首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The yeast Rhodotorula glutinis (Rhodosporidium toruloides) is capable of accumulative transport of a wide variety of monosaccharides. Initial velocity studies of the uptake of 2-deoxy-D-glucose were consistent with the presence of at least two carriers for this sugar in the Rhodotorula plasma membrane. Non-linear regression analysis of the data returned maximum velocities of 0.8 +/- 0.2 and 2.0 +/- 0.2 nmol/min per mg (wet weight) and Km values of 18 +/- 4 and 120 +/- 20 microM, respectively, for the two carriers. Kinetic studies of D-glucose transport also revealed two carriers with maximum velocities of 1.1 +/- 0.4 and 2.4 +/- 0.4 nmol/min per mg (wet weight) and Km values of 12 +/- 3 and 55 +/- 12 microM. As expected, 2-deoxy-D-glucose was a competitive inhibitor of D-glucose transport. Ki values for the inhibition were 16 +/- 8 and 110 +/- 40 microM. These Ki values were in good agreement with the Km values for 2-deoxy-D-glucose transport. D-Xylose, the 5-deoxymethyl analog of D-glucose, appears to utilize the D-glucose/2-deoxy-D-glucose carriers. This pentose was observed to be a competitive inhibitor of D-glucose (Ki values = 0.14 +/- 0.06 and 5.6 +/- 1.6 mM) and 2-deoxy-D-glucose (Ki values = 0.15 +/- 0.07 and 4.6 +/- 1.2 mM) transport.  相似文献   

2.
The addition of 2-deoxy-D-glucose to cultures of Streptococcus lactis 133 that were growing exponentially on sucrose or lactose reduced the growth rate by ca. 95%. Inhibition did not occur with glucose or mannose as the growth sugar. The reduction in growth rate was concomitant with rapid accumulation of the analog in phosphorylated form (2-deoxy-D-glucose 6-phosphate) via the phosphoenolpyruvate-dependent mannose:phosphotransferase system. Within 5 min the intracellular 2-deoxy-D-glucose 6-phosphate concentration reached a steady-state level of greater than 100 mM. After maximum accumulation of the sugar phosphate, the rate of sucrose metabolism (glycolysis) decreased by only 30%, but the cells were depleted of fructose-1,6-diphosphate. The addition of glucose to 2-deoxy-D-glucose 6-phosphate preloaded cells caused expulsion of 2-deoxy-D-glucose and a resumption of normal growth. S. lactis 133 contained an intracellular Mg2+-dependent, fluoride-sensitive phosphatase which hydrolyzed 2-deoxy-D-glucose 6-phosphate (and glucose 6-phosphate) to free sugar and inorganic phosphate. Because of continued dephosphorylation and efflux of the non-metabolizable analog, the maintenance of the intracellular 2-deoxy-D-glucose 6-phosphate pool during growth stasis was dependent upon continued glycolysis. This steady-state condition represented a dynamic equilibrium of: (i) phosphoenolpyruvate-dependent accumulation of 2-deoxy-D-glucose 6-phosphate, (ii) intracellular dephosphorylation, and (iii) efflux of free 2-deoxy-D-glucose. This sequence of events constitutes a futile cycle which promotes the dissipation of phosphoenolpyruvate. We conclude that 2-deoxy-D-glucose functions as an uncoupler by dissociating energy production from growth in S. lactis 133.  相似文献   

3.
The uphill accumulation of free 2-deoxy-D-glucose and 2-deoxy-D-glucose 6-phosphate in rat adipocytes was found not to affect the steady-state distribution of 3-O-methyl-D-glucose although both hexoses share a common transport pathway. This observation argues against a possible effect of 2-deoxy-D-glucose phosphate on the equilibrating nature of the carrier. The results are discussed in light of hypotheses advanced to explain free 2-deoxy-D-glucose accumulation in a variety of cells.  相似文献   

4.
The freshwater fungus Achlya transported D-(+)glucose (glucose) and 2-deoxy-D-glucose (deoxyglucose) by an energy-related system. Their transport4 was inhibited by uncouplers of metabolic energy such as 2,4-dinitrophenol, cyanide, azide, and carbonylcyanide-p-chlorophenylhydrazone. Besides inhibiting each other, glucose and deoxyglucose transport was inhibited by D-(+)galactose, D-(+)mannose, and D-(+)xylose. Many other sugars tested failed to inhibit glucose transport implying a certain degree of specificity. Glucose transport was pH (optimum at 6.5) and temperature (optimum at 30-40 degrees C) dependent. Glucose transport was also inhibited by citrate, N6-substituted adenines (cytokinins), and iodine. None of these agents penetrated the cell membrane within the brief (1-3-min) period in which glucose transport was measured. In every case, transport was inhibited within 10 s (the shortest time in which measurements could be made). When cells were osmotically shocked to release a cell-wall membrane phosphorylated proteoglycan (PPG), they became incapable of transporting glucose for several hours until new PPG material was reisolable from the membrane by osmotic-shock treatment. The osmotically shocked cells could not transport glucose or deoxyglucose. No glucose-binding protein was detected in the shock fluid. Practically all of the glucose transported within 1-2 min was recovered as glucose-6-phosphate. No other phosphorylated sugar was detected suggesting that glucose may be phosphorylated in transport. Related studies have shown that citrate removed calcium bound by PPG; N6-substituted adenines were bound by PPG while three polyphosphorylated dinucleosides, HS3, HS2, and HS1, were displaced from it. Iodine formed stable complexes with the HS compounds. All of these agents inhibited glucose transport without entering the cell. It is therefore possible that HS compounds, calcium and PPG may be involved in maintaining the cell membrane in proper form for glucose transport.  相似文献   

5.
Starved cells of Streptococcus lactis ML3 grown previously on lactose, galactose, or maltose were devoid of adenosine 5'-triphosphate contained only three glycolytic intermediates: 3-phosphoglycerate, 2-phosphoglycerate, and phosphoenolpyruvate (PEP). The three metabolites (total concentration, ca 40 mM) served as the intracellular PEP potential for sugar transport via PEP-dependent phosphotransferase systems. When accumulation of [14C]lactose by iodoacetate-inhibited starved cells was abolished within 1 s of commencement of transport, a phosphorylated disaccharide was identified by autoradiography. The compound was isolated by ion-exchange (borate) chromatography, and enzymatic analysis showed that the derivative was 6-phosphoryl-O-beta-D-galactopyranosyl (1 leads to 4')-alpha-D-glucopyranose (lactose 6-phosphate). After maximum lactose uptake (ca. 15 mM in 15 s) the cells were collected by membrane filtration and extracted with trichloroacetic acid. Neither free nor phosphorylated lactose was detected in cell extracts, but enzymatic analysis revealed high levels of galactose 6-phosphate and glucose 6-phosphate. The starved organisms rapidly accumulated glucose, 2-deoxy-D-glucose, methyl-beta-D-thiogalactopyranoside, and o-nitrophenyl-beta-D-galactopyranoside in phosphorylated form to intracellular concentrations of 32, 32, 42, and 38.5 mM, respectively. In contrast, maximum accumulation of lactose (ca. 15 mM) was only 40 to 50% that of the monosaccharides. From the stoichiometry of PEP-dependent lactose transport and the results of enzymatic analysis, it was concluded that (i) ca. 60% of the PEP potential was utilized via the lactose phosphotransferase system for phosphorylation of the galactosyl moiety of the disaccharide, and (ii) the residual potential (ca. 40%) was consumed during phosphorylation of the glucose moiety.  相似文献   

6.
Incorporation of 2-deoxy-D-glucose into cultured rhesus diploid cells includes transport and subsequent phosphorylation with resultant accumulation of both free and phosphorylated sugar. Accumulation of the free sugar proceeds to a maximal limit of 4–5 mM which is determined by intrinsic cell factors and is independent of medium 2-deoxy-D-glucose up to 5 mM concentration. Concentrative accumulation (active transport) pf the free sugar is readily demonstrable on maintaining medium concentrations of 2-deoxy-D-glucose at less than the maximal accumulation potential of the cells (i.e. <4–5 mM). Cellular concentrations of the free sugar in excess of 30-times medium concentrations are demonstrable on incubation of the cells in the presence of <0.05 mM 2-deoxy-D-glucose. In contrast, accumulation of 2-deoxy-D-glycose is not demonstrable in the human erythrocyte.  相似文献   

7.
Like many cell types in culture, both undifferentiated and differentiated BALB/c 3T3 preadipose cells respond to glucose deprivation with an increased uptake of 2-deoxy-D-glucose (deoxyglucose) and 3-O-methyl-D-glucose (methylglucose). Glucose readdition to glucose-deprived cultures resulted in a prompt fall in uptake activity; in undifferentiated cells, a half-maximally effective concentration of glucose was approximately 0.5 mM, while 0.1 mM was ineffective. Several hexoses differed in their efficacy of "deactivating" methylglucose transport in glucose-deprived cells; it appeared that a particular hexose must be metabolized beyond the 6-phosphate form to deactivate the transport system. Previous studies have shown that the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulates hexose transport in undifferentiated and differentiated BALB/c 3T3 cells. In this study, it was found that TPA (and insulin in differentiated cells) prevented the glucose-induced deactivation of transport activity. Glucose-induced deactivation of transport activity was also prevented by cycloheximide or actinomycin D addition concomitantly with glucose. In glucose-starved cells, agents such as TPA and insulin appear to override a cellular control mechanism sensitive to the external concentration of glucose, so that elevated levels of transport activity are maintained under environmental conditions (i.e., a return to physiological glucose concentrations) that normally induce a fall in transport activity.  相似文献   

8.
1. The uptake of monosaccharides and polyols in the obligatory aerobic yeast Rhodotorula gracilis (glutinis) was accompanied by proton uptake. 2. The half-saturation constant of transport, KT, depended on pH, changing from about 2mM at pH 4.5 to 80mM at pH8.5 for D-xylose; this change of the effective carrier affinity was reversible. 3. The apparent dissociation constant of the monosaccharide carrier was estimated at pKa 6.75. 4. At pH8.5, when the pH gradient across the cell membrane vanished, no sugar accumulation was demonstrable. 5. The half-saturation constants of sugar uptake and H+ co-transport were very similar to each other, the latter obviously being controlled by the former. 6. The H+/sugar stoicheiometry remained constant under various physiological conditions; it amounted to one H+ ion per sugar molecule taken up. 7. The data are interpreted as a strong piece of evidence in favour of the active monosaccharide transport in R. gracilis (glutinis) being an H+-symport energized by the electrochemical gradient of H+ across the plasma membrane of the yeast.  相似文献   

9.
Glucose-6-phosphatase (glucose-6-phosphohydrolase and its associated phosphotransferase activities) was determined in brain tissue and in several preparations derived from brain tissue. These included purified capillaries and established cell lines of neuronal or glial origin. Since it has been suggested that glucose-6-phosphatase may be involved in sugar transport, the characteristics of that process were examined in these preparations. The pattern of uptake of 2-deoxy-D-glucose in four cell lines was shown to involve transport of the analog across the cell membrane that was more rapid than the subsequent phosphorylation of the sugar in the intracellular compartment. In the remaining cell lines and in purified capillaries, phosphorylation of 2-deoxy-D-glucose was at least as rapid as uptake. No differences could be found between the cells in these two categories with respect to amount or localization of glucose-6-phosphatase, ability to phosphorylate 3-O-methyl-D-glucose, or ability to phosphorylate extracellular and intracellular 2-deoxy-D-glucose. In the course of these experiments, it was found that there was a rapid efflux of 2-deoxy-D-glucose from cells that had taken up this sugar. The efflux involves a dephosphorylation step catalyzed by intracellular phosphatase that releases free sugar in the cytoplasm. Glucose-6-phosphatase thus probably has no major role in the phosphorylation of glucose in brain cells, but acts in the more conventional sense, i.e. as a phosphohydrolase.  相似文献   

10.
Incubation of chick embryo fibroblasts in glucose-free medium resulted in a dramatic increase in the rate of 2-deoxy-D-glucose transport. The greatest increase in rate occurred during the first 20 hours of incubation in glucose-free medium and was blocked by actinomycin D, dordycepin, or cycloheximide. The conditions of 2-deoxy-D-glucose concentration and time of incubation with the sugar were determined where transport rather than phosphorylation was rate-limiting in sugar uptake. These studies demonstrated that the transport of 2-deoxy-D-glucose was rate-limiting for only 1 or 2 min when the concentration of sugar in the medium was near the Km for transport, i.e. 2mM. No difference was found in the level of hexokinase activity in homogenates prepared from cells incubated glucose-free medium or standard medium when either 2-deoxy-D-[14C]glucose or D-glucose was used as substrate. A kinetic analysis of the initial rates of 2-deoxy-D-glucose transport by Lineweaver-Burk plots showed that the Vmax for sugar transport increased from 18 to 95 nmol per mg of protein per min when fibroblasts were incubated in glucose-free medium for 40 hours. The Km remained constant at 2 mM. Analysis of the initial rates of 3-omicron-methyl-D-glucose transport by Lineweaver-Burk plots further substantiated that the increase in sugar transport was due to an increase in the Vmax for transport with the Km remaining constant. The activation energy for the transport reaction calculated from an Arrhenius plot was 17.4 Cal per mol for cells cultured in the standard medium and 17.2 Cal per mol for cells cultured in the glucose-free medium. These results are consistent with the interpretation that the Vmax increase observed in hexose-starved cells is due to an increase in the number of transport sites.  相似文献   

11.
Streptococcus lactis K1 has the capacity to grow on many sugars, including sucrose and lactose, in the presence of high levels (greater than 500 mM) of 2-deoxy-D-glucose. Initially, growth of the organism was transiently halted by the addition of comparatively low concentrations (less than 0.5 mM) of the glucose analog to the culture. Inhibition was coincident with (i) rapid accumulation of 2-deoxy-D-glucose 6-phosphate (ca. 120 mM) and preferential utilization of phosphoenolpyruvate via the mannose:phosphotransferase system, (ii) depletion of phosphorylated glycolytic intermediates, and (iii) a 60% reduction in intracellular ATP concentration. During the 5- to 10-min period of bacteriostasis the intracellular concentration of 2-deoxy-D-glucose 6-phosphate rapidly declined, and the concentrations of glycolytic intermediates were restored to near-normal levels. When growth resumed, the cell doubling time (Td) and the steady-state levels of 2-deoxy-D-glucose 6-phosphate maintained by the cells were dependent upon the medium concentration of 2-deoxy-D-glucose. Resistance of S. lactis K1 to the potentially toxic analog was a consequence of negative regulation of the mannose:phosphotransferase system by two independent mechanisms. The first, short-term response occurred immediately after the initial "overshoot" accumulation of 2-deoxy-D-glucose 6-phosphate, and this mechanism reduced the activity (fine control) of the mannose:phosphotransferase system. The second, long-term mechanism resulted in repression of synthesis (coarse control) of enzyme IImannose. The two regulatory mechanisms reduced the rate of 2-deoxy-D-glucose translocation via the mannose:phosphotransferase system and minimized the activity of the phosphoenolpyruvate-dependent futile cycle of the glucose analog (J. Thompson and B. M. Chassy, J. Bacteriol. 151:1454-1465, 1982). Phosphoenolpyruvate was thus conserved for transport of the growth sugar and for generation of ATP required for biosynthetic and work functions of the growing cell.  相似文献   

12.
The kinetics of L-glucose transport by Rhodotorula glutinis were studied over a 720-fold range of sugar concentrations. Analysis of the saturation isotherm revealed the presence of a one-carrier system for L-glucose in the plasma membrane of Rhodotorula glutinis. This carrier exhibited a km of 3.7 +/- 0.3 mM. D-Ribose was found to be a competitive inhibitor with a Ki of 19 +/- 1 mM. The results suggest that L-glucose is transported by the high-Km, D-ribose carrier. L-Glucose was transported against a concentration gradient and the transport was inhibited by the proton conductor 2,4-dinitrophenol.  相似文献   

13.
The glucose transport system of the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DOG). T. neapolitana accumulated 2-DOG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external source of energy, such as pyruvate, and was inhibited by arsenate and gramicidin D. There was no phosphoenolpyruvate-dependent phosphorylation of glucose, 2-DOG, or fructose by cell extracts or toluene-treated cells, indicating the absence of a phosphoenolpyruvate:sugar phosphotransferase system. These data indicate that D-glucose is taken up by T. neapolitana via an active transport system that is energized by an ion gradient generated by ATP, derived from substrate-level phosphorylation.  相似文献   

14.
An improved analytical procedure for the extraction and determination of total, free and phosphorylated tissue sugar is described. This method, employing ZnSO4 plus Ba(OH)2 for the precipitation of sugar phosphates, yields values identical with those obtained by the more laborious separation of free and phosphorylated sugar by ion-exchange chromatography. Erroneous values for free sugar due to the action of a Zn2+ -activated phosphatase and/or the lability to acids of some sugar phosphates, are avoided. Using this technique for the sudy of transport and phosphorylation of D-galactose in rabbit renal cortical slices and tissue extracts, it was found: 1. The cellular uptake of D-galactose was associated with the appearance of both free and phosphorylated sugar whether or not external Na+ was present. At 1 mM sugar, galactose was accumulated in the cells against a modest concentration gradient of 1.445 +/- 0.097 (n = 17). Galactose phosphate appeared in the cells considerably faster than free sugar under conditions of net uptake as well as of steady-state exchange (pulse-labelling). 2. Increasing saline pH (6-8) increased the cellular levels of sugar phosphate without affecting the steady-state values of free sugar. With tissue extracts, increasing pH also stimulated the activity of galactokinase and the dephosphorylation of galactose 1-phosphate by a Zn2+ -activated phosphatase. 3. 0.5 mM phlorizin inhibited the tissue uptake of galactose and its subsequent oxidation to CO2 only to a minor degree (30 and 10%, respectively). The absence of external Na+ further depressed the phlorizin effect. Preincubation of the tissue with phlorizin and subsequent washing in part abolished the inhibitory effect. The data suggest that a major portion of the galactose uptake by the tissue proceeds by a mechanism with a low affinity for phlorizin. 4. Efflux studies showed that the wash-out of free galactose from slices was associated with a net decrease of both free and phosphorylated tissue sugar. 5. The above results suggest the possibility that phosphorylation may represent a step in the Na+ -independent, phloretin-sensitive transfer of D-galactose across the antiluminal cell membrane. The participation of intracellular galactokinase and a Zn2+ -activated alkaline phosphatase in the maintenance of the steady state of free and phosphorylated galactose in the cells has been demonstrated.  相似文献   

15.
Formation of carotenoids by rhodotorula glutinis in whey ultrafiltrate   总被引:3,自引:0,他引:3  
The growth and carotenoid biosynthesis of the yeast Rhodotorula glutinis was studied by cocultivation with Lactobacillus helveticus in cheese ultrafiltrate containing 3.9% and 7.1% lactose. By growing this mixed culture in a 15-L fermentor MBR AG (Switzerland) at an air flow rate of 0.5 L/L min and agitation at 220 rpm for 6 days, a total yield of carotenoids of 268 mug/g dry cells wasobtained. Carotenoids were formed almost parallel with the cell growth, anda maximum production was reached at an early stationary phase. A high-performance liquid chromatographic system (HPLC) permitting simultaneous determination of major carotenoid pigments was used. The three main pigments (torularhodin, beta-carotene, and torulene) were formed in Rhodotorula glutinis, and reached a maximum concentration as follows: 182.0, 43.9, 23.0 mug,g dry cells. (c) 1994 John Wiley & Sons, Inc.  相似文献   

16.
1. Suspensions of rat thymocytes accumulate free 2-deoxy-D-glucose (2-dGlc) within the cytosol to a concentration approx. 25-fold above the external concentration. This active accumulation was enhanced by 40 nM-phorbol 12-myristate 13-acetate (phorbol). 2. The Km for zero-trans uptake in control cells was 2.3 +/- 0.14 mM and Vmax. was 0.41 +/- 0.08 mumol/min per 10(10) cells (n = 6). In cells treated with phorbol (40 nM) the Km for zero-trans uptake was 1.2 +/- 0.13 mM and Vmax. 0.46 +/- 0.03 mumol/min per 10(10) cells (n = 6). The Km was decreased significantly by phorbol (P less than 0.01). 3. Phorbol-dependent activation of thymocytes delayed exit of free 2-dGlc into sugar-free solution and prevented exchange exit. Activation had no effect on 3-O-methyl D-glucoside (3-OMG) exit. 4. Coupling of 2-dGlc transport to hexokinase activity was determined by observing the effects of various concentrations of unlabelled cytosolic 2-dGlc on influx of labelled 2-dGlc into the hexose phosphate pool. In control cells this coupling was 0.81 +/- 0.02 and in phorbol-activated cells it was 0.92 +/- 0.01 (P less than 0.01). 5. The high-affinity inhibitor of hexokinase, mannoheptulose, inhibited uptake of 2-dGlc in both control and phorbol-treated cells. These data are consistent with a model for activation of sugar transport in which hexokinase activity is integrated with the sugar transporter at the endofacial surface. The results suggest that phorbol increases the degree of coupling transport with hexokinase activity, thereby leading to an increase in the rate of uptake of 2-dGlc, a decrease in exit of free 2-dGlc from the cytosol and an increase in free 2-dGlc accumulation.  相似文献   

17.
18.
The activity of the pentose phosphate shunt pathway in brain is thought to be linked to neurotransmitter metabolism, glutathione reduction, and synthetic pathways requiring NADPH. There is currently no method available to assess flux of glucose through the pentose phosphate pathway in localized regions of the brain of conscious animals in vivo. Because metabolites of deoxy[1-14C]glucose are lost from brain when the experimental period of the deoxy[14C]glucose method exceeds 45 min, the possibility was considered that the loss reflected activity of this shunt pathway and that this hexose might be used to assay regional pentose phosphate shunt pathway activity in brain. Decarboxylation of deoxy[1-14C]glucose by brain extracts was detected in vitro, and small quantities of 14C were recovered in the 6-phosphodeoxygluconate fraction when deoxy[14C]glucose metabolites were isolated from freeze-blown brains and separated by HPLC. Local rates of glucose utilization determined with deoxy[1-14C]glucose and deoxy[6-14C]glucose were, however, similar in 20 brain structures at 45, 60, 90, and 120 min after the pulse, indicating that the rate of loss of 14CO2 from deoxy[1-14C]glucose-6-phosphate in normal adult rat brain is too low to permit assay pentose phosphate shunt activity in vivo. Further metabolism of deoxy[1-14]glucose-6-phosphate via this pathway does not interfere during routine use of the deoxyglucose method or explain the progressive decrease in calculated metabolic rate when the experimental period exceeds 45 min.  相似文献   

19.
Glutamate-alpha-ketoadipate transaminase, saccharopine reductase, and saccharopine dehydrogenase activities were demonstrated in extracts of Rhodotorula glutinis but alpha-aminoadipate reductase activity could not be measured in whole cells or in extracts. Lysine auxotroph lys1 grew in the presence of L-lysine or DL-alpha-aminoadipate and incorporated radioactivity from DL-alpha-amino-[I-14C]adipate into lysine during growth. Growing wild-type cells converted L-[U-14C]lysine into alpha-amino-[14C]adipate, suggesting both biosynthetic and degradative roles for alpha-aminoadipate. Lysine auxotrophs lys1, lys2 and lys3 of R. glutinis, unlike lysine auxotrophs of Saccharomyces cerevisiae, satisfied their growth requirement with L-pipecolate. Moreover, extracts of wild-type R. glutinis catalysed the conversion of L-pipecolate to alpha-aminoadipate-delta semialdehyde. These results suggest a biosynthetic role for L-pipecolate in R. glutinis but not in S. cerevisiae.  相似文献   

20.
The role of phosphorylation in sugar transport in baker's yeast was studied using 2-deoxy-D-glucose. In wild-type baker's yeast, 2-deoxy-D-glucose is accumulated as a mixture of the free sugar and several derivatives. Pool labeling experiments, designed to determine the temporal order of appearance of labeled 2-deoxy-D-glucose in the intracellular pools, have confirmed previous reports that 2-deoxy-D-glucose first appears in the sugar phosphate pool. Such results are consistent with a transport associated phosphorylation mechanism. Since wild-type yeasts contain three enzymes which could participate in such a process, hexokinase isozymes PI and PII and glucokinase, pool labeling experiments were carried out with single-kinase mutant strains containing only one of these enzymes. Results similar to those for wild-type strains were obtained for all three single-kinase strains, suggesting that if transport associated phosphorylation does occur in baker's yeast, it is not a function of the specific kinase present in the cell. While the results of the pool labeling experiments are consistent with a transport associated phosphorylation mechanism for 2-deoxy-D-glucose, caution is urged in interpreting the results of experiments with whole cells where problems of compartmentation and multiple pools are difficult to assess.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号