首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adaptation in new environments depends on the amount of genetic variation available for evolution, and the efficacy by which natural selection discriminates among this variation. However, whether some ecological factors reveal more genetic variation, or impose stronger selection pressures than others, is typically not known. Here, we apply the enzyme kinetic theory to show that rising global temperatures are predicted to intensify natural selection throughout the genome by increasing the effects of DNA sequence variation on protein stability. We test this prediction by (i) estimating temperature-dependent fitness effects of induced mutations in seed beetles adapted to ancestral or elevated temperature, and (ii) calculate 100 paired selection estimates on mutations in benign versus stressful environments from unicellular and multicellular organisms. Environmental stress per se did not increase mean selection on de novo mutation, suggesting that the cost of adaptation does not generally increase in new ecological settings to which the organism is maladapted. However, elevated temperature increased the mean strength of selection on genome-wide polymorphism, signified by increases in both mutation load and mutational variance in fitness. These results have important implications for genetic diversity gradients and the rate and repeatability of evolution under climate change.  相似文献   

2.
Mutation has traditionally been considered a random process, but this paradigm is challenged by recent evidence of divergence rate heterogeneity in different genomic regions. One facet of mutation rate variation is the propensity for genetic change to correlate with the number of germ cell divisions, reflecting the replication-dependent origin of many mutations. Haldane was the first to connect this association of replication and mutation to the difference in the number of cell divisions in oogenesis (low) and spermatogenesis (usually high), and the resulting sex difference in the rate of mutation. The concept of male-biased mutation has been thoroughly analysed in recent years using an evolutionary approach, in which sequence divergence of autosomes and/or sex chromosomes are compared to allow inference about the relative contribution of mothers and fathers in the accumulation of mutations. For instance, assuming that a neutral sequence is analysed, that rate heterogeneity owing to other factors is cancelled out by the investigation of many loci and that the effect of ancestral polymorphism is properly taken into account, the male-to-female mutation rate ratio, alpham, can be solved from the observed difference in rate of X and Y chromosome divergence. The male mutation bias is positively correlated with the relative excess of cell divisions in the male compared to the female germ line, as evidenced by a generation time effect: in mammals, alpham is estimated at approximately 4-6 in primates, approximately 3 in carnivores and approximately 2 in small rodents. Another life-history correlate is sexual selection: when there is intense sperm competition among males, increased sperm production will be associated with a larger number of mitotic cell divisions in spermatogenesis and hence an increase in alpham. Male-biased mutation has implications for important aspects of evolutionary biology such as mate choice in relation to mutation load, sexual selection and the maintenance of genetic diversity despite strong directional selection, the tendency for a disproportionate large role of the X (Z) chromosome in post-zygotic isolation, and the evolution of sex.  相似文献   

3.
As the ultimate source of genetic diversity, spontaneous mutation is critical to the evolutionary process. The fitness effects of spontaneous mutations are almost always studied under controlled laboratory conditions rather than under the evolutionarily relevant conditions of the field. Of particular interest is the conditionality of new mutations—that is, is a new mutation harmful regardless of the environment in which it is found? In other words, what is the extent of genotype–environment interaction for spontaneous mutations? We studied the fitness effects of 25 generations of accumulated spontaneous mutations in Arabidopsis thaliana in two geographically widely separated field environments, in Michigan and Virginia. At both sites, mean total fitness of mutation accumulation lines exceeded that of the ancestors, contrary to the expected decrease in the mean due to new mutations but in accord with prior work on these MA lines. We observed genotype–environment interactions in the fitness effects of new mutations, such that the effects of mutations in Michigan were a poor predictor of their effects in Virginia and vice versa. In particular, mutational variance for fitness was much larger in Virginia compared to Michigan. This strong genotype–environment interaction would increase the amount of genetic variation maintained by mutation‐selection balance.  相似文献   

4.
Abstract Although much theory depends on the genome‐wide rate of deleterious mutations, good estimates of the mutation rate are scarce and remain controversial. Furthermore, mutation rate may not be constant, and a recent study suggests that mutation rates are higher in mildly stressful environments. If mutation rate is a function of condition, then individuals carrying more mutations will tend to be in worse condition and therefore produce more mutations. Here I examine the mean fitnesses of sexual and asexual populations evolving under such condition‐dependent mutation rates. The equilibrium mean fitness of a sexual population depends on the shape of the curve relating fitness to mutation rate. If mutation rate declines synergistically with increasing condition the mean fitness will be much lower than if mutation rate declines at a diminishing rate. In contrast, asexual populations are less affected by condition‐dependent mutation rates. The equilibrium mean fitness of an asexual population only depends on the mutation rate of the individuals in the least loaded class. Because such individuals have high fitness and therefore a low mutation rate, asexual populations experience less genetic load than sexual populations, thus increasing the twofold cost of sex.  相似文献   

5.
Mutations are the ultimate source of genetic diversity and their contributions to evolutionary process depend critically on their rate and their effects on traits, notably fitness. Mutation rate and mutation effect can be measured simultaneously through the use of mutation accumulation lines, and previous mutation accumulation studies measuring these parameters have been performed in laboratory conditions. However, estimation of mutation parameters for fitness in wild populations requires assays in environments where mutations are exposed to natural selection and natural environmental variation. Here we quantify mutation parameters in both the wild and greenhouse environments using 100 25th generation Arabidopsis thaliana mutation accumulation lines. We found significantly greater mutational variance and a higher mutation rate for fitness under field conditions relative to greenhouse conditions. However, our field estimates were low when scaled to natural environmental variation. Many of the mutation accumulation lines have increased fitness, counter to the expectation that nearly all mutations decrease fitness. A high mutation rate and a low mutational contribution to phenotypic variation may explain observed levels of natural genetic variation. Our findings indicate that mutation parameters are not fixed, but are variables whose values may reflect the specific environment in which mutations are tested.  相似文献   

6.
Sex chromosomes may provide a context for studying the local effects of mutation rate on molecular evolution, since the two types of sex chromosomes are generally exposed to different mutational environments in male and female germ lines. Importantly, recent studies of some vertebrates have provided evidence for a higher mutation rate among males than among females. Thus, in birds, the Z chromosome, which spends two thirds of its time in the male germ line, is exposed to more mutations than the female-specific W chromosome. We show here that levels of nucleotide diversity are drastically higher on the avian Z chromosome than in paralogous sequences on the W chromosome. In fact, no intraspecific polymorphism whatsoever was seen in about 3.4 kb of CHD1W intron sequence from a total of >150 W chromosome copies of seven different bird species. In contrast, the amount of genetic variability in paralogous sequences on the Z chromosome was significant, with an average pairwise nucleotide diversity (d) of 0.0020 between CHD1Z introns and with 37 segregating sites in a total of 3.8 kb of Z sequence. The contrasting levels of genetic variability on the avian sex chromosomes are thus in a direction predicted from a male-biased mutation rate. However, although a low gene number, as well as some other factors, argues against background selection and/or selective sweeps shaping the genetic variability of the avian W chromosome, we cannot completely exclude selection as a contributor to the low levels of variation on the W chromosome.  相似文献   

7.
Theories predict that the evolutionary rates of X-linked regions can differ from those of autosomal regions. The male-biased mutation theory predicts a slower rate of neutral substitution on the X chromosome (slow-X evolution), as the X spends less time in male germlines, where more mutations originate per generation than in female germlines. The fast-X theory, however, predicts a faster rate of adaptive substitution on the X chromosome when newly arising beneficial mutations are, on average, partially recessive (fast-X evolution), as the X enjoys a greater efficacy of positive selection. The slow- and fast-X processes are expected to interact as the degree of male-biased mutation can in turn influence the relative rate of adaptive evolution on the X. Here, we investigate lineage-specific variation in, and the interaction of, slow- and fast-X processes using genomic data from four primates. We find consistent evidence for slow-X evolution in all lineages. In contrast, evidence for fast-X evolution exists in only a subset of lineages. In particular, the marmoset lineage, which shows the strongest evidence of fast-X, exhibits the lowest male mutation bias. We discuss the possible interaction between slow- and fast-X evolution and other factors that influence the degrees of slow- and fast-X evolution.  相似文献   

8.
In an effort to provide insight into the role of mutation in the maintenance of genetic variance for life-history traits, we accumulated spontaneous mutations in 10 sets of clonal replicates of Daphnia pulex for approximately 30 generations and compared the variance generated by mutation with the standing level of variation in the wild population. Mutations for quantitative traits appear to arise at a fairly high rate in this species, on the order of at least 0.6 per character per generation, but have relatively small heterozygous effects, changing the phenotype by less than 2.5% of the mean. The mean persistence time of a new mutation affecting life-history/body-size traits is approximately 40 generations in the natural population, which requires an average selection coefficient against new mutations of approximately 3% in the heterozygous state. These data are consistent with the idea that the vast majority of standing genetic variance for life-history characters may be largely a consequence of the recurrent introduction of transient cohorts of mutations that are at least conditionally deleterious and raise issues about the meaning of conventional measures of standing levels of variation for fitness-related traits.  相似文献   

9.
By allowing mutations to accumulate spontaneously in different lines derived from a single female of an obligately parthenogenetic Daphnia, it has become possible to estimate the rate at which new genetic variance for life-history characters arises as well as to identify the average pleiotropic effects of mutant polygenes. The estimated polygenic mutation rates are quite compatible with those available for sexual organisms. The results are therefore in conflict with the hypothesis that parthenogens compensate for the loss of recombination by elevating the mutation rate. Based on these results, it is argued that the rate of phenotypic evolution may be enhanced as much as five-fold by sexuality. However, if dominance or epistatic gene interactions are of major importance, or if the sensitivity to environmental effects is reduced or the rate of polygenic mutation enhanced under asexuality, the full advantage of sex will not be attained and may even be reversed. Regardless of these conditions, it is clear that the mutational rate of production of polygenic variation is sufficient to allow significant rates of phenotypic evolution in purely asexual organisms.  相似文献   

10.
Sex allocation theory has proved extremely successful at predicting when individuals should adjust the sex of their offspring in response to environmental conditions. However, we know rather little about the underlying genetics of sex ratio or how genetic architecture might constrain adaptive sex-ratio behavior. We examined how mutation influenced genetic variation in the sex ratios produced by the parasitoid wasp Nasonia vitripennis. In a mutation accumulation experiment, we determined the mutability of sex ratio, and compared this with the amount of genetic variation observed in natural populations. We found that the mutability (h(2)(m)) ranges from 0.001 to 0.002, similar to estimates for life-history traits in other organisms. These estimates suggest one mutation every 5-60 generations, which shift the sex ratio by approximately 0.01 (proportion males). In this and other studies, the genetic variation in N. vitripennis sex ratio ranged from 0.02 to 0.17 (broad-sense heritability, H(2)). If sex ratio is maintained by mutation-selection balance, a higher genetic variance would be expected given our mutational parameters. Instead, the observed genetic variance perhaps suggests additional selection against sex-ratio mutations with deleterious effects on other fitness traits as well as sex ratio (i.e., pleiotropy), as has been argued to be the case more generally.  相似文献   

11.
A proposed benefit to sexual selection is that it promotes purging of deleterious mutations from populations. For this benefit to be realized, sexual selection, which is usually stronger on males, must purge mutations deleterious to both sexes. Here, we experimentally test the hypothesis that sexual selection on males purges deleterious mutations that affect both male and female fitness. We measured male and female fitness in two panels of spontaneous mutation‐accumulation lines of the fly, Drosophila serrata, each established from a common ancestor. One panel of mutation accumulation lines limited both natural and sexual selection (LS lines), whereas the other panel limited natural selection, but allowed sexual selection to operate (SS lines). Although mutation accumulation caused a significant reduction in male and female fitness in both the LS and SS lines, sexual selection had no detectable effect on the extent of the fitness reduction. Similarly, despite evidence of mutational variance for fitness in males and females of both treatments, sexual selection had no significant impact on the amount of mutational genetic variance for fitness. However, sexual selection did reshape the between‐sex correlation for fitness: significantly strengthening it in the SS lines. After 25 generations, the between‐sex correlation for fitness was positive but considerably less than one in the LS lines, suggesting that, although most mutations had sexually concordant fitness effects, sex‐limited, and/or sex‐biased mutations contributed substantially to the mutational variance. In the SS lines this correlation was strong and could not be distinguished from unity. Individual‐based simulations that mimick the experimental setup reveal two conditions that may drive our results: (1) a modest‐to‐large fraction of mutations have sex‐limited (or highly sex‐biased) fitness effects, and (2) the average fitness effect of sex‐limited mutations is larger than the average fitness effect of mutations that affect both sexes similarly.  相似文献   

12.
Hermisson J  Pennings PS 《Genetics》2005,169(4):2335-2352
A population can adapt to a rapid environmental change or habitat expansion in two ways. It may adapt either through new beneficial mutations that subsequently sweep through the population or by using alleles from the standing genetic variation. We use diffusion theory to calculate the probabilities for selective adaptations and find a large increase in the fixation probability for weak substitutions, if alleles originate from the standing genetic variation. We then determine the parameter regions where each scenario-standing variation vs. new mutations-is more likely. Adaptations from the standing genetic variation are favored if either the selective advantage is weak or the selection coefficient and the mutation rate are both high. Finally, we analyze the probability of "soft sweeps," where multiple copies of the selected allele contribute to a substitution, and discuss the consequences for the footprint of selection on linked neutral variation. We find that soft sweeps with weaker selective footprints are likely under both scenarios if the mutation rate and/or the selection coefficient is high.  相似文献   

13.
New germline mutations in the human retinoblastoma gene are known to arise preferentially on paternally derived chromosomes, but the magnitude of that bias has not been measured. We evaluated 49 cases with a new germline mutation and found that in 40 cases (82%) the mutation arose on the paternally derived allele. We also evaluated 48 cases likely to have a somatic initial mutation; in this group the initial mutation arose on paternal or maternal chromosomes with approximately equal frequency. There was no statistically significant difference in the average age of fathers of children with new paternal germline mutations from the average age of fathers of children with new maternal germline mutations or somatic initial mutations. Combining the data with that from previous reports from other groups, the proportion of new germline mutations arising on a paternally derived allele is 85% (based on 72 cases; 95% confidence interval = 76–93%). This number can be useful in the genetic counseling of some families with retinoblastoma. Received: 18 December 1996 / Accepted: 30 April 1997  相似文献   

14.
Hansen TF  Wagner GP 《Genetics》2001,158(1):477-485
An approximate solution for the mean fitness in mutation-selection balance with arbitrary order of epistatic interaction is derived. The solution is based on the assumptions of coupling equilibrium and that the interaction effects are multilinear. We find that the effect of m-order epistatic interactions (i.e., interactions among groups of m loci) on the load is dependent on the total genomic mutation rate, U, to the mth power. Thus, higher-order gene interactions are potentially important if U is large and the interaction density among loci is not too low. The solution suggests that synergistic epistasis will decrease the mutation load and that variation in epistatic effects will elevate the load. Both of these results, however, are strictly true only if they refer to epistatic interaction strengths measured in the optimal genotype. If gene interactions are measured at mutation-selection equilibrium, only synergistic interactions among even numbers of genes will reduce the load. Odd-ordered synergistic interactions will then elevate the load. There is no systematic relationship between variation in epistasis and load at equilibrium. We argue that empirical estimates of gene interaction must pay attention to the genetic background in which the effects are measured and that it may be advantageous to refer to average interaction intensities as measured in mutation-selection equilibrium. We derive a simple criterion for the strength of epistasis that is necessary to overcome the twofold disadvantage of sex.  相似文献   

15.
Current information on the rate of mutation and the fraction of sites in the genome that are subject to selection suggests that each human has received, on average, at least two new harmful mutations from its parents. These mutations were subsequently removed by natural selection through reduced survival or fertility. It has been argued that the mutation load, the proportional reduction in population mean fitness relative to the fitness of an idealized mutation-free individual, allows a theoretical prediction of the proportion of individuals in the population that fail to reproduce as a consequence of these harmful mutations. Application of this theory to humans implies that at least 88% of individuals should fail to reproduce and that each female would need to have more than 16 offspring to maintain population size. This prediction is clearly at odds with the low reproductive excess of human populations. Here, we derive expressions for the fraction of individuals that fail to reproduce as a consequence of recurrent deleterious mutation () for a model in which selection occurs via differences in relative fitness, such as would occur through competition between individuals. We show that is much smaller than the value predicted by comparing fitness to that of a mutation-free genotype. Under the relative fitness model, we show that depends jointly on U and the selective effects of new deleterious mutations and that a species could tolerate 10's or even 100's of new deleterious mutations per genome each generation.  相似文献   

16.
N P Sharp  C M Vincent 《Heredity》2015,114(4):367-372
The life history strategies of males and females are often divergent, creating the potential for sex differences in selection. Deleterious mutations may be subject to stronger selection in males, owing to sexual selection, which can improve the mean fitness of females and reduce mutation load in sexual populations. However, sex differences in selection might also maintain sexually antagonistic genetic variation, creating a sexual conflict load. The overall impact of separate sexes on fitness is unclear, but the net effect is likely to be positive when there is a large sex difference in selection against deleterious mutations. Parasites can also have sex-specific effects on fitness, and there is evidence that parasites can intensify the fitness consequences of deleterious mutations. Using lines that accumulated mutations for over 60 generations, we studied the effect of the pathogenic bacterium Pseudomonas aeruginosa on sex differences in selection in the fruit fly Drosophila melanogaster. Pseudomonas infection increased the sex difference in selection, but may also have weakened the intersexual correlation for fitness. Our results suggest that parasites may increase the benefits of sexual selection.  相似文献   

17.
There are several lines of evidence supporting the role of de novo mutations as a mechanism for common disorders, such as autism and schizophrenia. First, the de novo mutation rate in humans is relatively high, so new mutations are generated at a high frequency in the population. However, de novo mutations have not been reported in most common diseases. Mutations in genes leading to severe diseases where there is a strong negative selection against the phenotype, such as lethality in embryonic stages or reduced reproductive fitness, will not be transmitted to multiple family members, and therefore will not be detected by linkage gene mapping or association studies. The observation of very high concordance in monozygotic twins and very low concordance in dizygotic twins also strongly supports the hypothesis that a significant fraction of cases may result from new mutations. Such is the case for diseases such as autism and schizophrenia. Second, despite reduced reproductive fitness1 and extremely variable environmental factors, the incidence of some diseases is maintained worldwide at a relatively high and constant rate. This is the case for autism and schizophrenia, with an incidence of approximately 1% worldwide. Mutational load can be thought of as a balance between selection for or against a deleterious mutation and its production by de novo mutation. Lower rates of reproduction constitute a negative selection factor that should reduce the number of mutant alleles in the population, ultimately leading to decreased disease prevalence. These selective pressures tend to be of different intensity in different environments. Nonetheless, these severe mental disorders have been maintained at a constant relatively high prevalence in the worldwide population across a wide range of cultures and countries despite a strong negative selection against them2. This is not what one would predict in diseases with reduced reproductive fitness, unless there was a high new mutation rate. Finally, the effects of paternal age: there is a significantly increased risk of the disease with increasing paternal age, which could result from the age related increase in paternal de novo mutations. This is the case for autism and schizophrenia3. The male-to-female ratio of mutation rate is estimated at about 4–6:1, presumably due to a higher number of germ-cell divisions with age in males. Therefore, one would predict that de novo mutations would more frequently come from males, particularly older males4. A high rate of new mutations may in part explain why genetic studies have so far failed to identify many genes predisposing to complexes diseases genes, such as autism and schizophrenia, and why diseases have been identified for a mere 3% of genes in the human genome. Identification for de novo mutations as a cause of a disease requires a targeted molecular approach, which includes studying parents and affected subjects. The process for determining if the genetic basis of a disease may result in part from de novo mutations and the molecular approach to establish this link will be illustrated, using autism and schizophrenia as examples.  相似文献   

18.
Mutation load is a key parameter in evolutionary theories, but relatively little empirical information exists on the mutation load of populations, or the elimination of this load through selection. We manipulated the opportunity for sexual selection within a mutation accumulation divergence experiment to determine how sexual selection on males affected the accumulation of mutations contributing to sexual and nonsexual fitness. Sexual selection prevented the accumulation of mutations affecting male mating success, the target trait, as well as reducing mutation load on productivity, a nonsexual fitness component. Mutational correlations between mating success and productivity (estimated in the absence of sexual selection) were positive. Sexual selection significantly reduced these fitness component correlations. Male mating success significantly diverged between sexual selection treatments, consistent with the fixation of genetic differences. However, the rank of the treatments was not consistent across assays, indicating that the mutational effects on mating success were conditional on biotic and abiotic context. Our experiment suggests that greater insight into the genetic targets of natural and sexual selection can be gained by focusing on mutational rather than standing genetic variation, and on the behavior of trait variances rather than means.  相似文献   

19.
Because spontaneous mutation is the source of all genetic diversity, measuring mutation rates can reveal how natural selection drives patterns of variation within and between species. We sequenced eight genomes produced by a mutation-accumulation experiment in Drosophila melanogaster. Our analysis reveals that point mutation and small indel rates vary significantly between the two different genetic backgrounds examined. We also find evidence that ∼2% of mutational events affect multiple closely spaced nucleotides. Unlike previous similar experiments, we were able to estimate genome-wide rates of large deletions and tandem duplications. These results suggest that, at least in inbred lines like those examined here, mutational pressures may result in net growth rather than contraction of the Drosophila genome. By comparing our mutation rate estimates to polymorphism data, we are able to estimate the fraction of new mutations that are eliminated by purifying selection. These results suggest that ∼99% of duplications and deletions are deleterious—making them 10 times more likely to be removed by selection than nonsynonymous mutations. Our results illuminate not only the rates of new small- and large-scale mutations, but also the selective forces that they encounter once they arise.  相似文献   

20.
The widespread utility of hypervariable loci in genetic studies derives from the high mutation rate, and thus the high polymorphism, of these loci. Recent evidence suggests that mutation rates can be extremely high and may be male biased (occurring in the male germ-line). These two factors combined may result in erroneous overestimates of extrapair paternity, since legitimate offspring with novel alleles will have more mismatches with respect to the biological father than the biological mother. As mutations are male driven, increasing the number of hypervariable loci screened may simply increase the number of mismatches between fathers and their legitimate offspring. Here we describe a simple statistic, the probability of resemblance (PR), to distinguish between mismatches due to parental misassignment versus mutation in either sex or null alleles. We apply this method to parentage data on thick-billed murres (Uria lomvia), and demonstrate that, without considering either mutations or male-biased mutation rates, cases of extrapair paternity (7% in this study) would be grossly overestimated (14.5%-22%). The probability of resemblance can be utilized in parentage studies of any sexually reproducing species when allele or haplotype frequency data are available for putative parents and offspring. We suggest calculating this probability to correctly categorize legitimate offspring when mutations and null alleles may cause mismatches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号