首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA interference can be used as a tool for gene silencing mediated by small interfering RNAs (siRNA). The critical step in effective and specific RNAi processing is the selection of suitable constructs. Major design criteria, i.e., Reynolds’s design rules, thermodynamic stability, internal repeats, immunostimulatory motifs were emphasized and implemented in the siRNA design tool. The tool provides thermodynamic stability score, GC content and a total score based on other design criteria in the output. The viability of the tool was established with different datasets. In general, the siRNA constructs produced by the tool had better thermodynamic score and positional properties. Comparable thermodynamic scores and better total scores were observed with the existing tools. Moreover, the results generated had comparable off-target silencing effect. Criteria evaluations with additional criteria were achieved in WEKA.  相似文献   

2.
Parker JS  Roe SM  Barford D 《The EMBO journal》2004,23(24):4727-4737
RNA silencing regulates gene expression through mRNA degradation, translation repression and chromatin remodelling. The fundamental engines of RNA silencing are RISC and RITS complexes, whose common components are 21-25 nt RNA and an Argonaute protein containing a PIWI domain of unknown function. The crystal structure of an archaeal Piwi protein (AfPiwi) is organised into two domains, one resembling the sugar-binding portion of the lac repressor and another with similarity to RNase H. Invariant residues and a coordinated metal ion lie in a pocket that surrounds the conserved C-terminus of the protein, defining a key functional region in the PIWI domain. Furthermore, two Asp residues, conserved in the majority of Argonaute sequences, align spatially with the catalytic Asp residues of RNase H-like catalytic sites, suggesting that in eukaryotic Argonaute proteins the RNase H-like domain may possess nuclease activity. The conserved region around the C-terminus of the PIWI domain, which is required for small interfering RNA (siRNA) binding to AfPiwi, may function as the receptor site for the obligatory 5' phosphate of siRNAs, thereby specifying the cleavage position of the target mRNA.  相似文献   

3.
4.
Proteins are vital to the overall structure of cells and to the function of cells in the form of enzymes. Thus the control of protein metabolism is among the most important aspects of cellular metabolism. Insulin’s major effect on protein metabolism in the adult animal is inhibition of protein degradation. This is via inhibition of proteasome activity via an interaction with insulin-degrading enzyme (IDE). IDE is responsible for the majority of cellular insulin degradation. We hypothesized that a reduction in IDE would reduce insulin degradation and insulin’s ability to inhibit protein degradation. HepG2 cells were transfected with siRNA against human IDE and insulin degradation and protein degradation measured. Both IDE mRNA and protein were reduced by >50% in the IDE siRNA transfected cells. Insulin degradation was reduced by approximately 50%. Cells were labeled with [3H]-leucine to investigate protein degradation. Short-lived protein degradation was unchanged in the cells with reduced IDE expression. Long-lived and very-long-lived protein degradation was reduced in the cells with reduced IDE expression (14.0 ± 0.16 vs. 12.5 ± 0.07%/4 h (long-lived), 9.6 ± 2.2% vs. 7.3 ± 0.2%/3 h (very-long-lived), control vs. IDE transfected, respectively, P < 0.005). The inhibition of protein degradation by insulin was reduced 37-76% by a decreased expression of IDE in HepG2 cells. This shows that IDE is involved in cellular insulin metabolism and provides further evidence that insulin inhibits protein degradation via an interaction with IDE.  相似文献   

5.
The bacterial CRISPR endoribonuclease Csy4 has recently been described as a potential RNA processing tool. Csy4 recognizes substrate RNA through a specific 28-nt hairpin sequence and cleaves at the 3′ end of the stem. To further explore applicability in mammalian cells, we introduced this hairpin at various locations in mRNAs derived from reporter transgenes and systematically evaluated the effects of Csy4-mediated processing on transgene expression. Placing the hairpin in the 5′ UTR or immediately after the start codon resulted in efficient degradation of target mRNA by Csy4 and knockdown of transgene expression by 20- to 40-fold. When the hairpin was incorporated in the 3′ UTR prior to the poly(A) signal, the mRNA was cleaved, but only a modest decrease in transgene expression (∼2.5-fold) was observed. In the absence of a poly(A) tail, Csy4 rescued the target mRNA substrate from degradation, resulting in protein expression, which suggests that the cleaved mRNA was successfully translated. In contrast, neither catalytically inactive (H29A) nor binding-deficient (R115A/R119A) Csy4 mutants were able to exert any of the effects described above. Generation of a similar 3′ end by RNase P-mediated cleavage was unable to rescue transgene expression independent of Csy4. These results support the idea that the selective generation of the Csy4/hairpin complex resulting from cleavage of target mRNA might serve as a functional poly(A)/poly(A) binding protein (PABP) surrogate, stabilizing the mRNA and supporting translation. Although the exact mechanism(s) remain to be determined, our studies expand the potential utility of CRISPR nucleases as tools for controlling mRNA stability and translation.  相似文献   

6.
为研究mRNA翻译起始区结构与基因表达的关系,利用密码子的简并性,在不改变表达产物氨基酸序列的前提下定点突变α8干扰素及αA干扰素衍生物基因的5′端若干位点,使其与表达载体重组后转录形成的mRNA翻译起始区结构发生改变。SDS-PAGE及活性测定证实这些改变提高了外源基因的表达水平。RNA斑点印迹表明突变前后基因转录水平差别不大,表达水平的提高主要由于翻译效率的提高。mRNA翻译起始区二级结构预测提示其生成自由能(ΔG)的变化可能与表达水平的提高有关。  相似文献   

7.
Small interfering RNAs (siRNAs) and microRNAs (miRNAs) guide catalytic sequence-specific cleavage of fully or nearly fully complementary target mRNAs or control translation and/or stability of many mRNAs that share 6-8 nucleotides (nt) of complementarity to the siRNA and miRNA 5' end. siRNA- and miRNA-containing ribonucleoprotein silencing complexes are assembled from double-stranded 21- to 23-nt RNase III processing intermediates that carry 5' phosphates and 2-nt overhangs with free 3' hydroxyl groups. Despite the structural symmetry of a duplex siRNA, the nucleotide sequence asymmetry can generate a bias for preferred loading of one of the two duplex-forming strands into the RNA-induced silencing complex (RISC). Here we show that the 5'-phosphorylation status of the siRNA strands also acts as an important determinant for strand selection. 5'-O-methylated siRNA duplexes refractory to 5' phosphorylation were examined for their biases in siRNA strand selection. Asymmetric, single methylation of siRNA duplexes reduced the occupancy of the silencing complex by the methylated strand with concomitant elimination of its off-targeting signature and enhanced off-targeting signature of the phosphorylated strand. Methylation of both siRNA strands reduced but did not completely abolish RNA silencing, without affecting strand selection relative to that of the unmodified siRNA. We conclude that asymmetric 5' modification of siRNA duplexes can be useful for controlling targeting specificity.  相似文献   

8.
siRNA和miRNA的沉默机制是生物基因调控的重要手段之一. 小干扰RNA(small interfering RNA,siRNA)是RNA干扰的引发物,激发与之互补的目标mRNA沉默. 非编码RNA中的微小RNA(microRNA,miRNA),能够识别特定的目标mRNA,通过与mRNAs的3′ 非翻译区结合,影响该目标蛋白的翻译水平. siRNA和miRNA的基因调控机制对生物学研究及疾病的病因和治疗等有直接影响. 本文主要对siRNAs和miRNAs的生物起源及沉默机制进行比较性论述:提出Dicers酶蛋白、Ago蛋白以及20 nt~25 nt的双链RNAs的 3类大分子是RNA沉默的特征结构,并进行了说明性论述|总结性叙述了siRNA和miRNA的2类小分子经典沉默机制,并提出其异同点. 最后,本文根据近期研究进展,对siRNA和miRNA的生物起源及沉默机制提出了新的疑问.  相似文献   

9.
10.
11.
Obscurin is a recently identified giant multidomain muscle protein (∼800 kDa) whose structural and regulatory functions remain to be defined. The goal of this study was to examine the effect of obscurin gene silencing induced by RNA interference on the dynamics of myofibrillogenesis and hypertrophic response to phenylephrine in cultured rat cardiomyocytes. We found that that the adenoviral transfection of short interfering RNA (siRNA) constructs targeting the first coding exon of obscurin sequence resulted in progressive depletion of cellular obscurin. Confocal microscopy demonstrated that downregulation of obscurin expression led to the impaired assembly of new myofibrillar clusters and considerable aberrations of the normal structure of the contractile apparatus. While the establishment of the initial periodic pattern of α-actinin localization remained mainly unaffected in siRNA-transfected cells, obscurin depletion did cause the defective lateral alignment of myofibrillar bundles, leading to their abnormal bifurcation, dispersal and multiple branching. Bending of immature myofibrils, apparently associated with the loss of their rigidity, a modified titin pattern, the absence of well-formed A-bands in newly formed contractile structures as documented by a diffuse localization of sarcomeric myosin labeling, and an occasional irregular periodicity of sarcomere spacing were typical of obscurin siRNA-treated cells. These results suggest that obscurin is indispensable for spatial positioning of contractile proteins and for the structural integration and stabilization of myofibrils, especially at the stage of myosin filament incorporation and A-band assembly. This demonstrates a vital role for obscurin in myofibrillogenesis and hypertrophic growth.  相似文献   

12.
We disrupted the reverse gyrase gene from a hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. An apparent positive supercoiling activity that was observed in the host strain was not found in the disruptant strain. We found that a lack of reverse gyrase led to a retardation in growth that was more striking at higher temperatures. However, the disruption of the reverse gyrase gene did not lead to a lethal phenotype at 90 degrees C. This study provides experimental evidence that reverse gyrase is not a prerequisite for hyperthermophilic life.  相似文献   

13.
14.
We examined the effects of protein folding on endoplasmic reticulum (ER)-to-cytosol transport (dislocation) by exploiting the well-characterized dihydrofolate reductase (DHFR) domain. DHFR retains the capacity to bind folate analogues in the lumen of microsomes and in the ER of intact cells, upon which it acquires a conformation resistant to proteinase K digestion. Here we show that a Class I major histocompatibility complex heavy chain fused to DHFR is still recognized by the human cytomegalovirus-encoded glycoproteins US2 and US11, resulting in dislocation of the fusion protein from the ER in vitro and in vivo. A folded state of the DHFR domain does not impair dislocation of Class I MHC heavy chains in vitro or in living cells. In fact, a slight acceleration of the dislocation of DHFR heavy chain fusion was observed in vitro in the presence of a folate analogue. These results suggest that one or more of the channels used for dislocation can accommodate polypeptides that contain a tightly folded domain of considerable size. Our data raise the possibility that the Sec61 channel can be modified to accommodate a folded DHFR domain for dislocation, but not for translocation into the ER, or that a channel altogether distinct from Sec61 is used for dislocation.  相似文献   

15.
16.
Starvation is not a prerequisite for the formation of aerobic granules   总被引:1,自引:0,他引:1  
Activated sludge with sludge volume index (SVI)30 of 77 ml g−1 and SVI30 of 433 ml g−1 was inoculated to start up reactors R1 and R2, respectively. In both R1 and R2, cycle time of 1 h and the influent chemical oxygen demand (COD) concentrations of 1,000 mg l−1 were employed. Initial settling time of 2 min resulted in the loss of a substantial amount of biomass as wash-out and high effluent COD concentrations within the first week of operation. This implied that there was no starvation phase in each cycle of R1 and R2 during the first week of operation. However, aerobic granules with a size above 400 μm formed by day 7. Thus, it was concluded that starvation was not a prerequisite for the formation of aerobic granules. When cycle time was 1 h, the instability of aerobic granules was observed. When cycle time was prolonged to 1.5 h and granular sludge of 200 ml was used to start up reactor R3, the reactor R3 reached steady state within 1 week. SVI, size, and the morphology of granular sludge in R3 remained stable during the 47-day operation, which indicated that prolonged starvation time had positive effects on the stability of aerobic granules.  相似文献   

17.
RNAi, a new therapeutic strategy against viral infection   总被引:14,自引:0,他引:14  
Tan FL  Yin JQ 《Cell research》2004,14(6):460-466
  相似文献   

18.
In the adult mammalian heart, the cardiomyocytes are connected by large polar arrays of closely spaced or even fused composite, plaque-bearing adhering junctions (areae compositae, ACs), in a region usually termed "intercalated disk" (ID). We have recently reported that during late embryogenesis and postnatally these polar assemblies of AC-junction structures are gradually formed as replacements of distinct embryonal junctions representing desmosomes and fasciae adhaerentes which then may amalgamate to the fused AC structures, in some regions occupying more than 90% of the total ID area. Previous gene knockout results as well as mutation analyses of specific human cardiomyopathies have suggested that among the various AC constituents, the desmosomal plaque protein, plakophilin-2, plays a particularly important role in the formation, architectural organization and stability of these junctions interconnecting mature cardiomyocytes. To examine this hypothesis, we have decided to study losses of--or molecular alterations in--such AC proteins with respect to their effects on myocardiac organization and functions. Here we report that plakophilin-2 is indeed of obvious importance for myocardial architecture and cell-cell coupling of rat cardiomyocytes growing in culture. We show that siRNA-mediated reduction of the cardiomyocyte content of plakophilin-2 but not of some other major plaque components such as desmoplakin results in progressive disintegration--and losses--of AC junction structures and that numerous variously sized vesicles appear, which are plaque protein-associated as demonstrable by immunofluorescence and immunoelectron microscopy. The importance of plakophilin-2 as a kind of "organizer" protein in the formation, stabilization and functions of the AC structure and the ID architecture is discussed in relation to other junction proteins and to causes of certain cardiomyopathies.  相似文献   

19.
20.
The AMP-activated protein kinase (AMPK) represses signaling through the mammalian target of rapamycin complex 1 (mTORC1). In muscle, repression of mTORC1 leads to a reduction in global protein synthesis. In contrast, repression of mTORC1 in the liver has no immediate effect on global protein synthesis. In the present study, signaling through mTORC1 and translation of specific mRNAs such as those bearing a 5′-terminal oligopyrimidine (TOP) tract and were examined in rat liver following activation of AMPK after treadmill running. Activation of AMPK repressed translation of the TOP mRNAs encoding rpS6, rpS8, and eEF1α. In contrast, neither global protein synthesis nor translation of mRNAs encoding GAPDH or β-actin was changed. Basal phosphorylation of the mTORC1 target 4E-BP1, but not S6K1 or rpS6, was reduced following activation of AMPK. Thus, in liver, AMPK activation repressed translation of TOP mRNAs through a mechanism distinct from downregulated phosphorylation of S6K1 or rpS6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号