首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background  

β-catenin and transforming growth factor β signaling are activated in fibroblasts during wound healing. Both signaling pathways positively regulate fibroblast proliferation during this reparative process, and the effect of transforming growth factor β is partially mediated by β-catenin. Other cellular processes, such as cell motility and the induction of extracellular matrix contraction, also play important roles during wound repair. We examined the function of β-catenin and its interaction with transforming growth factor β in cell motility and the induction of collagen lattice contraction.  相似文献   

3.
4.
5.

Background  

β-catenin is an essential mediator of canonical Wnt signaling and a central component of the cadherin-catenin epithelial adhesion complex. Dysregulation of β-catenin expression has been described in pancreatic neoplasia. Newly published studies have suggested that β-catenin is critical for normal pancreatic development although these reports reached somewhat different conclusions. In addition, the molecular mechanisms by which loss of β-catenin affects pancreas development are not well understood. The goals of this study then were; 1] to further investigate the role of β-catenin in pancreatic development using a conditional knockout approach and 2] to identify possible mechanisms by which loss of β-catenin disrupts pancreatic development. A Pdx1-cre mouse line was used to delete a floxed β-catenin allele specifically in the developing pancreas, and embryonic pancreata were studied by immunohistochemistry and microarray analysis.  相似文献   

6.

Background  

Mouse genetic study has demonstrated that Axin2 is essential for calvarial development and disease. Haploid deficiency of β-catenin alleviates the calvarial phenotype caused by Axin2 deficiency. This loss-of-function study provides evidence for the requirement of β-catenin in exerting the downstream effects of Axin2.  相似文献   

7.
8.
9.
10.
11.

Background  

The aim of this study was to analyze the cell-specific expression of E- and N-cadherin and β-catenin in developing human lung tissues from 12 to 40 weeks of gestation.  相似文献   

12.
13.

Background  

The Wnt/Wg pathway plays an important role in the developmental program of many cells and tissues in a variety of organisms. In addition, many Wnts and components of their downstream signaling pathways, such as β-catenin and APC, have been implicated in tumorigenesis. Over the past years, several genes have been identified as Wnt responsive, including c-myc, siamois, and cyclin D1.  相似文献   

14.
The Wnt/β-catenin signaling pathway regulates cell proliferation and differentiation to determine cell fate during embryogenesis. Lithium chloride (LiCl) is known to activate canonical Wnt signaling by inhibiting glycogen synthetase kinase-3β and consequently stabilizing free cytosolic β-catenin. To understand the role of the Wnt/β-catenin pathway in the regulation of porcine myoblast differentiation, we studied the effects of LiCl on cultured porcine myoblasts and β-catenin expression. A supplementation of 25 mM LiCl induced myoblast differentiation into myotubes over 3 days of culture. By semi-quantitative RT-PCR analyses, levels of mRNA encoding MyoD, Myogenin, Myf5 and several Wnt-responsive genes in the cultured myoblast cells were significantly increased after LiCl treatment. Using Western blotting and immunofluorescence analysis, we found that the protein levels of β-catenin were consistently increased by LiCl. Meanwhile, phosphorylated GSK-3β at Ser9 levels were also increased as an indicator of GSK-3β inactivation. Additionally, the nuclear staining of endogenous β-catenin was also significantly increased in porcine myoblasts 48 h after LiCl treatment. These results provided additional evidence that Wnt/β-catenin is a significant pathway that regulates myogenic differentiation. An enhanced level of β-catenin plays a positive role in porcine myoblast differentiation.  相似文献   

15.
16.
17.
18.

Background  

R-Spondin1 (Rspo1) is a novel regulator of the Wnt/β-catenin signalling pathway. Loss-of-function mutations in human RSPO1 cause testicular differentiation in 46, XX females, pointing to a role in ovarian development. Here we report the cloning and comparative expression analysis of R-SPONDIN1 orthologues in the mouse, chicken and red-eared slider turtle, three species with different sex-determining mechanisms. Evidence is presented that this gene is an ancient component of the vertebrate ovary-determining pathway.  相似文献   

19.

Background  

Obligate intracellular pathogens belonging to the Chlamydiaceae family possess a number of mechanisms by which to manipulate the host cell and surrounding environment. Such capabilities include the inhibition of apoptosis, down-regulation of major histocompatability complex (MHC) and CD1/d gene expression, and the acquisition of host-synthesized nutrients. It is also documented that a limited number of host-derived macromolecules such as β-catenin and sphingomyelin accumulate within the inclusion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号