首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of plant genes specifically induced during rhizobial infection and the early stages of nodule ontogeny (early nodulin genes) and those induced in the mature, nitrogen-fixing nodule (late nodulin genes) is differentially regulated and tissue/cell specific. We have been interested in the signal transduction pathway responsible for symbiotic, temporal and spatial control of expression of an early (Enod2) and a late (Leghemoglobin;lb) nodulin gene from the stem-nodulated legumeSesbania rostrata, and in identifying thecis-acting elements andtrans-acting factors involved in this process (De Bruijn and Schell, 1992). By introducing chimericS. rostrata lb promoter-gus reporter gene fusions into transgenicLotus corniculatus plants, we have been able to show that thelb promoter directs an infected-cell-specific expression pattern inLotus nodules. We have been able to delimit thecis-acting element responsible for nodule-infected-cell-expression to a 78 pb region of thelb promoter (NICE Element) and have analyzed this element in detail by site-specific mutagenesis. We have studied the interaction of the NICE element, and further upstreamcis-acting elements, withtrans-acting factors of both plant- and rhizobial origin. We have obtained evidence for the involvement of rhizobial proteins in infected-cell-specific plant gene expression (Welters et al., 1993). We have purified one of the bacterial binding proteins from theS. rostrata symbiontAzorhizobium caulinodans (AcBBP1), and cloned and mutated the corresponding gene, in order to examine its symbiotic phenotype. We have also found that theS. rostrata Enod2 gene is rapidly induced by physiologically significant concentrations of cytokinins, suggesting the role of cytokinin as a potential secondary signal involved in nodulation (Dehio and De Bruijn, 1992). We are examining whether the observed cytokinin induction, as well as the nodule-specific expression pattern, are modulated by theSrEnod2 promoter.  相似文献   

2.
3.
We have constructed a Sesbania rostrata stem nodule-specific cDNA library. By screening with heterologous probes from pea and soybean, we have isolated several nodulin cDNA clones. On the basis of nucleotide and amino acid sequence homology, two nearly full-length cDNA clones coding for two different leghemoglobin-like proteins have been identified. The inserts of two other clones reveal a high degree of amino acid sequence homology (81% and 72%) to the early nodulin Enod2 from soybean; the characteristic heptapeptide repeat units PPHEKPP and PPYEKPP of the soybean Enod2 are conserved in the proteins encoded by these Sesbania cDNA clones. The time course of Enod2 and leghemoglobin mRNA appearance during the formation of stem nodules and root nodules on S. rostrata was analyzed by northern blot hybridization. Significant differences were found for the initiation of mRNA accumulation of these nodulins between S. rostrata and soybean.  相似文献   

4.
Genes and signal molecules involved in the rhizobia-leguminoseae symbiosis   总被引:1,自引:0,他引:1  
The symbiosis between Rhizobium bacteria and their host plants is dependent on the specific recognition of signal molecules produced by each partner. Many players in the signal exchange have been identified. Among them are signal molecules such as flavonoids, LCOs, auxin, cytokinin, ethylene and uridine and genes such as Enod40, Enod2 and Enod12. Their interconnection, however, is only starting to be understood. The most recent insights into their interconnection include: advances in the use of transgenic leguminous plants containing reporter gene constructs for studying the effect of the signal molecules; novel methods for delivery of signal molecules using ballistic microtargeting; and the discovery of the role of chitin oligosaccharides in animal embryogenesis.  相似文献   

5.
6.
7.
The cell growth and plastid development of cultured green tobacco cells were maintained by the phytohormone cytokinin. After subculture into cytokinin-free medium, when cytokinin treatment was resumed, physiological changes induced by cytokinin were analyzed. Changes in chlorophyll biosynthesis and photosynthetic gene expression were observed 1 week after cytokinin induction, and changes in cell growth were observed 2 weeks after cytokinin induction. Two cytokinin-induced genes (cig) were isolated from these cells using the fluorescent differential display technique. Northern analysis confirmed that expression of these cig was induced by both natural and synthetic cytokinins. The expression of cig1 was also induced by abscisic acid, and its cDNA sequence was similar to the proline dehydrogenase gene. The expression of cig2 is specific to cytokinin and is not induced by other phytohormones. The amino acid sequence encoded by cig2 is similar to the GDP/GTP exchange factor eIF2B, which regulates translation initiation. The expression of these cig suggests a complex induction system involving cytokinin and other phytohormones.  相似文献   

8.
The roles of auxin and cytokinin in cell cycle reactivation were studied during the first 48 h of culture of mesophyll protoplasts of Nicotiana tabacum. Using hormone delay and withdrawal studies we found that auxin was required by 0–4 h of culture, whereas cytokinin was not required until hour 10–12, which is 6–10 h before S phase. Cycloheximide blocks division, indicating that protein synthesis is required. In an effort to detect a molecular response to either hormone, we examined the expression of the cell cycle marker, cdc2. Cdc2 expression was detected by 12 h of culture, coincident with the timing of the cytokinin requirement and well before the entry into S. However, cdc2 was partially induced by either auxin or cytokinin alone, suggesting that cdc2 expression is not the primary target of either hormone. Our hormone delay experiments suggest that there are separate signal transduction pathways leading from auxin and from cytokinin to reactivation of the cell cycle and that these pathways converge before S. The underlying mechanisms for these distinct pathways remain to be elucidated. Received November 4, 1997; accepted October 7, 1998  相似文献   

9.
A novel cucumber mosaic virus inducible viral amplicon (CMViva) expression system has been developed that allows for tightly regulated chemically inducible expression of heterologous genes in plant hosts. Transient production of recombinant α1-antitrypsin (rAAT), a human blood protein, was demonstrated in Nicotiana benthamiana leaves. The highest production levels were obtained by co-infiltrating leaves with Agrobacterium tumefaciens cells containing CMViva carrying the AAT gene and A. tumefaciens cells carrying a binary vector constitutively expressing the gene silencing suppressor p19. Accumulation of up to thirty-fold more rAAT was observed in leaves (24 mg per 100 g leaf tissue) when compared with the expression levels observed using the cauliflower mosaic virus (CaMV) 35S promoter. Significantly, 70% of the rAAT produced using the CMViva expression system was found to be biologically active, a 170-fold increase in functional protein compared with the CaMV 35S expression system.  相似文献   

10.
R C Black  A N Binns  C F Chang    D G Lynn 《Plant physiology》1994,105(3):989-998
Mutations at the cytokinin biosynthesis locus (tmr) of Agrobacterium tumefaciens usually result in strains that induce tumors exhibiting the rooty phenotype associated with high auxin-to-cytokinin ratios. However, tobacco (Nicotiana tabacum cv Havana 425) leaf disc explants responded to tmr- mutant strain A356 by producing rapidly growing, unorganized tumors, indicating that these lines can grow in a cytokinin-independent fashion despite the absence of a functional tmr gene. Several methods have been used to characterize the physiological and cellular basis of this phenotype. The results indicate that tmr- tumors have a physiologically distinct mechanism for cytokinin-independent growth in comparison to tumors induced by wild-type bacteria. The cytokinin-independent phenotype of the tmr- transformants appears to be cell autonomous in nature: only the transformed cells and their progeny were capable of cytokinin-independent growth. Specifically, the tmr- tumors did not accumulate cytokinin, and clonal analysis indicated the tmr- transformed cells were not capable of stimulating the growth of neighboring nontransformed cells. Finally, the cytokinin-independent phenotype of the tmr- transformants was shown to be cold sensitive, whereas the wild-type tumors exhibited a cold-resistant cytokinin-independent phenotype. Potential mechanisms for this novel form of cytokinin-independent growth, including the role of the dehydrodiconiferyl alcohol glucosides found in both tumor types, are discussed.  相似文献   

11.
Cytokinins play an important role in plant development. We investigated the possibility that the nopaline Ti plasmid gene ( tzs ) from Agrobacterium tumefaciens could encode a protein able to participate in plant cytokinin production and lead to alterations in plant phenotype as a result of the expression of endogenous tzs . tzs was placed under the control of a heat‐inducible promoter from the Zea mays hsp70 gene. The expression of this fused gene was examined in transgenic Brassica napus plants. The tzs gene, which encodes the enzyme dimethylallyl transferase, was used as a cytokinin biosynthetic gene. The expression of the tzs gene was monitored by RNA hybridization and analysis of cytokinin content. Overproduction of cytokinin was observed even when the plants had not been heat‐shocked, and the plants displayed a reduced root system, increased height and branching, and delayed flowering. In addition, a significant increase in seed yield was observed in the transgenic plants, accounted for by increased number of seeds per silique and seed weight. The results suggest that increased levels of cytokinins, through the expression of tzs , are correlated with growth rather than with differentiation processes.  相似文献   

12.
Cooper JB  Long SR 《The Plant cell》1994,6(2):215-225
The development of nitrogen-fixing nodules is induced on the roots of legume host plants by Rhizobium bacteria. We employed a novel strategy to probe the underlying mechanism of nodule morphogenesis in alfalfa roots using pTZS, a broad host range plasmid carrying a constitutive trans-zeatin secretion (tzs) gene from Agrobacterium tumefaciens T37. This plasmid suppressed the Nod- phenotype of Rhizobium nodulation mutants such that mutants harboring pTZS stimulated the formation of nodulelike structures. Alfalfa roots formed more or fewer of these nodules according to both the nitrogen content of the environment and the position along the root at which the pTZS+ bacteria were applied, which parallels the physiological and developmental regulation of true Rhizobium nodule formation. This plasmid also conferred on Escherichia coli cells the ability to induce root cortical cell mitoses. Both the pattern of induced cell divisions and the spatially restricted expression of an alfalfa nodule-specific marker gene (MsENOD2) in pTZS-induced nodules support the conclusion that localized cytokinin production produces a phenocopy of nodule morphogenesis.  相似文献   

13.
14.
15.
A nucleotide sequence was identified approximately 650 bp upstream of the Sesbania rostrata leghemoglobin gene Srglb3 start codon, which interacts specifically with a proteinaceous DNA-binding factor found in nodule extracts but not in extracts from leaves or roots. The binding site for this factor was delimited using footprinting techniques. The DNA-binding activity of this factor was found to be heat stable, dependent on divalent cations, and derived from the (infecting) Azorhizobium caulinodans bacteria or bacteroids (A. caulinodans bacterial binding factor 1, AcBBF1). A 9- to 10-kD protein was isolated from a free-living culture of A. caulinodans that co-purifies with the DNA-binding activity (A. caulinodans bacterial binding protein 1, AcBBP1) and interacts specifically with its target (S. rostrata bacterial binding site 1, SrBBS1). The amino acid sequence of the N-terminal 27 residues of AcBBP1 was determined and was found to share significant similarity (46% identity; 68% similarity) with a domain of the herpes simplex virus major DNA-binding protein infected cell protein 8 (ICP8). An insertion mutation in the SrBBS1 was found to result in a substantial reduction of the expression of a Srglb3-gus reporter gene fusion in nodules of transgenic Lotus corniculatus plants, suggesting a role for this element in Srglb3 promoter activity. Based on these results, we propose that (a) bacterial transacting factor(s) may play a role in infected cell-specific expression of the symbiotically induced plant lb genes.  相似文献   

16.
拟南芥冷诱导型启动子CBF 3的克隆及活性检测   总被引:1,自引:0,他引:1  
目的:构建冷诱导型启动子CBF3基因的植物表达载体,并将其转入烟草。方法:以拟南芥基因组DNA为模板,通过特异PCR扩增,克隆冷诱导表达启动子CBF3(C-repeat binding factor)。用CBF3启动子替换pBI121载体上的35S启动子构建新的载体pBC-GUS,通过农杆菌介导的叶盘法转化烟草。结果:获得了转基因烟草,转基因烟草的GUS组织化学染色及PCR分析结果表明,在低温诱导下,CBF3启动子可增强GUS基因表达。结论:CBF3启动子可应用于植物抗冷基因工程研究。  相似文献   

17.
Azorhizobium caulinodans ORS571, a bacterium capable of nodulating roots and stems of the tropical legume Sesbania rostrata, has been shown to have no nodD-like gene located immediately upstream from its common nodABC locus. A clone carrying a functional nodD gene of strain ORS571 has now been isolated from a pLAFR1 gene library by screening for naringenin-induced expression of the common nod genes in an Agrobacterium background. Tn5 mutagenesis of the cloned insert DNA delimited the inducing activity to a +/- 0.8-kilobase-pair fragment. One of the Tn5 insertions in the activator locus was homogenotized in the ORS571 genome. This resulted in a mutant strain (ORS571-3) that was unable to induce common nod gene expression in the presence of host plant exudate or the flavanone naringenin and that had lost the capacity to nodulate the roots and stems of S. rostrata. Complementation of both mutant phenotypes was achieved upon introduction of the cloned nodD gene. Sequencing of the nodD locus indicated the presence of a single, 942-base-pair-long open reading frame (ORFD) with significant homology to the nodD gene of (brady)rhizobia. The level of homology, however, is the lowest thus far reported for this kind of gene. ORFD most likely initiates translation with a TTG start codon. Upstream from ORFD, a divergently oriented nod box-like sequence is present, the function of which remains to be determined.  相似文献   

18.
The nucleotide sequence of a Pseudomonas trans-zeatin producing gene (ptz) from the pCK1 plasmid of Pseudomonas syringae pv. savastanoi strain 1006 has been determined. This gene confers upon E. coli the ability to synthesize and secrete several cytokinins including trans-zeatin, iso-pentenyladenine and their respective N9-ribosyl derivatives. Sequence analysis indicates an open reading frame encoding a protein of 234 amino acids with a molecular weight of 26,816. Significant sequence homology is found between ptz and both the tzs and tmr genes from Agrobacterium tumefaciens. The results suggest a close relationship between the cytokinin biosynthetic pathways in P. savastanoi and A. tumefaciens.  相似文献   

19.
The trans-zeatin secretion locus (tzs), from the nopaline Ti plasmid of Agrobacterium tumefaciens strain T37, was cloned and the nucleotide sequence determined. This gene is located in the virulence region of pTiT37. The tzs gene is responsible for the secretion of trans-zeatin into bacterial culture medium and in addition has the cytokinin biosynthetic activity, dimethylallylpyrophosphate:AMP dimethylallyltransferase. Sequence analysis showed an open reading frame of 729 nucleotides, capable of encoding a protein of 27,545 daltons. A single new labelled protein of 27,200 daltons was detected in Escherichia coli maxicells expressing the cloned tzs gene. Significant sequence homology was observed between the tzs and the published tmr sequence from pTiT37.  相似文献   

20.
Transgenic plants offer promising alternative for large scale, sustainable production of safe, functional, recombinant proteins of therapeutic and industrial importance. Here, we report the expression of biologically active human alpha-1-antitrypsin in transgenic tomato plants. The 1,182 bp cDNA sequence of human AAT was strategically designed, modified and synthesized to adopt codon usage pattern of dicot plants, elimination of mRNA destabilizing sequences and modifications around 5' and 3' flanking regions of the gene to achieve high-level regulated expression in dicot plants. The native signal peptide sequence was substituted with modified signal peptide sequence of tobacco (Nicotiana tabacum) pathogenesis related protein PR1a, sweet potato (Ipomoea batatas) sporamineA and with dicot-preferred native signal peptide sequence of AAT gene. A dicot preferred translation initiation context sequence, 38 bp alfalfa mosaic virus untranslated region were incorporated at 5' while an endoplasmic reticulum retention signal (KDEL) was incorporated at 3' end of the gene. The modified gene was synthesized by PCR based method using overlapping oligonucleotides. Tomato plants were genetically engineered by nuclear transformation with Agrobacterium tumefaciens harbouring three different constructs pPAK, pSAK and pNAK having modified AAT gene with different signal peptide sequences under the control of CaMV35S duplicated enhancer promoter. Promising transgenic plants expressing recombinant AAT protein upto 1.55% of total soluble leaf protein has been developed and characterized. Plant-expressed recombinant AAT protein with molecular mass of around approximately 50 kDa was biologically active, showing high specific activity and efficient inhibition of elastase activity. The enzymatic deglycosylation established proper glycosylation of the plant-expressed recombinant AAT protein in contrast to unglycosylated rAAT expressed in E. coli ( approximately 45 kDa). Our results demonstrate feasibility for high-level expression of biologically active, glycosylated human alpha-1-antitrypsin in transgenic tomato plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号