首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Presence and role of cytosine methylation in DNA viruses of animals   总被引:1,自引:0,他引:1       下载免费PDF全文
Nucleotide composition varies greatly among DNA viruses of animals, yet the evolutionary pressures and biological mechanisms driving these patterns are unclear. One of the most striking discrepancies lies in the frequency of CpG (the dinucleotide CG, linked by a phosphate group), which is underrepresented in most small DNA viruses (those with genomes below 10 kb) but not in larger DNA viruses. Cytosine methylation might be partially responsible, but research on this topic has focused on a few virus groups. For several viruses that integrate their genome into the host genome, the methylation status during this stage has been studied extensively, and the relationship between methylation and viral-induced tumor formation has been examined carefully. However, for actively replicating viruses—particularly small DNA viruses—the methylation status of CpG motifs is rarely known and the effects on the viral life cycle are obscure. In vertebrate host genomes, most cytosines at CpG sites are methylated, which in vertebrates acts to regulate gene expression and facilitates the recognition of unmethylated, potentially pathogen-associated DNA. Here we briefly introduce cytosine methylation before reviewing what is currently known about CpG methylation in DNA viruses.  相似文献   

2.
3.

Background

Ectocarpus siliculosus virus-1 (EsV-1) is a lysogenic dsDNA virus belonging to the super family of nucleocytoplasmic large DNA viruses (NCLDV) that infect Ectocarpus siliculosus, a marine filamentous brown alga. Previous studies indicated that the viral genome is integrated into the host DNA. In order to find the integration sites of the viral genome, a genomic library from EsV-1-infected algae was screened using labelled EsV-1 DNA. Several fragments were isolated and some of them were sequenced and analyzed in detail.

Results

Analysis revealed that the algal genome is split by a copy of viral sequences that have a high identity to EsV-1 DNA sequences. These fragments are interspersed with DNA repeats, pseudogenes and genes coding for products involved in DNA replication, integration and transposition. Some of these gene products are not encoded by EsV-1 but are present in the genome of other members of the NCLDV family. Further analysis suggests that the Ectocarpus algal genome contains traces of the integration of a large dsDNA viral genome; this genome could be the ancestor of the extant NCLDV genomes. Furthermore, several lines of evidence indicate that the EsV-1 genome might have originated in these viral DNA pieces, implying the existence of a complex integration and recombination system. A protein similar to a new class of tyrosine recombinases might be a key enzyme of this system.

Conclusion

Our results support the hypothesis that some dsDNA viruses are monophyletic and evolved principally through genome reduction. Moreover, we hypothesize that phaeoviruses have probably developed an original replication system.  相似文献   

4.
5.
A virus infection is described within the unilocular sporangia of Feldmannia sp., a filamentous brown alga (Phaeophyceae). The alga is easily maintained in culture and vegetative growth is vigorous, but formation of icosahedral virions 150 nm in diameter completely displaces production of zoospores. The viruses, estimated at 1–5 × 106 per sporangium, are eventually released by rupture of the sporangial wall. Deoxyribonucleic acid (DNA) isolated from the viruses can be readily digested with restriction endonucleases and consists of ca. 170 kbp of double-stranded DNA.  相似文献   

6.
7.
One of the most crucial steps in the life cycle of a retrovirus is the integration of the viral DNA (vDNA) copy of the RNA genome into the genome of an infected host cell. Integration provides for efficient viral gene expression as well as for the segregation of viral genomes to daughter cells upon cell division. Some integrated viruses are not well expressed, and cells latently infected with human immunodeficiency virus type 1 (HIV-1) can resist the action of potent antiretroviral drugs and remain dormant for decades. Intensive research has been dedicated to understanding the catalytic mechanism of integration, as well as the viral and cellular determinants that influence integration site distribution throughout the host genome. In this review, we summarize the evolution of techniques that have been used to recover and map retroviral integration sites, from the early days that first indicated that integration could occur in multiple cellular DNA locations, to current technologies that map upwards of millions of unique integration sites from single in vitro integration reactions or cell culture infections. We further review important insights gained from the use of such mapping techniques, including the monitoring of cell clonal expansion in patients treated with retrovirus-based gene therapy vectors, or patients with acquired immune deficiency syndrome (AIDS) on suppressive antiretroviral therapy (ART). These insights span from integrase (IN) enzyme sequence preferences within target DNA (tDNA) at the sites of integration, to the roles of host cellular proteins in mediating global integration distribution, to the potential relationship between genomic location of vDNA integration site and retroviral latency.  相似文献   

8.
In plant genomes, the incorporation of DNA segments is not a common method of artificial gene transfer. Nevertheless, various segments of pararetroviruses have been found in plant genomes in recent decades. The rice genome contains a number of segments of endogenous rice tungro bacilliform virus‐like sequences (ERTBVs), many of which are present between AT dinucleotide repeats (ATrs). Comparison of genomic sequences between two closely related rice subspecies, japonica and indica, allowed us to verify the preferential insertion of ERTBVs into ATrs. In addition to ERTBVs, the comparative analyses showed that ATrs occasionally incorporate repeat sequences including transposable elements, and a wide range of other sequences. Besides the known genomic sequences, the insertion sequences also represented DNAs of unclear origins together with ERTBVs, suggesting that ATrs have integrated episomal DNAs that would have been suspended in the nucleus. Such insertion DNAs might be trapped by ATrs in the genome in a host‐dependent manner. Conversely, other simple mono‐ and dinucleotide sequence repeats (SSR) were less frequently involved in insertion events relative to ATrs. Therefore, ATrs could be regarded as hot spots of double‐strand breaks that induce non‐homologous end joining. The insertions within ATrs occasionally generated new gene‐related sequences or involved structural modifications of existing genes. Likewise, in a comparison between Arabidopsis thaliana and Arabidopsis lyrata, the insertions preferred ATrs to other SSRs. Therefore ATrs in plant genomes could be considered as genomic dumping sites that have trapped various DNA molecules and may have exerted a powerful evolutionary force.  相似文献   

9.
The Southern gel filter transfer technique has been used to characterize the integrated genome of Moloney murine leukemia virus (M-MuLV) and the genomes of the endogenous viruses of the mouse. Study of 10 clones of rat cell independently infected by M-MuLV indicates a minimum of 15 integration sites into which the M-MuLV provirus can be inserted. No common integration site is observed among these clones. Clones productively infected by M-MuLV acquire multiple proviruses, whereas infected cells unable to produce virus contain only one M-MuLV provirus. Once established, the integrated genomes are stable for at least two years after initial infection.The use of M-MuLV probe allows detection of a spectrum of Eco RI-cleaved mouse DNA fragments containing endogenous MuLV genomes. DNAs of different inbred laboratory mouse strains yield similar patterns of provirus with each strain showing minor characteristic differences. In some instances, mouse cells infected by M-MuLV reveal additional proviruses beyond those seen in the uninfected cell. DNAs from three different M-MuLV-induced thymomas indicate, as in rat cells, multiple possible integration sites.  相似文献   

10.
简单重复序列亦称微卫星,被成功应用于许多真核生物、原核生物和病毒的基因组和进化研究,但是噬菌体中的微卫星目前很少被研究。因此对60条尾病毒目基因组中的微卫星和和复合型微卫星(由两个或两个以上直接相邻的微卫星组成)做综合性分析,在这60个基因组中总共观察到11 874个微卫星和449个复合型微卫星。相关性分析表明微卫星个数与基因组大小成正线性相关(ρ=0.899, P<0.01)。参考序列中的微卫星个数少于对应的随机序列中微卫星个数,这种反常现象主要是因为参考序列含有较少的单核苷酸和二核苷酸重复。A/T和AT/TA重复是单核苷酸和二核苷酸重复中最主要的类型,因此单核苷酸重复中的GC含量明显低于相应的序列中的GC含量;相比之下,微卫星中的二核苷酸和三核苷酸重复的GC含量与对应的参考序列的GC含量无明显区别。尾病毒目基因组中的这些结果与其它生物体基因组存在一定的差别。有助于了解尾病毒目中微卫星的分布、进化和生物学功能。  相似文献   

11.
12.
13.
It is well known that the dinucleotide CpG is under-represented in the genomic DNA of many vertebrates. This is commonly thought to be due to the methylation of cytosine residues in this dinucleotide and the corresponding high rate of deamination of 5-methycytosine, which lowers the frequency of this dinucleotide in DNA. Surprisingly, many single-stranded RNA viruses that replicate in these vertebrate hosts also have a very low presence of CpG dinucleotides in their genomes. Viruses are obligate intracellular parasites and the evolution of a virus is inexorably linked to the nature and fate of its host. One therefore expects that virus and host genomes should have common features. In this work, we compare evolutionary patterns in the genomes of ssRNA viruses and their hosts. In particular, we have analyzed dinucleotide patterns and found that the same patterns are pervasively over- or under-represented in many RNA viruses and their hosts suggesting that many RNA viruses evolve by mimicking some of the features of their host's genes (DNA) and likely also their corresponding mRNAs. When a virus crosses a species barrier into a different host, the pressure to replicate, survive and adapt, leaves a footprint in dinucleotide frequencies. For instance, since human genes seem to be under higher pressure to eliminate CpG dinucleotide motifs than avian genes, this pressure might be reflected in the genomes of human viruses (DNA and RNA viruses) when compared to those of the same viruses replicating in avian hosts. To test this idea we have analyzed the evolution of the influenza virus since 1918. We find that the influenza A virus, which originated from an avian reservoir and has been replicating in humans over many generations, evolves in a direction strongly selected to reduce the frequency of CpG dinucleotides in its genome. Consistent with this observation, we find that the influenza B virus, which has spent much more time in the human population, has adapted to its human host and exhibits an extremely low CpG dinucleotide content. We believe that these observations directly show that the evolution of RNA viral genomes can be shaped by pressures observed in the host genome. As a possible explanation, we suggest that the strong selection pressures acting on these RNA viruses are most likely related to the innate immune response and to nucleotide motifs in the host DNA and RNAs.  相似文献   

14.
In sequenced genomes of prokaryotes, anomalous DNA (aDNA) can be recognized, among others, by atypical clustering of dinucleotides. We hypothesized that atypical clustering of hexameric endonuclease recognition sites in aDNA allows the specific isolation of anomalous sequences in vitro. Clustering of endonuclease recognition sites in aDNA regions of eight published prokaryotic genome sequences was demonstrated. In silico digestion of the Neisseria meningitidis MC58 genome, using four selected endonucleases, revealed that out of 27 of the small fragments predicted (<5 kb), 21 were located in known genomic islands. Of the 24 calculated fragments (>300 bp and <5 kb), 22 met our criteria for aDNA, i.e. a high dinucleotide dissimilarity and/or aberrant GC content. The four enzymes also allowed the identification of aDNA fragments from the related Z2491 strain. Similarly, the sequenced genomes of three strains of Escherichia coli assessed by in silico digestion using XbaI yielded strain-specific sets of fragments of anomalous composition. In vitro applicability of the method was demonstrated by using adaptor-linked PCR, yielding the predicted fragments from the N.meningitidis MC58 genome. In conclusion, this strategy allows the selective isolation of aDNA from prokaryotic genomes by a simple restriction digest–amplification–cloning–sequencing scheme.  相似文献   

15.
Recently, we demonstrated that inverted repeat sequences inserted into first-generation adenovirus (Ad) vector genomes mediate precise genomic rearrangements resulting in vector genomes devoid of all viral genes that are efficiently packaged into functional Ad capsids. As a specific application of this finding, we generated adenovirus-adeno-associated virus (AAV) hybrid vectors, first-generation Ad vectors containing AAV inverted terminal repeat sequences (ITRs) flanking a reporter gene cassette inserted into the E1 region. We hypothesized that the AAV ITRs present within the hybrid vector genome could mediate the formation of rearranged vector genomes (DeltaAd.AAV) and stimulate transgene integration. We demonstrate here that DeltaAd.AAV vectors are efficiently generated as by-products of first-generation adenovirus-AAV vector amplification. DeltaAd.AAV genomes contain only the transgene flanked by AAV ITRs, Ad packaging signals, and Ad ITRs. DeltaAd.AAV vectors can be produced at a high titer and purity. In vitro transduction properties of these deleted hybrid vectors were evaluated in direct comparison with first-generation Ad and recombinant AAV vectors (rAAVs). The DeltaAd.AAV hybrid vector stably transduced cultured cells with efficiencies comparable to rAAV. Since cells transduced with DeltaAd.AAV did not express cytotoxic viral proteins, hybrid viruses could be applied at very high multiplicities of infection to increase transduction rates. Southern analysis and pulsed-field gel electrophoresis suggested that DeltaAd.AAV integrated randomly as head-to-tail tandems into the host cell genome. The presence of two intact AAV ITRs was crucial for the production of hybrid vectors and for transgene integration. DeltaAd.AAV vectors, which are straightforward in their production, represent a promising tool for stable gene transfer in vitro and in vivo.  相似文献   

16.
《Epigenetics》2013,8(3):151-154
Expression of the bacterial CG methyltransferase M?HhaI in mammalian cells appears to generate significant biological effects, while biological effects of the expression of the non-CG methyltransferase M?EcoRII in human cells have not been detected. The association of cytosine methylation with the CG site in mammals is also associated with clustering of CG sites near 5´ control regions (CG-islands) of human genes. Moreover spontaneous deamination of 5-methylcytosine at these sites is thought to lead to the well known deficiency of CG sites in genomes where endogenous CG methyltransferases are expressed. Since these associations are generally taken to imply a biological function for the CG dinucleotide that is associated with its selective methylation by endogenous DNA methylation systems, we have asked whether or not CWG or CCWGG sites are clustered in regions flanking human genes and whether or not an overall deficiency of CWG or CCWGG occurs in the human genome. Using build 36.1, of the human genome, we inspected the regions flanking the 28,501 well known gene loci in the human genome. Our analysis confirmed the expected clustering of CG sites near the 5´ region of known genes and open reading frames. In contrast to the CG site, neither the CWG site nor the CCWGG site recognized by the bacterial methyltransferase M?EcoRII were clustered in any particular region near known genes and open reading frames. Moreover, neither the CCWGG nor the CWG site was depleted in the human genome, again in sharp contrast to the known genomic deficiency of CpG sites. Our findings suggest that in contrast to CG site recognition, human cytosine methyltransferases recognize CWG and CCWGG only at very low frequency if at all.  相似文献   

17.
18.
Simple sequence repeats (SSRs) are widespread units on genome sequences, and play many important roles in plants. In order to reveal the evolution of plant genomes, we investigated the evolutionary regularities of SSRs during the evolution of plant species and the plant kingdom by analysis of twelve sequenced plant genome sequences. First, in the twelve studied plant genomes, the main SSRs were those which contain repeats of 1–3 nucleotides combination. Second, in mononucleotide SSRs, the A/T percentage gradually increased along with the evolution of plants (except for P. patens). With the increase of SSRs repeat number the percentage of A/T in C. reinhardtii had no significant change, while the percentage of A/T in terrestrial plants species gradually declined. Third, in dinucleotide SSRs, the percentage of AT/TA increased along with the evolution of plant kingdom and the repeat number increased in terrestrial plants species. This trend was more obvious in dicotyledon than monocotyledon. The percentage of CG/GC showed the opposite pattern to the AT/TA. Forth, in trinucleotide SSRs, the percentages of combinations including two or three A/T were in a rising trend along with the evolution of plant kingdom; meanwhile with the increase of SSRs repeat number in plants species, different species chose different combinations as dominant SSRs. SSRs in C. reinhardtii, P. patens, Z. mays and A. thaliana showed their specific patterns related to evolutionary position or specific changes of genome sequences. The results showed that, SSRs not only had the general pattern in the evolution of plant kingdom, but also were associated with the evolution of the specific genome sequence. The study of the evolutionary regularities of SSRs provided new insights for the analysis of the plant genome evolution.  相似文献   

19.
Dinucleotide usage is known to vary in the genomes of organisms. The dinucleotide usage profiles or genome signatures are similar for sequence samples taken from the same genome, but are different for taxonomically distant species. This concept of genome signatures has been used to study several organisms including viruses, to elucidate the signatures of evolutionary processes at the genome level. Genome signatures assume greater importance in the case of host–pathogen interactions, where molecular interactions between the two species take place continuously, and can influence their genomic composition. In this study, analyses of whole genome sequences of the HIV-1 subtype B, a retrovirus that caused global pandemic of AIDS, have been carried out to analyse the variation in genome signatures of the virus from 1983 to 2007. We show statistically significant temporal variations in some dinucleotide patterns highlighting the selective evolution of the dinucleotide profiles of HIV-1 subtype B, possibly a consequence of host specific selection.  相似文献   

20.
The question of where retroviral DNA becomes integrated in chromosomes is important for understanding (i) the mechanisms of viral growth, (ii) devising new anti-retroviral therapy, (iii) understanding how genomes evolve, and (iv) developing safer methods for gene therapy. With the completion of genome sequences for many organisms, it has become possible to study integration targeting by cloning and sequencing large numbers of host–virus DNA junctions, then mapping the host DNA segments back onto the genomic sequence. This allows statistical analysis of the distribution of integration sites relative to the myriad types of genomic features that are also being mapped onto the sequence scaffold. Here we present methods for recovering and analyzing integration site sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号