首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is now well documented that lecithin-retinol acyltransferase (LRAT) is the physiologically important enzyme activity involved in the esterification of retinol in the liver. However, no information regarding the cellular distribution of this enzyme in the liver is presently available. This study characterizes the distribution of LRAT activity in the different types of rat liver cells. Purified preparations of isolated parenchymal, fat-storing, and Kupffer + endothelial cells were isolated from rat livers and the LRAT activity present in microsomes prepared from each of these cell fractions was determined. The fat-storing cells were found to contain the highest level of LRAT specific activity (383 +/- 54 pmol retinyl ester formed min-1.mg-1 versus 163 +/- 22 pmol retinyl ester formed min-1.mg-1 for whole liver microsomes). The level of LRAT specific activity in parenchymal cell microsomes (158 +/- 53 pmol retinyl ester formed min-1.mg-1) was very similar to LRAT levels in whole liver microsomes. The Kuppfer + endothelial cell microsome fractions were found to contain LRAT, at low levels of activity. These results indicate that the fat-storing cells are very enriched in LRAT but the parenchymal cells also posses significant levels of LRAT activity.  相似文献   

2.
Leukotriene C4 (LTC4) synthase was highly expressed in the human U937 monoblast leukemia cell line when differentiated into monocyte/macrophage-like cells by growth in the presence of dimethyl sulfoxide. The specific activity of LTC4 synthase in differentiated cells (399.0 +/- 84.1 pmol of LTC4 formed.min-1.mg-1) was markedly higher (10-fold; p less than 0.001) than in undifferentiated U937 cells (39.9 +/- 16.7 pmol of LTC4 formed.min-1.mg-1) or freshly isolated blood monocytes (21.5 +/- 4.8 pmol of LTC4 formed.min-1.mg-1). The increase in LTC4 synthase activity following dimethyl sulfoxide-induced differentiation was substantially higher than the increase observed for other proteins involved in leukotriene biosynthesis. LTC4 synthase activity was unaffected in U937 cells differentiated by growth in the presence of phorbol 12-myristate 13-acetate. The HL-60 myeloblast leukemia cell line expressed higher LTC4 synthase levels when differentiated into either neutrophil-like or macrophage-like cells by growth in the presence of dimethyl sulfoxide or phorbol 12-myristate 13-acetate (respectively), but reached a specific activity comparable only to undifferentiated U937 cells. Human LTC4 synthase was found to be a unique membrane-bound enzymatic activity completely distinct from alpha, mu, pi, theta, and microsomal glutathione S-transferases, as determined by differential detergent solubilization, chromatographic separation, substrate specificity, and Western blot analysis. An 18-kDa polypeptide was specifically labeled in membranes from dimethyl sulfoxide-differentiated U937 cells using azido 125I-LTC4, a photoaffinity probe based on the product of the LTC4 synthase-catalyzed reaction. Photolabeling of the 18-kDa polypeptide was specifically competed for by LTC4 (greater than 50% at 0.1 microM) but not by 100,000-fold higher concentrations of reduced glutathione (10 mM). Elevation of both the level of the specifically photolabeled 18-kDa polypeptide and of LTC4 synthase specific activity occurred concomitantly with dimethyl sulfoxide differentiation of U937 cells. We conclude that differentiation of U937 cells into monocyte/macrophage-like cells by growth in the presence of dimethyl sulfoxide results in high levels of expression of LTC4 synthase activity. Human LTC4 synthase is a unique enzyme with a high degree of specificity for LTA4 and may therefore be dedicated exclusively to the formation of LTC4 in vivo. An 18-kDa membrane polypeptide, specifically labeled by a photoaffinity derivative of LTC4, is a candidate for being either LTC4 synthase or a subunit thereof.  相似文献   

3.
Acetylcholinesterase (AChE) and AChE mRNA were evaluated in spontaneously fibrillating myotubes derived from 20-day-old rat fetuses and in matched cultures in which fibrillation was prevented by adding tetrodotoxin on the fourth day of culture. On the eighth day of culture, the AChE activity of fibrillating and nonfibrillating cultures was 5332 and 1861 pmol ACh hydrolyzed min-1 dish-1, respectively (P less than 0.005). Total mRNA was essentially the same in fibrillating and nonfibrillating cultures (27.4 and 25.4 micrograms/dish, respectively). AChE mRNA was assessed by assaying the AChE produced by Xenopus oocytes microinjected with purified mRNA. The AChE produced by mRNA from fibrillating and nonfibrillating cultures was 0.46 and 0.10 pmol ACh hydrolyzed min-1 oocyte-1, respectively (P less than 0.005).  相似文献   

4.
J E Hulla  M R Juchau 《Biochemistry》1989,28(11):4871-4879
The purpose of this study was to quantify cytochrome P450IIIA1 in fetal and maternal livers of uninduced and pregnenolone-16 alpha-carbonitrile (PCN) induced rats during the course of prenatal development. The activities and levels of P450IIIA in hepatic microsomes from maternal rats and fetuses at 15-21 days of gestation were measured by triacetyloleandomycin (TAO) inhibited debenzylation of (benzyloxy)phenoxazone and by immunoassay with defined antiserum specific for P450IIIA. P450IIIA was not detectable (less than 10 pmol/mg for maternal microsomes and less than 2 pmol/mg for fetal microsomes) by immunoassay in uninduced maternal or fetal livers. In hepatic microsomes from PCN-induced dams, values ranged from 59.3 to 116 micrograms P450IIIA1/mg of protein during the same gestational period. Changes in debenzylase activity of 15.9-46.5 pmol of resorufin (mg of protein)-1 min-1 were consistent with these findings as were the changes in TAO-inhibitable debenzylase activity. In the transplancentally induced fetal liver, debenzylase activity increased steadily from 0.19 pmol of resorufin mg-1 min-1 at day 15 to 9.34 pmol of resorufin mg-1 min-1 at day 21 and was paralleled by the TAO-inhibitable activity that ranged from 0.09 pmol of resorufin mg-1 min-1 at day 15 to 3.33 pmol of resorufin mg-1 min-1 at day 21. The amount of immunoreactive P450IIIA1 also increased from 0.5 to 28.7 micrograms/mg of microsomal protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Microsomal 4-hydroxylase of 1,2,3,4-tetrahydroisoquinoline (TIQ), a possible candidate for causing Parkinson disease, was characterized by using rat hepatic microsomes and purified P450 isozymes. Kinetic analysis revealed that Km and Vmax values (mean +/- SE) for hepatic microsomal TIQ 4-hydroxylase of male Wistar rats were 319.6 +/- 26.8 microM and 12.13 +/- 1.43 pmol.min-1.mg-1 protein, respectively. When TIQ 4-hydroxylase activity was compared in Wistar (an animal model of extensive debrisoquine metabolizers) and Dark Agouti (an animal model of poor debrisoquine metabolizers) rats, significant strain (Wistar greater than Dark Agouti) and sex (male greater than female) differences were observed. The microsomal activity toward TIQ 4-hydroxylation was increased by pretreatment of male Wistar rats with P448 inducers (beta-naphthoflavone and sudan I), but not with phenobarbital. Pretreatment with propranolol, an inhibitor of P450 isozymes belonging to the P450 IID gene subfamily, decreased TIQ 4-hydroxylase activity. P450 BTL, a P450 isozyme belonging to the IID subfamily, showed TIQ 4-hydroxylase activity of 64.1 pmol.min-1.nmol P450(-1), which was 3.2-fold that of microsomes (20.9 pmol.min-1.nmol P450(-1)). Antibody (IgG) against this isozyme suppressed microsomal TIQ 4-hydroxylase activity concentration-dependently. A male-specific P450 ml (P450IIC11) catalyzed this reaction to a much lesser extent (10.0 pmol.min-1.nmol P450(-1)), and its antibody did not affect the microsomal activity. These results suggest that TIQ 4-hydroxylation in hepatic microsomes are catalyzed predominantly by a P450 isozyme (or isozymes) belonging to the IID gene subfamily in non-treated rats and its immunochemically related P450 isozyme (or isozymes), and that a P450 isozyme (or isozymes) belonging to the IA subfamily also participates in TIQ 4-hydroxylation in rats pretreated with P448-inducers.  相似文献   

6.
Previous studies have suggested that guanine nucleotide regulatory (G) proteins modulate endotoxin-stimulated peritoneal macrophage arachidonic acid (AA) metabolism. Endotoxin-stimulated metabolism of AA by peritoneal macrophages is decreased in endotoxin tolerance (Rogers et al. Prostaglandins 31: 639-650, 1986). These observations led to a study of G protein function and AA metabolism by peritoneal macrophages in endotoxin tolerance. Endotoxin tolerance was induced by the administration of sublethal doses of endotoxin. AA metabolism was assessed by measurement of thromboxane B2 (TxB2), a cyclooxygenase metabolite. NaF (5 mM), an activator of G proteins, significantly stimulated TxB2 synthesis in control macrophages from 7.7 +/- 0.2 to 19.1 +/- 0.6 (SE) ng/ml (P less than 0.05) at 2 h and was partially inhibited by pertussis toxin, suggesting a G protein-dependent mechanism. Salmonella enteritidis endotoxin (50 micrograms/ml) stimulated a similar increase in TxB2 levels (23 +/- 0.4 ng/ml, P less than 0.05). In contrast to control macrophages, macrophages from endotoxin-tolerant rats stimulated with either NaF or S. enteritidis endotoxin had TxB2 levels that were only 30 and 2% of the respective stimulated control cells. Basal guanosine-triphosphatase (GTPase) activity (33 +/- 6 pmol.mg-1.min-1) in endotoxin-tolerant macrophage membranes was significantly lower (P less than 0.05) than control basal activity (158 +/- 5 pmol.mg-1.min-1). This suppression of macrophage GTPase activity was apparent 48 h after the first in vivo sublethal endotoxin injection (100 micrograms/kg ip). The reduced GTPase activity paralleled in vitro cellular hyporesponsiveness to endotoxin-stimulated TxB2 production.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
To investigate the cellular and molecular signals underlying regulation of cell adhesion molecule expression, the influence of interactions between dorsal root ganglion neurons and Schwann cells on their expression of L1 and N-CAM was quantitated by immunogold electronmicroscopy. The numbers of antibody binding sites on cell surfaces of neurons and glia were compared between pure populations and co-cultures. After 3 d of co-culture, expression of L1 was reduced by 91% on Schwann cells and 36% on neurons, with expression in pure cultures being taken as 100%. N-CAM expression was unchanged on neurons and reduced by 43% on Schwann cells. Within 3 d after removal of neurons from Schwann cell-neuron co-cultures by immunocytolysis, expression of L1 and N-CAM on Schwann cell surfaces increased by 69 and 84%, respectively. Cell surface antigens recognized by an antibody to mouse liver membranes were unchanged in co-cultures. Furthermore, in co-cultures of neurons and sciatic nerve fibroblasts neither of the three antibodies detected any changes in expression of antigens when pure and co-cultures were compared. These observations suggest that adhesion molecules are not only involved in neuron-Schwann cell recognition and neurite outgrowth on Schwann cells (Seilheimer, B., and M. Schachner. 1988. J. Cell Biol. 107: 341-351), but that cell interactions, in turn, modulate the extent of adhesion molecule expression.  相似文献   

8.
Choline acetyltransferase (ChAT) activity was estimated in brain cortex capillaries isolated from 3-, 12-, 18-, and 24-month-old rats. Maximum enzymatic activity was found at 12 months (55 +/- 0.3 pmol X mg-1 protein X min-1; mean +/- SEM) and then it decreased to reach a minimum at 24 months (34 +/- 3.1 pmol X mg-1 protein X min-1). A less marked decrease of enzymatic activity was also found in cortex homogenate and in a synaptosomal fraction obtained from the same groups of rats. Loss of ChAT of brain capillaries with aging could be related to a general phenomenon of cortical cholinergic deficit in that condition.  相似文献   

9.
In male sex accessory organs the active androgen 5 alpha-dihydrotestosterone (DHT) is metabolized to 5 alpha-androstane-3 alpha, 17 beta-diol (3 alpha-diol) and 5 alpha-androstane-3 beta, 17 beta-diol (3 beta-diol) by the reductase activities of 3 alpha-hydroxysteroid oxidoreductase (3 alpha-HSOR; EC 1.1.1.50) and 3 beta-hydroxysteroid oxidoreductase (3 beta-HSOR; EC 1.1.1.51). After separation of radiosubstrate and products by HPLC, these enzymes activities in subcellular preparations of rat ventral and dorsolateral prostate were determined from the conversion of [3H]DHT to the radiometabolites 3 alpha-diol and 3 beta-diol and 3 beta-triols (5 alpha-androstane-3 beta, 6 alpha, 17 beta-triol plus 5 alpha-androstane-3 beta, 7 alpha, 17 beta-triol). Whereas both enzymes were found in the dorsolateral prostate, 3 beta-HSOR reductase activity was near the limit of detection in ventral prostate. Unlike the equal distribution of 3 alpha-HSOR reductase between the microsomal and cytosol fractions of the ventral prostate, both 3 alpha- and 3 beta-HSOR reductase activities of the dorsolateral prostate are mainly confined to its cytosol fraction. Km and Vmax of the 3 alpha- and 3 beta-HSOR reductases in dorsolateral prostate cytosol were 1.8 microM, 24.6 pmol.mg-1 min-1 and 25.4 microM, 45.7 pmol.mg-1 min-1, respectively. We surmise from these and earlier studies that 3 beta-HSOR reductase is the rate-limiting prostatic enzyme in the catabolic disposition of intracellular DHT.  相似文献   

10.
S L Li  P F Yan  I B Paz  Y Fujita-Yamaguchi 《Biochemistry》1992,31(49):12455-12462
We have expressed, purified, and characterized the insulin receptor protein tyrosine kinase (PTK) retaining the transmembrane and downstream domains. The proteins expressed in insect cells using a baculovirus expression system were identified as membrane-bound by immunofluorescence staining and biochemical characterization. One-step purification by immunoaffinity chromatography from Triton X-100 cell extracts resulted in a approximately 360-fold increase in the specific kinase activity with a yield of approximately 50%. An appMr = approximately 60,000 protein was the major component identified by both silver staining of the purified enzyme and immunostaining of the crude extracts after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Using nondenaturing conditions, the molecular weight was estimated to be approximately 250,000 and approximately 500,000 by glycerol gradient centrifugation and gel permeation chromatography, respectively, suggesting that oligomers of the beta-subunit domains such as tetramers and octamers are formed. The basal PTK activity of this enzyme was much higher than those of previously reported soluble-form insulin receptor PTKs expressed in insect cells or the native receptor. Km and Vmax for two substrates, src-related peptide and poly(Glu, Tyr) (4:1), were 2.4 mM and 2.5 mumol min-1 mg-1 and 0.26 mM and 1.2 mumol min-1 mg-1, respectively. Specific activities measured under two previously reported conditions using histone H2B as a substrate were 100 or 135 nmol min-1 mg-1, in contrast to those of soluble PTKs which were reported to be 20 or 70 nmol min-1 mg-1, respectively. The purified enzyme was autophosphorylated at Tyr residues. Autophosphorylation activated the enzyme approximately 3-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Choline and acetylcholine metabolism in rat neostriatal slices   总被引:4,自引:3,他引:1  
Choline (Ch) uptake and release and acetylcholine (ACh) synthesis and release have been studied by gas chromatography mass spectrometry (GCMS) in slices of rat neostriatum in vitro to assess the effects of depolarization by 25 mM K+ and the influence of elevated concentrations of Ch in the incubation medium. During the first 60 min after preparation, 25 mM K+ increased ACh release by 182% and reduced ACh levels by 40%. The rate of ACh synthesis was unchanged. After a 1-h equilibration period, the rate of ACh synthesis was considerably less (2.41 nmol mg-1 h-1, compared to 9.78 nmol mg-1 h-1). Exposure to 25 mM K+ during the second hour increased the rate to 6.47 nmol mg-1 h-1. During the first 10 min of exposure to 25 mM K+, ACh synthesis was reduced, regardless of incubation. Increasing concentrations of external [2H4]Ch apparently favored initial rates of net ACh synthesis, since the rank order of initial net ACh synthesis rates is the same as the rank order of external [2H4] Ch concentration under both normal and depolarized conditions. However, the only significant effect of external [2H4]Ch on ACh metabolism was that it increased ACh release during the initial 10 min, when the preparation was depolarized with K+. The efflux of endogenous [2H0]Ch was increased initially (10 min) and slowed over a 60-min period by 25 mM K+, and increased when [2H4]Ch in the medium was increased. Changes in ACh synthesis and release were dependent upon the time exposure of slices to high K+, and the results suggest that Ch favors initial rates of ACh synthesis, but that Ch influences ACh release primarily under conditions of stress (i.e., depolarization).  相似文献   

12.
The in vitro metabolism of tolbutamide to the hydroxymethyl derivative was studied using hepatic microsomal homogenates. The hydroxymethyl metabolite was quantitated by HPLC. The hepatic microsomal hydroxylase was completely inhibited by carbon monoxide and was NADPH dependent. Metyrapone, alpha-naphthoflavone, phenelzine, mercuric chloride, and nitrogen significantly inhibited the reaction indicating the involvement of the cytochrome P-450 monooxygenase. Species variation showed that the order of hepatic microsomal activity was rat greater than rabbit much greater than guinea pig much greater than mouse and hamster. The reaction increased with time up to 40 min and followed Michaelis-Menten kinetics in rat liver microsomes with apparent Km and Vmax values of 224.4 microM and 359.9 pmol.mg-1.min-1, respectively. The reaction was induced by phenobarbital but was depressed after pretreatment with 3-methylcholanthrene and isosafrole. However, expression of the hydroxylase activity per nanomoles of cytochrome P-450 showed that the activity was much higher in liver microsomes of isosafrole pretreated rats. These results indicate the involvement of different isozymes of cytochrome P-450 in the microsomal hydroxylation of tolbutamide.  相似文献   

13.
Neuronal membranes from rat dorsal root ganglia provide a mitogenic signal to cultured Schwann cells and it has been suggested this is an important factor in regulating Schwann cell numbers during development. In this study, the influence of enteric neurons on the DNA synthesis of both Schwann cells and enteric glia has been investigated as well as the effect of axonal membrane fractions (axolemma) on enteric glia. The proliferation rate of rat Schwann cells and enteric glia was assessed in culture using [3H]thymidine uptake and autoradiography in combination with immunolabelling to identify cell types. When purified rat Schwann cells were co-cultured with guinea pig enteric neurons, their DNA synthesis rate was reduced compared with control cultures of pure Schwann cells or Schwann cells not close to neurites or neuronal cell bodies. Nevertheless, in accordance with previous findings that sensory neurons stimulate Schwann cell division, these Schwann cells increased their DNA synthesis rate when in contact with neurites from purified guinea pig or adult rat dorsal root ganglion neurons and on exposure to bovine axolemmal fractions. The enteric neurons also suppressed the DNA synthesis of enteric glia in co-cultures of purified enteric neurons and enteric glia, while bovine axolemma stimulated their DNA synthesis. These results indicate that a mitotic inhibitory signal is associated with enteric neurons and can exert its effect on both Schwann cells and enteric glia, and that enteric glia, like Schwann cells, are stimulated to divide by axolemmal fractions. It thus seems possible that during development glial cell numbers in the peripheral nervous system may be controlled by both positive and negative regulators of cell growth.  相似文献   

14.
To investigate whether heart failure alters beta-adrenergic receptors on skeletal muscle and its associated vasculature, the density of beta-adrenergic receptors, isoproterenol-stimulated adenylate cyclase activity, and coupling of the guanine nucleotide-binding regulatory protein were compared in 18 control dogs and 16 dogs with heart failure induced by 5-8 wk of ventricular pacing at 260 beats/min. Hindlimb vascular responses to isoproterenol were compared in eight controls and eight of the dogs with heart failure. In dogs with heart failure, the density of beta-receptors on skeletal muscle was reduced in both gastrocnemius (control: 50 +/- 5; heart failure: 33 +/- 8 fmol/mg of protein) and semitendinosus muscle (control: 43 +/- 9; heart failure: 27 +/- 9 fmol/mg of protein, both P less than 0.05). Receptor coupling to the ternary complex, as determined by isoproterenol competition curves with and without guanosine 5'-triphosphate (GTP), was unchanged. Isoproterenol-stimulated adenylate cyclase activity was significantly decreased in semitendinosus muscle (control: 52.4 +/- 4.6; heart failure: 36.5 +/- 9.5 pmol.mg-1.min-1; P less than 0.05) and tended to be decreased in gastrocnemius muscle (control: 40.1 +/- 8.5; heart failure: 33.5 +/- 4.5 pmol.mg-1.min-1; P = NS). Isoproterenol-induced hindlimb vasodilation was not significantly different in controls and in dogs with heart failure. These findings suggest that heart failure causes downregulation of skeletal muscle beta-adrenergic receptors, probably due to receptor exposure to elevated catecholamine levels, but does not reduce beta-receptor-mediated vasodilation in muscle.  相似文献   

15.
In rat 1 fibroblasts, insulin has little or no stimulatory effect on the activities of either MAP2 protein kinase or ribosomal protein S6 kinase. In contrast, in rat 1 cells that overexpress the normal human insulin receptor (rat 1 HIRc B; McClain et al. (1987) J. Biol. Chem. 262, 14663-14671), insulin activates both MAP2 and S6 kinase activities close to 5-fold. A MAP2 kinase has been purified from insulin-treated rat 1 HIRc B cells over 6300-fold by chromatography on Q-Sepharose, phenyl-Sepharose, S-Sepharose, phosphocellulose, QAE-Sepharose, UltrogelAcA54, DEAE-cellulose, and a second Q-Sepharose. Its specific activity is approximately 0.8-1 mumol.min-1.mg-1 with MAP2 and 3 mumol.min-1.mg-1 with myelin basic protein. The enzyme preparation contains one major band of Mr = 43,000 upon SDS-polyacrylamide gel electrophoresis, which is immunoblotted by antibodies to phosphotyrosine. A sequence from the 43-kDa band led to the isolation of a cDNA encoding the enzyme, which we have named ERK1 for extracellular signal-regulated kinase (Boulton et al. (1990) Science 249, 64-67).  相似文献   

16.
The activity of a protein kinase specific to ribosomal protein S6 was determined in early loach embryos in basal conditions and after their treatment with epidermal growth factor (EGF). The cytosol of loach blastoderms isolated at the early gastrula stage possessed a high level of protein kinase activity catalysing incorporation of 0. 33 pmol.min-1.mg-1 of Pi into exogenous S6 protein of rat liver ribosomal 40S subunit. The treatment of embryos for 30 min with EGF (10 ng/ml) added to the incubation medium caused an 25% increase of total S6-kinase activity in cytosol compared with its counterpart in non-stimulated embryos. After chromatography of loach embryos cytosol on DE-52 three fractions possessing S6-kinase activity were revealed, which were eluted with 10 microM cAMP (I), 150 mM NaCl (II) and 300 mM NaCl (III), respectively. After treatment of blastoderms with EGF in the described conditions the enzymatic activity 2-fold decreased in fraction I, increased in fraction II 4-fold and remained practically unchanged in fraction III. The mitogen-stimulated kinase, apart from S6 protein, phosphorylated also casein and but not histone H1.  相似文献   

17.
Ecdysone 3-epimerase was partially purified by ammonium sulfate fractionation from the 100,000 g supernate of Manduca sexta midguts. The enzyme converts ecdysone and 20-hydroxyecdysone to their respective 3-epimers, requires NADH or NADPH and O2 for this reaction, and has the following kinetic parameters: for ecdysone, Km = 17.0 +/- 1.4 microM, Vmax = 110.6 +/- 14.6 pmol min-1 mg-1; for 20-hydroxyecdysone, Km = 47.3 +/- 7.5 microM, Vmax = 131.0 +/- 3.5 pmol min-1 mg-1: for NADPH, Km = 85.4 +/- 10.6 microM; for NADH, Km = 51.3 +/- 1.3 microM. The reaction is irreversible and can be inhibited by various ecdysteroids.  相似文献   

18.
The purpose of the present study was to investigate whether hypoxia influences acetylcholine (ACh) release from the rabbit carotid body and, if so, to determine the mechanism(s) associated with this response. ACh is expressed in the rabbit carotid body (5.6 +/- 1.3 pmol/carotid body) as evidenced by electrochemical analysis. Immunocytochemical analysis of the primary cultures of the carotid body with antibody specific to ACh further showed that ACh-like immunoreactivity is localized to many glomus cells. The effect of hypoxia on ACh release was examined in ex vivo carotid bodies harvested from anesthetized rabbits. The basal release of ACh during normoxia ( approximately 150 Torr) averaged 5.9 +/- 0.5 fmol.min-1.carotid body-1. Lowering the Po2 to 90 and 20 Torr progressively decreased ACh release by approximately 15 and approximately 68%, respectively. ACh release returned to the basal value on reoxygenation. Simultaneous monitoring of dopamine showed a sixfold increase in dopamine release during hypoxia. Hypercapnia (21% O2 + 10% CO2) as well as high K+ (100 mM) facilitated ACh release from the carotid body, suggesting that hypoxia-induced inhibition of ACh release is not due to deterioration of the carotid body. Hypoxia had no significant effect on acetylcholinesterase activity in the medium, implying that increased hydrolysis of ACh does not account for hypoxia-induced inhibition of ACh release. In the presence of either atropine (10 microM) or domperidone (10 microM), hypoxia stimulated ACh release. These results demonstrate that glomus cells of the rabbit carotid body express ACh and that hypoxia overall inhibits ACh release via activation of muscarinic and dopaminergic autoinhibitory receptors in the carotid body.  相似文献   

19.
Guinea-pig cerebral cortex synaptosomes steadily release H2O2 into the suspending medium, at the rate of 20-30 pmol min-1 mg protein-1. A transient increase of the H2O2 release is induced by the addition of 1 mM Ca2+, which declines within 60-90 s to a rate identical or slightly higher than that before Ca2+. The extra H2O2 following Ca2+ addition varies between 40-100 pmol/mg protein and is insensitive to verapamil. The H2O2 release increases strongly (up to 250 pmol min-1 mg-1) upon depletion of the synaptosomal glutathione by treatment with 1-chloro-2,4-dinitrobenzene, a substrate for glutathione transferase. This treatment however has no effect on the Ca2+-induced H2O2 transient. In these treated synaptosomes a further increase of the output of H2O2 is rapidly induced upon addition of the Ca2+ ionophore ionomycin. This increase (about 100 pmol min-1 mg-1) lasts several minutes and requires the presence of Ca2+. A similar, though less pronounced increased H2O2 release is obtained (also in the absence of Ca2+) upon depolarization of the synaptosomal plasma membrane with KCl or with veratridine.  相似文献   

20.
Cultures of Schwann cells from neonatal rat sciatic nerves were treated with acetylcholine agonists and the effects on cell proliferation evaluated. (3)[H]-thymidine incorporation shows that acetylcholine (ACh) receptor agonists inhibit cell proliferation, and FACS analysis demonstrates cell-cycle arrest and accumulation of cells in the G1 phase. The use of arecaidine, a selective agonist of muscarinic M2 receptors reveals that this effect depends mainly on M2 receptor activation. The arecaidine dependent-block in G1 is reversible because removal of arecaidine from the culture medium induces progression to the S phase. The block of the G1-S transition is also characterized by modulation of the expression of several cell-cycle markers. Moreover, treatment with ACh receptor agonist causes both a decrease in the PCNA protein levels in Schwann cell nuclei and an increase in p27 and p53 proteins. Finally, immuno-electron microscopy demonstrates that M2 receptors are expressed by Schwann cells in vivo. These results indicate that ACh, by modulating Schwann cell proliferation through M2 receptor activation, might contribute to their progression to a more differentiated phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号