首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have fabricated double-stranded DNA (dsDNA) microarrays containing unimolecular hairpin dsDNA probes immobilized on glass slides. The unimolecular hairpin dsDNA microarrays were manufactured by four steps: Firstly, synthesizing single-stranded DNA (ssDNA) oligonucleotides with two reverse-complementary sequences at 3' hydroxyl end and an overhang sequence at 5' amino end. Secondly, microspotting ssDNA on glutaraldehyde-derived glass slide to form ssDNA microarrays. Thirdly, annealing two reverse-complementary sequences to form hairpin primer at 3' end of immobilized ssDNA and thus to create partial-dsDNA microarray. Fourthly, enzymatically extending hairpin primer to convert partial-dsDNA microarrays into complete-dsDNA microarray. The excellent efficiency and high accuracy of the enzymatic synthesis were demonstrated by incorporation of fluorescently labeled dUTPs in Klenow extension and digestion of dsDNA microarrays with restriction endonuclease. The accessibility and specificity of the DNA-binding proteins binding to dsDNA microarrays were verified by binding Cy3-labeled NF-kappaB to dsDNA microarrays. The dsDNA microarrays have great potential to provide a high-throughput platform for investigation of sequence-specific DNA/protein interactions involved in gene expression regulation, restriction and so on.  相似文献   

2.
T7 Exonuclease (T7 Exo) DNA digestion reactions were studied using direct single-molecule observations in microflow channels. DNA digestion reactions were directly observed by staining template DNA double-stranded regions with SYTOX Orange and staining single-stranded (digested) regions with a fluorescently labeled ssDNA-recognizing peptide (ssBP-488). Sequentially acquired photographs demonstrated that a double-stranded region monotonously shortened as a single-stranded region monotonously increased from the free end during a DNA digestion reaction. Furthermore, DNA digestion reactions were directly observed both under pulse-chase conditions and under continuous buffer flow conditions with T7 Exo. Under pulse-chase conditions, the double-stranded regions of λDNA monotonously shortened by a DNA digestion reaction with a single T7 Exo molecule, with an estimated average DNA digestion rate of 5.7 bases/s and a processivity of 6692 bases. Under continuous buffer flow conditions with T7 Exo, some pauses were observed during a DNA digestion reaction and double-stranded regions shortened linearly except during these pauses. The average DNA digestion rate was estimated to be 5.3 bases/s with a processivity of 5072 bases. Thus, the use of our direct single-molecule observations using a fluorescently labeled ssDNA-recognizing peptide (ssBP-488) was an effective analytic method for investigating DNA metabolic processes.  相似文献   

3.
Substrate specificities of bacterial and human AlkB proteins   总被引:2,自引:3,他引:2  
Methylating agents introduce cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues into nucleic acids, and it was recently demonstrated that the Escherichia coli AlkB protein and two human homologues, hABH2 and hABH3, can remove these lesions from DNA by oxidative demethylation. Moreover, AlkB and hABH3 were also found to remove 1-meA and 3-meC from RNA, suggesting that cellular RNA repair can occur. We have here studied the preference of AlkB, hABH2 and hABH3 for single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), and show that AlkB and hABH3 prefer ssDNA, while hABH2 prefers dsDNA. This was consistently observed with three different oligonucleotide substrates, implying that the specificity for single-stranded versus double-stranded DNA is sequence independent. The dsDNA preference of hABH2 was observed only in the presence of magnesium. The activity of the enzymes on single-stranded RNA (ssRNA), double-stranded RNA (dsRNA) and DNA/RNA hybrids was also investigated, and the results generally confirm the notion that while AlkB and hABH3 tend to prefer single-stranded nucleic acids, hABH2 is more active on double-stranded substrates. These results may contribute to identifying the main substrates of bacterial and human AlkB proteins in vivo.  相似文献   

4.
To develop a high-performance method for measuring the length of double-stranded DNA (dsDNA) fragments, the capability of fluorescence correlation spectroscopy (FCS) was examined. To omit troublesome and time-consuming labeling operations such as PCR with fluorescently labeled mononucleotides or primers, intercalation of dimeric cyanine dye YOYO-1 iodide (YOYO) to dsDNA was utilized as a simple labeling method. Various lengths of dsDNA fragments were prepared and mixed with YOYO prior to FCS, and the dependence of the diffusion time of a dsDNA-YOYO complex on the length of dsDNA fragment and the dsDNA/YOYO ratio was investigated. It was successfully demonstrated that the dsDNA length can be measured using YOYO and FCS, and the calibration curve was developed taking into account the rewinding and expansion of the dsDNA fragment caused by YOYO intercalation.  相似文献   

5.
Hauck B  Zhao W  High K  Xiao W 《Journal of virology》2004,78(24):13678-13686
Adeno-associated virus (AAV) is a unique gene transfer vector which takes approximately 4 to 6 weeks to reach its expression plateau. The mechanism for this slow-rise expression profile was proposed to be inefficient second-strand DNA synthesis from the input single-stranded (ss) DNA viral genome. In order to clarify the status of ss AAV genomes, we generated AAV vectors labeled with bromodeoxyuridine (BrdU), a nucleotide analog that can be incorporated into the AAV genome and packaged into infectious virions. Since BrdU-DNA can be detected only by an anti-BrdU antibody when DNA is in an ss form, not in a double-stranded (ds) form, ss AAV genomes with BrdU can be readily tracked in situ. Although ss AAV DNA was abundant by Southern blot analysis, free ss AAV genomes were not detectable after AAV transduction by this new detection method. Further Southern blot analysis of viral DNA and virions revealed that ss AAV DNA was protected within virions. Extracted cellular fractions demonstrated that viral particles in host cells remained infectious. In addition, a significant amount of AAV genomes was degraded after AAV transduction. Therefore, we conclude that the amount of free ss DNA is not abundant during AAV transduction. AAV transduction is limited by the steps that affect AAV ss DNA release (i.e., uncoating) before second-strand DNA synthesis can occur. AAV ss DNA released from viral uncoating is either converted into ds DNA efficiently or degraded by cellular DNA repair mechanisms as damaged DNA. This study elucidates a mechanism that can be exploited to develop new strategies to improve AAV vector transduction efficiency.  相似文献   

6.
Sizing of DNA fragments is a routine analysis traditionally performed on agarose or polyacrylamide gels. Electrophoretic analysis is labor-intensive with only limited potential for automation. Recovery of DNA fragments from gels is cumbersome. We present data on automated, size-based separation of DNA fragments by ion-pair reversed-phase high performance liquid chromatography (IP RP HPLC) - DNA chromatography - on the WAVE DNA Fragment Analysis System with the DNASep cartridge. This system is suitable for accurate and rapid sizing of double-stranded (ds) DNA fragments from 50 to ca. 2000 base pairs (bp). Fluorescently labeled DNA fragments are compatible with the technology. Length-dependent separation of dsDNA fragments is sequence independent and retention times are highly reproducible. The resolving capabilities of DNA chromatography are illustrated by the analysis of multiple DNA size markers. Resolved dsDNA fragments are easily collected and are suitable for downstream applications such as sequencing and cloning. DNA chromatography under denaturing conditions with fluorescently labeled DNA fragments offers a means for the separation and purification of individual strands of dsDNA. Analysis of DNA fragments on the WAVE System is highly automated and requires minimal manual intervention. DNA chromatography offers a reliable and automated alternative to gel electrophoresis for the analysis of DNA fragments.  相似文献   

7.
Krylova SM  Musheev M  Nutiu R  Li Y  Lee G  Krylov SN 《FEBS letters》2005,579(6):1371-1375
Tau is a microtubule-associated protein, which plays an important role in physiology and pathology of neurons. Tau has been recently reported to bind double-stranded DNA (dsDNA) but not to bind single-stranded DNA (ssDNA) [Cell. Mol. Life Sci. 2003, 60, 413-421]. Here, we prove that tau binds not only dsDNA but also ssDNA. This finding was facilitated by using two kinetic capillary electrophoresis methods: (i) non-equilibrium capillary electrophoresis of equilibrium mixtures (NECEEM); (ii) affinity-mediated NECEEM. Using the new approach, we observed, for the first time, that tau could induce dissociation of strands in dsDNA by binding one of them in a sequence-specific fashion. Moreover, we determined the equilibrium dissociation constants for all tau-DNA complexes studied.  相似文献   

8.
Two separate assays, one that requires stable integration of recombination products and one that does not, were employed to elucidate the role of single-stranded DNA in extrachromosomal homologous recombination in Nicotiana tabacum. Both assays revealed that single-stranded DNA in linear and in circular forms was an efficient substrate for recombination, provided that the cotransformed recombination substrates were of complementary sequence, so that direct annealing was possible. Recombination was inefficient when both single-stranded recombination partners contained homologous regions of identical sequence and generation of a double-stranded DNA was required prior to heteroduplex formation. These results indicate that direct annealing of single strands is an important initial step for intermolecular recombination in tobacco cells. Annealed cotransformed single-stranded molecules yielded intermediates that could be further processed by either continuous or discontinuous second-strand synthesis. The type of intermediate had no influence on the recombination efficiency. Double-stranded circles were unable to recombine efficiently either with each other or with single-stranded DNA. Our results suggest that a helicase activity is involved in the initial steps of double-stranded DNA recombination which unwinds duplex molecules at the site of double-strand breaks.  相似文献   

9.
We describe the synthesis of peptide nucleic acid (PNA)-titanium dioxide (TiO2) nanoconjugates and several novel methods developed to investigate the DNA hybridization behaviors of these constructs. PNAs are synthetic DNA analogs resistant to degradation by cellular enzymes that hybridize to single-stranded DNA (ssDNA) with higher affinity than DNA oligonucleotides, invade double-stranded DNA (dsDNA), and form different PNA/DNA complexes. Previously, we developed a DNA-TiO2 nanoconjugate capable of hybridizing to target DNA intracellularly in a sequence-specific manner with the ability to cleave DNA when excited by electromagnetic radiation but susceptible to degradation that may lower its intracellular targeting efficiency and retention time. PNA-TiO2 nanoconjugates described in the current article hybridize to target ssDNA, oligonucleotide dsDNA, and supercoiled plasmid DNA under physiological-like ionic and temperature conditions, enabling rapid, inexpensive, sequence-specific concentration of nucleic acids in vitro. When modified by the addition of imaging agents or peptides, hybridization capabilities of PNA-TiO2 nanoconjugates are enhanced, providing essential benefits for numerous in vitro and in vivo applications. The series of experiments shown here could not be done with either TiO2-DNA nanoconjugates or PNAs alone, and the novel methods developed will benefit studies of numerous other nanoconjugate systems.  相似文献   

10.
A method for the preparation of homogeneous, single-stranded polydeoxynucleotides of desired length up to 800 bases is described. The procedure entails 1) generation of double-stranded DNA of desired length by PCR using a pair of primers of which one is biotinylated and the other is either unlabeled or fluorescently labeled, 2) isolation of PCR products by agarose slab gel electrophoresis, 3) recovery of desired product by electroelution, 4) binding of the product to streptavidin-coated magnetic beads and is followed by 5) duplex denaturation and removal of the unbound single strand that is either unlabeled or fluorescently labeled. Final product characteristics were determined by capillary gel electrophoresis with fluorescence detection. Up to microgram quantities of homogeneous single-stranded DNA of a desired length were obtained. These can be used as single-stranded size standards in capillary gel electrophoresis experiments as well as in other techniques requiring such standards.  相似文献   

11.
We demonstrate that S1 nuclease converts supercoiled plasmid DNA to unit-length, linear dsDNA through the creation of a single, double-stranded break in a plasmid molecule. These double-stranded breaks occur not only in the origin of replication near inverted repeats but also at a wide variety of locations throughout the plasmid. S1 nuclease exhibits this activity under conditions typically employed for the nuclease's single-stranded nuclease activity. Thus, S1 nuclease digestion of plasmid DNA, unlike analogous digestion with DNaseI, effectively halts after the first double-stranded break. This property makes easier the construction of large domain insertion libraries in which the goal is to insert linear DNA at a variety of locations throughout a plasmid. We used this property to create a library in which a circularly permuted TEM1 β-lactamase gene was inserted throughout a plasmid containing the gene encoding Escherichia coli ribose binding protein. Gene fusions that encode allosteric switch proteins in which ribose modulates β-lactamase catalytic activity were isolated from this library using a combination of a genetic selection and a screen.  相似文献   

12.
Chemical synthesis of oligonucleotides is a widely used tool in the field of biochemistry. Several methods for gene synthesis have been introduced in the growing area of genomics. In this paper, a novel method of constructing dsDNA is proposed. Short (28-mer) oligo fragments from a library were assembled through successive annealing and ligation processes, followed by PCR. First, two oligo fragments annealed to form a dsDNA molecule. The double-stranded oligo was immobilized onto magnetic beads (solid support) via streptavidin-biotin binding. Next, single-stranded oligo fragments were added successively through ligation to form the complete DNA molecule. The synthesized DNA was amplified through PCR and gel electrophoresis was used to characterize the product. Sanger sequencing showed that more than 97% of the nucleotides matched the expected sequence. Extending the length of the DNA molecule by adding single-stranded oligonucleotides from a basis set (library) via ligation enables a more convenient and rapid mechanism for the design and synthesis of oligonucleotides on the go. Coupled with an automated dispensing system and libraries of short oligo fragments, this novel DNA synthesis method would offer an efficient and cost-effective method for producing dsDNA.  相似文献   

13.
The active DNA-dependent ATPase A domain (ADAAD), a member of the SWI2/SNF2 family, has been shown to bind DNA in a structure-specific manner, recognizing DNA molecules possessing double-stranded to single-stranded transition regions leading to ATP hydrolysis. Extending these studies we have delineated the structural requirements of the DNA effector for ADAAD and have shown that the single-stranded and double-stranded regions both contribute to binding affinity while the double-stranded region additionally plays a role in determining the rate of ATP hydrolysis. We have also investigated the mechanism of interaction of DNA and ATP with ADAAD and shown that each can interact independently with ADAAD in the absence of the other. Furthermore, the protein can bind to dsDNA as well as ssDNA molecules. However, the conformation change induced by the ssDNA is different from the conformational change induced by stem-loop DNA (slDNA), thereby providing an explanation for the observed ATP hydrolysis only in the presence of the double-stranded:single-stranded transition (i.e. slDNA).  相似文献   

14.
Li H  Zhai J  Sun X 《PloS one》2011,6(4):e18958
In this paper, we report on the large-scale formation of supramolecular rhombus microparticles (SRMs) driven by electrostatic assembly, carried out by direct mixing of an aqueous HAuCl(4) solution and an ethanol solution of 4,4'-bipyridine at room temperature. We further demonstrate their use as an effective fluorescent sensing platform for nucleic acid detection with a high selectivity down to single-base mismatch. The general concept used in this approach is based on adsorption of the fluorescently labeled single-stranded DNA (ssDNA) probe by SRM, which is accompanied by substantial fluorescence quenching. In the following assay, specific hybridization with its target to form double-stranded DNA (dsDNA) results in desorption of ssDNA from SRM surface and subsequent fluorescence recovery.  相似文献   

15.
The in vitro product of mouse leukemia virus deoxyribonucleic acid (DNA) polymerase can be separated into two fractions by sedimentation in sucrose gradients. These two fractions were analyzed for their content of single-stranded DNA, double-stranded DNA, and DNA-ribonucleic acid (RNA) hybrid by (i) digestion with enzymes of known specificity and (ii) equilibrium centrifugation in Cs(2)SO(4) gradients. The major fraction early in the reaction contained equal amounts of single-stranded DNA and DNA-RNA hybrid and little double-stranded DNA. The major fraction after extensive synthesis contained equal amounts of single-and double-stranded DNA and little hybrid. In the presence of actinomycin D, the predominant product was single-stranded DNA. To account for these various forms of DNA, we postulate the following model: the first DNA synthesis occurs in a replicative complex containing growing DNA molecules attached to an RNA molecule. Each DNA molecule is displaced as single-stranded DNA by the synthesis of the following DNA strand, and the single-stranded DNA is copied to form double-stranded DNA either before or after release of the single strand from the RNA. Actinomycin blocks this conversion of single-to double-stranded DNA.  相似文献   

16.
The herpes simplex virus, type I origin-binding protein, OBP, is a superfamily II DNA helicase encoded by the UL9 gene. OBP binds in a sequence-specific and cooperative way to the viral origin of replication oriS. OBP may unwind partially and introduce a hairpin into the double-stranded origin of replication. The formation of the novel conformation referred to as oriS* also requires the single-stranded DNA-binding protein, ICP8, and ATP hydrolysis. OBP forms a stable complex with oriS*. The hairpin in oriS* provides a site for sequence-specific attachment, and a single-stranded region triggers ATP hydrolysis. Here we use Escherichia coli exonuclease I to map the binding of the C-terminal domain of OBP to the hairpin and the helicase domains to the single-stranded tail. The helicase domains cover a stretch of 23 nucleotides of single-stranded DNA. Using streptavidin-coated magnetic beads, we show that OBP may bind two copies of double-stranded DNA (one biotin-labeled and the other one radioactively labeled) but only one copy of oriS*. It is the length of the single-stranded tail that determines the stoichiometry of OBP.DNA complexes. OBP interacts with the bases of the single-stranded tail, and ATP hydrolysis is triggered by position-specific interactions between OBP and bases in the single-stranded tail of oriS*.  相似文献   

17.
18.
Rolling-circle amplification under topological constraints   总被引:6,自引:2,他引:4       下载免费PDF全文
We have performed rolling-circle amplification (RCA) reactions on three DNA templates that differ distinctly in their topology: an unlinked DNA circle, a linked DNA circle within a pseudorotaxane-type structure and a linked DNA circle within a catenane. In the linked templates, the single-stranded circle (dubbed earring probe) is threaded, with the aid of two peptide nucleic acid openers, between the two strands of double-stranded DNA (dsDNA). We have found that the RCA efficiency of amplification was essentially unaffected when the linked templates were employed. By showing that the DNA catenane remains intact after RCA reactions, we prove that certain DNA polymerases can carry out the replicative synthesis under topological constraints allowing detection of several hundred copies of a dsDNA marker without DNA denaturation. Our finding may have practical implications in the area of DNA diagnostics.  相似文献   

19.
F Li  S L Liu  J I Mullins 《BioTechniques》1999,27(4):734-738
DpnI can cleave fully methylated parental DNA while leaving hemi-methylated DNA intact. Based on this observation, we developed a rapid site-directed mutagenesis method using uracil-containing, double-stranded (ds)DNA templates and DpnI digestion. A 38% mutation efficiency was achieved by DpnI treatment of the mutagenic strand-extension reaction, and it increased to 70%-91% when uracil-containing dsDNA templates were used. This method compares favorably to the most efficient current methods, but is simpler and does not require the use of single-stranded templates or phage vectors.  相似文献   

20.
A simple and rapid method for the analysis of genetic polymorphisms has been developed using allele-specific oligonucleotide arrays bound to glass supports. Allele-specific oligonucleotides are covalently immobilized on glass slides in arrays of 3 mm spots. Genomic DNA is amplified by PCR using one fluorescently tagged primer oligonucleotide and one biotinylated primer oligonucleotide. The two complementary DNA strands are separated, the fluorescently tagged strand is hybridized to the support-bound oligonucleotide array, and the hybridization pattern is detected by fluorescence scanning. Multiple polymorphisms present in the PCR product may be detected in parallel. The effect of spacer length, surface density and hybridization conditions were evaluated, as was the relative efficacy of hybridization with single or double-stranded PCR products. The utility of the method was demonstrated in the parallel analysis of 5 point mutations from exon 4 of the human tyrosinase gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号