaryotic genomes thus far examined contain many simple repetitive DNA sequences, tracts of DNA with one or a small number of bases repeated multiple times (48). These repetitive regions can be classified as microsatellites (small repeat units in tandem arrays 10 to 60 bp in length) and minisatellites (larger repeat units in tandem arrays several hundred base pairs to several kilobase pairs in length). In this paper, arrays with repeat units 14 bp or less will be considered microsatellites and arrays with longer repeat units will be considered minisatellites.Previous studies show that simple repetitive sequences are unstable relative to “normal” DNA sequences, frequently undergoing additions or deletions of repeat units, in Escherichia coli (24), Saccharomyces cerevisiae (12), and mammals (59). This mutability has two important consequences. First, it results in polymorphic loci that are useful in genetic mapping and forensic studies (15, 59). Second, although these repetitive tracts are usually located outside of coding sequences, alterations in the lengths of microsatellites or minisatellites located within coding sequences can produce frameshift mutations or novel protein variants (20, 22, 26).From studies of the effects of various mutations on microsatellite stability in yeast and E. coli (40) and the analysis of mutational changes caused by DNA polymerase in vitro (21), it is likely that most alterations reflect DNA polymerase slippage events (47). These events involve the transient dissociation of the primer and template strands during the replication of a microsatellite (Fig. (Fig.1).1). If the strands reassociate to yield an unpaired repeat on the primer strand, the net result is an addition of repeats (following a second round of DNA replication). Unpaired repeats on the template strand would result in a deletion by the same mechanism. Open in a separate windowFIG. 1“Classical” model for the generation of microsatellite alterations by DNA polymerase slippage. Two single strands of a replicating DNA molecule are shown, with each repeat unit indicated by a rectangle. Arrows indicate the 3′ ends of the strand, and the top and bottom strands represent the elongating primer strand and the template strand, respectively. Step 1, the primer and template strand dissociate; step 2, the primer and template strands reassociate in a misaligned configuration, resulting in an unpaired repeat on either the template strand (left side) or primer strand (right side); step 3, DNA synthesis is completed. If the unpaired repeats are not excised by the DNA mismatch repair system, after the next round of DNA synthesis one DNA molecule will be shortened by one repeat (left side) or lengthened by one repeat (right side).A number of mutations have been shown to elevate microsatellite instability. In E. coli (24, 46), yeast (44, 45), and mammalian cells (27), mutations in genes affecting DNA mismatch repair dramatically elevate the instability of a dinucleotide microsatellite. The most likely explanation of this result is that the DNA mismatches (unpaired repeats) resulting from DNA polymerase slippage events are efficiently removed from the newly synthesized strand by the DNA mismatch repair system. Thus, in the absence of mismatch repair, tract instability is elevated. From genetic studies, it has been found that mismatch repair in yeast efficiently corrects DNA mismatches involving 1- to 14-base loops (the size of the repeat units in microsatellites) but fails to correct mismatches involving loops larger than 16 bases (the size of the repeat units in minisatellites) (3, 41, 53). An inefficient mechanism, not involving the classical DNA mismatch repair system, is capable of correcting large DNA loops formed during meiotic recombination (19).In addition to mutations affecting DNA mismatch repair, some mutations affecting DNA replication in yeast destabilize microsatellites. Yeast strains bearing a null mutation in the RAD27 (RTH1) gene have high levels of instability of the dinucleotide poly(GT) and the trinucleotide CAG, specifically elevating single-repeat insertions (18, 39). RAD27 encodes the homolog of the mammalian FEN-1 protein, a 5′-to-3′ exonuclease (10, 11, 33). This nuclease activity is required for removing the terminal ribonucleotide residue from the 5′ end of the Okazaki fragment (9, 14, 35, 54, 55, 57); this step is necessary for the two adjoining fragments to be ligated together. FEN-1 appears to be active as either an exonuclease in the presence of a single-stranded gap upstream of the 5′ terminus or an endonuclease on a 5′ flap structure (13, 34). Since yeast strains that contain a null mutation in RAD27 grow poorly but are viable (38, 43), it is likely that less efficient nuclease activities that are also capable of 5′ Okazaki fragment processing are present in yeast. In addition to destabilizing dinucleotide microsatellites, rad27 strains have high levels of spontaneous mitotic recombination, elevated rates of forward mutation, and increased sensitivity to the alkylating agent methyl methanesulfonate (MMS) (18, 38, 43). In contrast to the mutations normally seen in mismatch repair mutants, i.e., point mutations or small frameshifts, the types of mutations observed in the absence of Rad27p are duplications of sequences flanked by short direct repeats (4 to 7 bp in length) (49). These duplications were not affected by the DNA mismatch repair system.The same class of sequences that are duplicated in the rad27 strains show an elevated rate (up to 1,000-fold) of deletion in strains containing a temperature-sensitive allele (pol3-t) of the yeast gene encoding DNA polymerase δ (52, 53). This mutant (initially named tex1) was isolated in a strain that exhibited an increased excision rate of a bacterial transposon with long terminal repeats inserted within a yeast gene (7). The pol3-t allele, which encodes a mutation (Gly641 to Ala641) (51) located near the putative nucleotide binding and active-site domains of the enzyme (58), is thought to diminish the rate of lagging-strand synthesis resulting in long stretches of single-stranded DNA on the lagging-strand template (8). This single-stranded DNA may have the potential to form intrastrand base-paired structures, creating interactions between short direct repeats. These interactions would result in an increased frequency of deletions caused by DNA polymerase slippage.Since rad27 and pol3-t mutations elevate the rates of duplications and deletions associated with short separated repeats in nonrepetitive DNA sequences, Kunkel et al. (22) suggested that these mutations could also destabilize minisatellites. In this paper, we examine the effects of rad27 and pol3-t mutations on the stability of simple repeats in which the repeat unit length varies between 1 and 20 bp. Our results show that both mutations destabilize both microsatellites and minisatellites, but that the mechanisms involved in the destabilization are different for the two mutations.  相似文献   

15.
The ribosomal RNA multigene family in Escherichia coli comprises seven rrn operons of similar, but not identical, sequence. Four operons (rrnC, B, G, and E) contain genes in the 16S–23S intergenic spacer region (ISR) for tRNAGlu-2 and three (rrnA, D, and H) contain genes for tRNAIle-1 and tRNAAla-1B. To increase our understanding of their molecular evolution, we have determined the ISR sequence of the seven operons in a set of 12 strains from the ECOR collection. Each operon was specifically amplified using polymerase chain reaction primers designed from genes or open reading frames located upstream of the 16S rRNA genes in E. coli K12. With a single exception (ECOR 40), ISRs containing one or two tRNA genes were found at the same respective loci as those of strain K12. Intercistronic heterogeneity already found in K12 was representative of most variation among the strains studied and the location of polymorphic sites was the same. Dispersed nucleotide substitutions were very few but 21 variable sites were found grouped in a stem-loop, although the secondary structure was conserved. Some regions were found in which a stretch of nucleotides was substituted in block by one alternative, apparently unrelated, sequence (as illustrated by the known putative insertion of rsl in K12). Except for substitutions of different sizes and insertions/deletions found in the ISR, the pattern of nucleotide variation is very similar to that found for the 16S rRNA gene in E. coli. Strains K12 and ECOR 40 showed the highest intercistronic heterogeneity. Most strains showed a strong tendency to homogenization. Concerted evolution could explain the notorious conservation of this region that is supposed to have low functional restrictions. Received: 31 July 1997 / Accepted: 17 October 1997  相似文献   

16.
The large conductance Ca2+-activated K+ (BK) channel, expressed abundantly in vascular smooth muscle cells (SMCs), is a key determinant of vascular tone. BK channel activity is tightly regulated by its accessory β1 subunit (BK-β1). However, BK channel function is impaired in diabetic vessels by increased ubiquitin/proteasome-dependent BK-β1 protein degradation. Muscle RING finger protein 1 (MuRF1), a muscle-specific ubiquitin ligase, is implicated in many cardiac and skeletal muscle diseases. However, the role of MuRF1 in the regulation of vascular BK channel and coronary function has not been examined. In this study, we hypothesized that MuRF1 participated in BK-β1 proteolysis, leading to the down-regulation of BK channel activation and impaired coronary function in diabetes. Combining patch clamp and molecular biological approaches, we found that MuRF1 expression was enhanced, accompanied by reduced BK-β1 expression, in high glucose-cultured human coronary SMCs and in diabetic vessels. Knockdown of MuRF1 by siRNA in cultured human SMCs attenuated BK-β1 ubiquitination and increased BK-β1 expression, whereas adenoviral expression of MuRF1 in mouse coronary arteries reduced BK-β1 expression and diminished BK channel-mediated vasodilation. Physical interaction between the N terminus of BK-β1 and the coiled-coil domain of MuRF1 was demonstrated by pulldown assay. Moreover, MuRF1 expression was regulated by NF-κB. Most importantly, pharmacological inhibition of proteasome and NF-κB activities preserved BK-β1 expression and BK-channel-mediated coronary vasodilation in diabetic mice. Hence, our results provide the first evidence that the up-regulation of NF-κB-dependent MuRF1 expression is a novel mechanism that leads to BK channelopathy and vasculopathy in diabetes.  相似文献   

17.
Cellulose is central to plant development and is synthesised at the plasma membrane by an organised protein complex that contains three different cellulose synthase proteins. The ordered assembly of these three catalytic subunits is essential for normal cellulose synthesis. The way in which the relative levels of these three proteins are regulated within the cell is currently unknown. In this work it is shown that one of the cellulose synthases essential for secondary cell wall cellulose synthesis in Arabidopsis thaliana, AtCesA7, is phosphorylated in vivo. Analysis of in vivo phosphorylation sites by mass spectrometry reveals that two serine residues are phosphorylated. These residues occur in a region of hyper-variability between the cellulose synthase catalytic subunits. The region of the protein containing these phosphorylation sites can be phosphorylated by a plant extract in vitro. Incubation of this region with plant extracts results in its degradation via a proteasome dependant pathway. Full length endogenous CesA7 is also degraded via a proteasome dependant pathway in whole plant extracts. This data suggests that phosphorylation of the catalytic subunits may target them for degradation via a proteasome dependant pathway. This is a possible mechanism by which plants regulate the relative levels of the three proteins whose specific interaction are required to form an active cellulose synthase complex. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Barley yellow dwarf virus mRNA, which lacks both cap and poly(A) tail, has a translation element (3′-BTE) in its 3′-UTR essential for efficient translation initiation at the 5′-proximal AUG. This mechanism requires eukaryotic initiation factor 4G (eIF4G), subunit of heterodimer eIF4F (plant eIF4F lacks eIF4A), and 3′-BTE-5′-UTR interaction. Using fluorescence anisotropy, SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) analysis, and toeprinting, we found that (i) 40S subunits bind to BTE (Kd = 350 ± 30 nm), (ii) the helicase complex eIF4F-eIF4A-eIF4B-ATP increases 40S subunit binding (Kd = 120 ± 10 nm) to the conserved stem-loop I of the 3′-BTE by exposing more unpaired bases, and (iii) long distance base pairing transfers this complex to the 5′-end of the mRNA, where translation initiates. Although 3′-5′ interactions have been recognized as important in mRNA translation, barley yellow dwarf virus employs a novel mechanism utilizing the 3′-UTR as the primary site of ribosome recruitment.  相似文献   

19.
Epstein Barr virus (EBV), like other oncogenic viruses, modulates the activity of cellular DNA damage responses (DDR) during its life cycle. Our aim was to characterize the role of early lytic proteins and viral lytic DNA replication in activation of DNA damage signaling during the EBV lytic cycle. Our data challenge the prevalent hypothesis that activation of DDR pathways during the EBV lytic cycle occurs solely in response to large amounts of exogenous double stranded DNA products generated during lytic viral DNA replication. In immunofluorescence or immunoblot assays, DDR activation markers, specifically phosphorylated ATM (pATM), H2AX (γH2AX), or 53BP1 (p53BP1), were induced in the presence or absence of viral DNA amplification or replication compartments during the EBV lytic cycle. In assays with an ATM inhibitor and DNA damaging reagents in Burkitt lymphoma cell lines, γH2AX induction was necessary for optimal expression of early EBV genes, but not sufficient for lytic reactivation. Studies in lytically reactivated EBV-positive cells in which early EBV proteins, BGLF4, BGLF5, or BALF2, were not expressed showed that these proteins were not necessary for DDR activation during the EBV lytic cycle. Expression of ZEBRA, a viral protein that is necessary for EBV entry into the lytic phase, induced pATM foci and γH2AX independent of other EBV gene products. ZEBRA mutants deficient in DNA binding, Z(R183E) and Z(S186E), did not induce foci of pATM. ZEBRA co-localized with HP1β, a heterochromatin associated protein involved in DNA damage signaling. We propose a model of DDR activation during the EBV lytic cycle in which ZEBRA induces ATM kinase phosphorylation, in a DNA binding dependent manner, to modulate gene expression. ATM and H2AX phosphorylation induced prior to EBV replication may be critical for creating a microenvironment of viral and cellular gene expression that enables lytic cycle progression.  相似文献   

20.
This study aimed at identifying the best ovitrap installation sites for gravid Aedes aegypti in Mirassol, state of S?o Paulo, Brazil. Ovitraps were installed in ten houses per block over ten blocks. Four ovitraps were placed per residence, one in the bedroom, one in the living room, and two outdoors with one in a sheltered area and one in an outside site. Each week for eleven weeks, visits were made to examine the ovitraps and to change the paddles used for egg-laying. Eggs were analyzed according to the trap location. The results showed that the outdoor sites received significantly more oviposition than indoor sites. Additionally, in respect to the outdoor sites, the outside site received significantly more oviposition than the sheltered site. A strong correlation was observed between positive traps and egg numbers. The results are discussed with respect to the best installation site of the traps and their implications in surveillance and control of dengue vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号