首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The envelope glycoprotein (Env) of human immunodeficiency virus mediates virus entry into cells by undergoing conformational changes that lead to fusion between viral and cellular membranes. A six-helix bundle in gp41, consisting of an interior trimeric coiled-coil core with three exterior helices packed in the grooves (core structure), has been proposed to be part of a fusion-active structure of Env (D. C. Chan, D. Fass, J. M. Berger, and P. S. Kim, Cell 89:263–273, 1997; W. Weissenhorn, A. Dessen, S. C. Harrison, J. J. Skehel, and D. C. Wiley, Nature 387:426–430, 1997; and K. Tan, J. Liu, J. Wang, S. Shen, and M. Lu, Proc. Natl. Acad. Sci. USA 94:12303, 1997). We analyzed the effects of amino acid substitutions of arginine or glutamic acid in residues in the coiled-coil (heptad repeat) domain that line the interface between the helices in the gp41 core structure. We found that mutations of leucine to arginine or glutamic acid in position 556 and of alanine to arginine in position 558 resulted in undetectable levels of Env expression. Seven other mutations in six positions completely abolished fusion activity despite incorporation of the mutant Env into virions and normal gp160 processing. Single-residue substitutions of glutamic acid at position 570 or 577 resulted in the only viable mutants among the 16 mutants studied, although both viable mutants exhibited impaired fusion activity compared to that of the wild type. The glutamic acid 577 mutant was more sensitive than the wild type to inhibition by a gp41 coiled-coil peptide (DP-107) but not to that by another peptide corresponding to the C helix in the gp41 core structure (DP-178). These results provide insight into the gp41 fusion mechanism and suggest that the DP-107 peptide may inhibit fusion by binding to the homologous region in gp41, probably by forming a peptide-gp41 coiled-coil structure.  相似文献   

2.
Bone marrow stromal cell antigen 2 (BST-2, also known as tetherin) restricts the production of a number of enveloped viruses by blocking virus release from the cell surface. This antiviral activity is counteracted by such viral factors as Vpu of human immunodeficiency virus type 1 (HIV-1). Here, we report that Vpu antagonizes human BST-2 but not BST-2 derived from African green monkeys. The determinants of susceptibility to Vpu map to the transmembrane domain of BST-2. In accordance with this, expression of human BST-2 containing a modified transmembrane domain effectively blocks the replication of wild-type Vpu-expressing HIV-1 in CD4+ T cells. Furthermore, these BST-2 variants, as opposed to wild-type human BST-2, are refractory to Vpu-mediated down-regulation as a result of an attenuated interaction with Vpu. In view of the work by others pointing to a key role of the transmembrane domain of Vpu in promoting virus release, our data suggest that a direct interaction through the transmembrane domain of each of these two proteins is a prerequisite for Vpu to down-modulate BST-2.Human immunodeficiency virus type 1 (HIV-1) encodes four accessory proteins, Vif, Vpr, Vpu, and Nef. Although they are dispensable for HIV-1 replication in certain transformed cell lines, these accessory proteins play important roles in HIV-1 pathogenesis by modulating host immunity and overcoming antagonism by cellular factors (10). For example, Vif counteracts APOBEC3G by recruiting the cullin 5-elongin B/C ubiquitin ligase complex and sending polyubiquitinated APOBEC3G to proteasomes for degradation (29). In the absence of Vif, newly synthesized APOBEC3G is incorporated into virus particles and hampers the production of infectious proviral DNA in the new round of infection (4, 10, 23). In addition to its role in down-modulating the cell surface expression of CD4 in infected T cells (11), Vpu stimulates HIV-1 production in cells such as HeLa cells (26). The mechanism behind this latter activity of Vpu was unknown until it was recently discovered that bone marrow stromal cell antigen 2 (BST-2, also known as tetherin, CD317, or HM1.24) blocks the release of HIV-1 and that this inhibitory effect is antagonized by viral Vpu (16, 25).BST-2 harbors an N-terminal transmembrane domain and a C-terminal glycosyl-phosphatidylinositol anchor that together create an unusual topology with both termini of BST-2 inserted into the plasma membrane (8, 18). This unique topology of BST-2 may underlie the mechanism for the retention of progeny virus particles at the cell surface (16). An indirect mechanism behind this tethering effect has not been ruled out, especially in view of the difficulty of detecting BST-2 protein in purified HIV-1 particles (14). In addition to HIV-1, a number of enveloped viruses are subject to inhibition by BST-2, including simian immunodeficiency virus, feline immunodeficiency virus, equine infectious anemia virus, Mason-Pfizer monkey virus, and Lassa virus, as well as Ebola and Marburg viruses (5, 6, 16, 19, 25). This suggests that BST-2 has a broad antiviral effect spectrum.The bst-2 gene has in its promoter the IRF-1/2 and ISGF3 response elements and thus belongs to the interferon-stimulated gene family (17). In line with its ability to impair the release of enveloped viruses, BST-2 has been demonstrated to be the effector in human embryonic kidney (HEK293T) cells that leads to the interferon-induced block of Vpu deletion-containing HIV-1 production (15). However, the African green monkey kidney cell line COS-7 responds to interferon treatment with a different outcome in that the production of both Vpu deletion-containing and Vpu-expressing HIV-1 is inhibited (15). This indicates that interferon induces a block to HIV-1 in COS-7 cells that cannot be overcome by Vpu. A conceivable candidate that creates this block is BST-2 in COS-7 cells (hereafter named agmBST-2). In this study, we provide evidence that depletion of endogenous BST-2 in COS-7 cells greatly alleviates interferon-induced inhibition of HIV-1 production. The refractoriness of agmBST-2 to Vpu results from a weak association of these two proteins and a resistance of agmBST-2 to Vpu-mediated down-regulation.  相似文献   

3.
The matrix (M) protein plays an essential role in the assembly and budding of some enveloped RNA viruses. We expressed the human parainfluenza virus type 1 (hPIV-1) M and/or NP genes into 293T cells using the mammalian expression vector pCAGGS. Biochemical and electron microscopic analyses of transfected cells showed that the M protein alone can induce the budding of virus-like particles (vesicles) from the plasma membrane and that the NP protein can assemble into intracellular nucleocapsid-like (NC-like) structures. Furthermore, the coexpression of both the M and NP genes resulted in the production of vesicles enclosing NC-like structures, suggesting that the hPIV-1 M protein has the intrinsic ability to induce membrane vesiculation and to incorporate NC-like structures into these budding vesicles.  相似文献   

4.
The p6 domain of human immunodeficiency virus type 1 (HIV-1) is located at the C terminus of the Gag precursor protein Pr55(Gag). Previous studies indicated that p6 plays a critical role in HIV-1 particle budding from virus-expressing HeLa cells. In this study, we performed a detailed mutational analysis of the N terminus of p6 to map the sequences required for efficient virus release. We observed that the highly conserved P-T/S-A-P motif located near the N terminus of p6 is remarkably sensitive to change; even conservative mutations in this sequence imposed profound virus release defects in HeLa cells. In contrast, single and double amino acid substitutions outside the P-T/S-A-P motif had no significant effect on particle release. The introduction of stop codons one or two residues beyond the P-T/S-A-P motif markedly impaired virion release, whereas truncation four residues beyond P-T/S-A-P had no effect on particle production in HeLa cells. By examining the effects of p6 mutation in biological and biochemical analyses and by electron microscopy, we defined the role of p6 in particle release and virus replication in a panel of T-cell and adherent cell lines and in primary lymphocytes and monocyte-derived macrophages. We demonstrated that the effects of p6 mutation on virus replication are markedly cell type dependent. Intriguingly, even in T-cell lines and primary lymphocytes in which p6 mutations block virus replication, these changes had little or no effect on particle release. However, p6-mutant particles produced in T-cell lines and primary lymphocytes exhibited a defect in virion-virion detachment, resulting in the production of tethered chains of virions. Virus release in monocyte-derived macrophages was markedly inhibited by p6 mutation. To examine further the cell type-specific virus release defect in HeLa versus T cells, transient heterokaryons were produced between HeLa cells and the Jurkat T-cell line. These heterokaryons display a T-cell-like phenotype with respect to the requirement for p6 in particle release. The results described here define the role of p6 in virus replication in a wide range of cell types and reveal a strong cell type-dependent requirement for p6 in virus particle budding.  相似文献   

5.
The importance of the Fas death pathway in human immunodeficiency virus (HIV) infection has been the subject of many studies. Missing from these studies is direct measurement of infected cell susceptibility to Fas-induced death. To address this question, we investigated whether T cells infected with HIV are more susceptible to Fas-induced death. We found that Fas cross-linking caused a decrease in the number of HIV-infected Jurkat T cells and CD4+ peripheral blood leukocytes (PBLs). We confirmed this finding by demonstrating that there were more apoptotic infected than uninfected cells after Fas ligation. The increase in sensitivity of HIV-infected cells to Fas killing mapped to vpu, while nef, vif, vpr, and second exon of tat did not appear to contribute. Furthermore, expression of Vpu in Jurkat T cells rendered them more susceptible to Fas-induced death. These results show that HIV-infected cells are more sensitive to Fas-induced death and that the Vpu protein of HIV contributes to this sensitivity. The increased sensitivity of HIV-infected cells to Fas-induced death might help explain why these cells have such a short in vivo half-life.  相似文献   

6.
We have constructed a series of human immunodeficiency virus (HIV) gag mutants by progressive truncation of the gag coding sequence from the C terminus and have combined these mutants with an assembly-competent matrix domain deletion mutation (ΔMA). By using several methods, the particle-producing capabilities of each mutant were examined. Our analysis indicated that truncated Gag precursors lacking most of C-terminal gag gene products assembled and were released from 293T cells. Additionally, a mutant with a combined deletion of the MA (ΔMA) and p6 domains even produced particles at levels comparable to that of the wild-type (wt) virus. However, most mutants derived from combination of the ΔMA and the C-terminal truncation mutations did not release particles as well as the wt. Our smallest HIV gag gene product capable of virus-like particle formation was a 28-kDa protein which consists of a few MA amino acids and the CA-p2 domain. Sucrose density gradient fractionation analysis indicated that most mutants exhibited a wt retrovirus particle density. Exceptions to this rule were mutants with an intact MA domain but deleted downstream of the p2 domains. These C-terminal truncation mutants possessed particle densities of 1.13 to 1.15 g/ml, lower than that of the wt. The N-terminal portions of the CA domain, which have been shown to be dispensable for core assembly, became critical when most of the MA domain was deleted, suggesting a requirement for an intact CA domain to assemble and release particles.  相似文献   

7.
Lentiviruses have in their transmembrane glycoprotein (TM) a highly immunogenic structure referred to as the principal immunodominant domain (PID). The PID forms a loop of 5 to 7 amino acids between two conserved cysteines. Previous studies showed that envelope (Env) glycoprotein functions of feline immunodeficiency virus (FIV) could be retained after extensive mutation of the PID loop sequence, in spite of its high conservation. In order to compare Env function in different lentiviruses, either random mutations were introduced in the PID loop sequence of human immunodeficiency virus type 1 (HIV-1) or the entire HIV-1 PID loop was replaced by the corresponding PID loop of FIV or simian immunodeficiency virus (SIV). In the macrophage-tropic HIV-1 ADA Env, mutations impaired the processing of the gp160 Env precursor, thereby abolishing viral infectivity. However, 6 of the 108 random Env mutants that were screened retained the capacity to induce cell membrane fusion. The SIV and FIV sequences and five random mutations were then introduced in the context of T-cell-line-adapted HIV-1 LAI which, although phenotypically distant from HIV-1 ADA, has an identical PID loop sequence. In contrast to the situation for HIV-1 ADA mutants, the cleavage of the Env precursor was unaffected in most HIV-1 LAI mutants. Such mutations, however, resulted in increased shedding of the gp120 surface glycoprotein (SU) from the gp41 TM. The HIV-1 LAI Env mutants showed high fusogenic efficiency. Three Env mutants retained the capacity to mediate virus entry in target cells, although less efficiently than the wild-type Env, and allowed the reconstitution of infectious molecular clones. These results indicated that in HIV-1, like FIV, the conserved PID sequence can be changed without impairing Env function. However, functional constraints on the PID of HIV-1 vary depending on the structural context of Env, presumably in relation to the role of the PID in the interaction of the SU and TM subunits and the stability of the Env complex.  相似文献   

8.
The interaction of the human immunodeficiency virus type 1 (HIV-1) Pr55Gag molecule with the plasma membrane of an infected cell is an essential step of the viral life cycle. Myristic acid and positively charged residues within the N-terminal portion of MA constitute the membrane-binding domain of Pr55Gag. A separate assembly domain, termed the interaction (I) domain, is located nearer the C-terminal end of the molecule. The I domain is required for production of dense retroviral particles, but has not previously been described to influence the efficiency of membrane binding or the subcellular distribution of Gag. This study used a series of Gag-green fluorescent protein fusion constructs to define a region outside of MA which determines efficient plasma membrane interaction. This function was mapped to the nucleocapsid (NC) region of Gag. The minimal region in a series of C-terminally truncated Gag proteins conferring plasma membrane fluorescence was identified as the N-terminal 14 amino acids of NC. This same region was sufficient to create a density shift in released retrovirus-like particles from 1.13 to 1.17 g/ml. The functional assembly domain previously termed the I domain is thus required for the efficient plasma membrane binding of Gag, in addition to its role in determining the density of released particles. We propose a model in which the I domain facilitates the interaction of the N-terminal membrane-binding domain of Pr55Gag with the plasma membrane.  相似文献   

9.
The molecular basis for localization of the human immunodeficiency virus type 1 envelope glycoprotein (Env) in detergent-resistant membranes (DRMs), also called lipid rafts, still remains unclear. The C-terminal cytoplasmic tail of gp41 contains three membrane-interacting, amphipathic α-helical sequences, termed lentivirus lytic peptide 2 (LLP-2), LLP-3, and LLP-1, in that order. Here we identify determinants in the cytoplasmic tail which are crucial for Env''s association with Triton X-100-resistant rafts. Truncations of LLP-1 greatly reduced Env localization in lipid rafts, and the property of Gag-independent gp41 localization in rafts was conserved among different strains. Analyses of mutants containing single deletions or substitutions in LLP-1 showed that the α-helical structure of the LLP-1 hydrophobic face has a more-critical role in Env-raft associations than that of the hydrophilic face. With the exception of a Pro substitution for Val-833, all Pro substitution and charge-inverting mutants showed wild-type virus-like one-cycle viral infectivity, replication kinetics, and Env incorporation into the virus. The intracellular localization and cell surface expression of mutants not localized in lipid rafts, such as the TM844, TM813, 829P, and 843P mutants, were apparently normal compared to those of wild-type Env. Cytoplasmic subdomain targeting analyses revealed that the sequence spanning LLP-3 and LLP-1 could target a cytoplasmic reporter protein to DRMs. Mutations of LLP-1 that affected Env association with lipid rafts also disrupted the DRM-targeting ability of the LLP-3/LLP-1 sequence. Our results clearly demonstrate that LLP motifs located in the C-terminal cytoplasmic tail of gp41 harbor Triton X-100-resistant raft association determinants.Lentiviruses, including human immunodeficiency virus type 1 (HIV-1), are unusual in possessing a long cytoplasmic domain (∼150 amino acids) in their envelope (Env) transmembrane (TM) glycoprotein compared to those of other retroviruses (20 to 50 amino acids). The cytoplasmic domain of HIV-1 TM protein gp41, which encompasses residues 706 to 856, has multiple functions during the virus life cycle, including viral replication, infectivity, transmission, and cytopathogenicity. Truncations of the HIV-1 cytoplasmic domains may modulate cell-cell fusion properties of the Env protein, presumably due to alterations in the levels of cell surface Env expression and conformation of the Env ectodomain (23, 81). The cytoplasmic domain is characterized by the presence of three structurally conserved, amphipathic α-helical segments, located at residues 828 to 856, 770 to 795, and 786 to 813 and referred to as lentivirus lytic peptide 1 (LLP-1), LLP-2, and LLP-3, respectively, at its C terminus (Fig. (Fig.1A).1A). The LLP-1 and LLP-2 sequences were shown to be inserted into viral membranes by a photoinduced chemical reaction (73). These LLP motifs have been implicated in a variety of functions, such as cell surface expression (12), Env fusogenicity (30), and Env incorporation into a virus (47, 56), as well as Env protein stability (33) and multimerization (34).Open in a separate windowFIG. 1.(A) Schematic representation of the gp41 cytoplasmic domain and truncation mutants examined in this study. The cytoplasmic tail of gp41 contains a tyrosine-based endocytic YSPL signal located at residue 712, a hydrophilic region, a diaromatic YW motif, and three amphipathic α-helices, termed LLP-2, LLP-3, and LLP-1, at its C terminus. The amino acid sequence from residues 806 to 856 of the WT HXB2 Env is presented in single amino acid code, and the C-terminal dileucine motif is underlined in the sequence. Truncation mutants (TMs) generating stop codons immediately downstream of the indicated amino acids and their respective sequences are also shown. (B) pHXB2R3-based mutant proviruses used in this study. All mutants were generated by a PCR overlap cloning strategy, and the mutation sites are indicated. A dash or dot indicates that the residue in that position of the mutant provirus sequence is identical to or absent from that of the WT provirus sequence, respectively. The substituted amino acids in the mutant proviruses are also indicated.Gag and Env carry specific intracellular localization signals governing the site(s) of virus assembly/budding and release into the extracellular milieu. Env trafficking to the plasma membrane is regulated by the conserved C-terminal dileucine motif and the endocytic, membrane-proximal, tyrosine-based GY712SPL signal in the cytoplasmic tail of gp41 (Fig. (Fig.1A)1A) and by their respective interactions with the clathrin adaptor proteins, AP1 and AP2 (4, 9, 21, 49, 65, 77). A diaromatic motif, Y802W803, was shown to bind to TIP47, a protein required for the retrograde transport of mannose-6-phosphate receptors from late endosomes to the trans-Golgi network, and this interaction was involved in the retrograde transport of Env to the trans-Golgi network (8). Alterations of these intracellular localization signals may affect viral infectivity, Env assembly into the virus, and viral replication (8, 20). Likewise, Gag also contains important sequences required for its trafficking to and assembly at the plasma membrane. The matrix (MA) protein, p17, contains a myristoyl group and a cluster of basic amino acids, while p6 contains a late domain which interacts with the components of the endosomal sorting complex required for transport (ESCRT) pathway to mediate Gag trafficking to the virion assembly/budding site (for reviews, see references 25, 45, 57, and 59). It is well documented that the specific interaction between the cytoplasmic domain of gp41 and the trimeric MA protein in infected cells facilitates recruitment of the Env into virus assembly/budding sites on target membranes (for reviews, see references 18, 24, and 46). TIP47 was demonstrated to act as an adaptor to bridge the gp41 cytoplasmic domain and Gag, which allows the physical encounter between Gag and Env, resulting in efficient Env incorporation into the virus during the viral assembly/budding process (39).Lipid rafts, also called detergent-resistant membranes (DRMs), are highly specialized membrane microdomains present in both the plasma and endosomal membranes of eukaryotic cells. These dynamic microdomains are characterized by their detergent insolubility, light density on a sucrose gradient, and enrichment of cholesterol, glycosphingolipids, and glycosylphosphatidylinositol (GPI)-linked proteins that are anchored in the membrane by their attached GPI moieties (1). HIV-1 utilizes lipid rafts to efficiently enter host cells (40, 74, 80) and selectively assembles and buds from lipid rafts on the surfaces of infected cells (27, 36, 48, 50, 54). Also, the HIV-1 Env protein was detected in lipid raft membranes (48, 54, 64). Lipid rafts are thought to facilitate Env-Gag interactions, to concentrate viral Env glycoproteins, and to promote multimerization of intracellular viral components (for a review, see reference 51). However, what governs Env transport to and localization in lipid rafts is a long-standing question.Although the mechanisms by which proteins associate with lipid rafts are not fully understood, determinants for targeting of signal proteins to DRMs have been identified. These include a GPI anchor (2, 61) and an N-terminal Met-Gly-Cys in which Gly is myristylated and Cys is palmitoylated (43, 71). The latter includes certain dually acylated heterotrimeric guanine nucleotide-binding protein (G protein) α subunits (44). In addition, acylation by palmitoylation also serves as a signal to target signaling molecules to lipid rafts (for reviews, see references 11 and 60). Some Env proteins of membrane-enveloped viruses are known to be associated with lipid rafts (35, 41, 54, 69, 79), and acylation of viral Env proteins, in particular, palmitoylation, is important for targeting these Env proteins to lipid rafts (for reviews, see references 58 and 70).It is generally believed that the association of HIV-1 Env with lipid rafts requires a palmitoylation signal(s) located in the cytoplasmic tail of gp41 (6, 64). Nevertheless, the two cytoplasmic palmitoylated Cys residues in the HXB2 strain Env protein are not conserved among HIV-1 isolates, and some isolates do not even contain cysteine residues in their cytoplasmic tail (32). In accordance with this notion, we previously demonstrated that the two cytoplasmic palmitoylated Cys residues in T-cell (T)- and macrophage (M)-tropic Env proteins do not play an obvious role in the virus life cycle, including Env''s association with lipid rafts (13), suggesting that other factors may substitute for cytoplasmic palmitoylation to promote Env localization in lipid rafts. Clapham''s group showed that mutations in MA or the cytoplasmic tail that prevent Env from incorporating into the virus and impair virus infectivity also interfere with Env''s association with lipid rafts (7), indicating that the Gag-Env interaction drives efficient Env association with lipid rafts, which in turn modulates Env budding and assembly onto viral particles. In contrast to their findings, we previously also noted that the Env protein of the HXB2 strain expressed without Gag is still located in lipid rafts (13), providing compelling evidence for the proposal that the Env per se contains sufficient information for its sequestration into lipid rafts.To further understand the nature of Env''s association with lipid rafts, in the present study we show that sequestering Env in Triton X-100-resistant lipid rafts is an intrinsic property of Env and is independent of Gag-Env interactions. Additionally, the LLP motifs, in particular the α-helical structure of the hydrophobic face of LLP-1, play a crucial role in Env''s localization in lipid rafts. Except for the 833P mutant of Env, which is unstable and degrades (33), all Pro-substituted mutants not located in lipid rafts exhibited wild-type (WT)-like phenotypes of intracellular localization, cell surface expression, incorporation into virions, and viral replication capacity. Importantly, the α-helix of the hydrophobic face of LLP-1 is also critical for the raft-targeting ability of the LLP-3/LLP-1 sequence. Our study depicts, for the first time, the critical role of the α-helix of the gp41 cytoplasmic domain in mediating Env''s association with and targeting to Triton X-100-resistant lipid rafts.  相似文献   

10.
Plasmacytoid dendritic cells (pcDC) and myeloid dendritic cells (myDC) are shown to express CD4 and low levels of CCR5 and CXCR4, but only myDC express DC SIGN, a C-type lectin that binds human immunodeficiency virus but does not mediate virus entry. Both DC types were more susceptible to infection with a macrophage than a lymphotropic strain of human immunodeficiency virus type 1, but pcDC were more readily infected than myDC.  相似文献   

11.
The entry of human immunodeficiency virus type 1 (HIV-1) into a target cell entails a series of conformational changes in the gp41 transmembrane glycoprotein that mediates the fusion of the viral and target cell membranes. A trimer-of-hairpins structure formed by the association of two heptad repeat (HR) regions of the gp41 ectodomain has been implicated in a late step of the fusion pathway. Earlier native and intermediate states of the protein are postulated to mediate the antiviral activity of the fusion inhibitor enfuvirtide and of broadly neutralizing monoclonal antibodies (NAbs), but the details of these structures remain unknown. Here, we report the identification and crystal structure of a dimerization domain in the C-terminal ectodomain of gp41 (residues 630 to 683, or C54). Two C54 monomers associate to form an asymmetric, antiparallel coiled coil with two distinct C-terminal α-helical overhangs. This dimer structure is conferred largely by interactions within a central core that corresponds to the sequence of enfuvirtide. The mutagenic alteration of the dimer interface severely impairs the infectivity of Env-pseudotyped viruses. Moreover, the C54 structure binds tightly to both the 2F5 and 4E10 NAbs and likely represents a potential intermediate conformation of gp41. These results should enhance our understanding of the molecular basis of the gp41 fusogenic structural transitions and thereby guide rational, structure-based efforts to design new fusion inhibitors and vaccine candidates intended to induce broadly neutralizing antibodies.The entry of human immunodeficiency virus type 1 (HIV-1) into its target cell to establish an infection requires the fusion of viral and cellular membranes, a process that is mediated by the viral envelope glycoprotein (Env) through interactions with receptors on the target cell membrane (CD4 and a coreceptor, such as CCR-5 or CXCR-4) (14). HIV-1 Env is synthesized as the glycoprotein precursor gp160, which oligomerizes in the endoplasmic reticulum and subsequently is cleaved by the cellular furin endoprotease to create a metastable state that is primed for the induction of membrane fusion activity (19). The resulting Env complex is a trimeric structure comprising three gp120 surface glycoproteins, each associated noncovalently with one of three subunits of the gp41 transmembrane glycoprotein (24, 27, 47, 48). This native (prefusion) Env spike protrudes from the virus surface and is the target for neutralizing antibodies (NAbs) (reviewed in reference 3). It is generally accepted that HIV-1 membrane fusion is promoted by a series of receptor binding-triggered conformational changes in the Env complex, culminating in the formation of an energetically stable trimer of α-helical hairpins in gp41 (10, 14).The core structure of the trimer-of-hairpins is an antiparallel six-helix bundle: a central, three-stranded coiled coil formed by the first heptad repeat (HRN) region of gp41 is sheathed by three α-helices derived from the second HR (HRC) (5, 27, 42, 44). HRN is immediately C terminal to the fusion peptide, while HRC is adjacent to the transmembrane helix anchored in the viral membrane. The interaction of gp120 with CD4 and a chemokine receptor is thought to alter intersubunit interactions in the native Env complex, leading to gp41 reorganization into a postulated prehairpin intermediate (reviewed in references 10 and 14). At this point, the N-terminal HRN coiled-coil trimer is formed, relocating the fusion peptides to allow them to insert into the cellular membrane. The HRC region then is thought to jackknife so as to pack against the inner coiled-coil core and form the postfusion trimer-of-hairpin structure that brings the attached target cell and viral membranes together. Evidence for the existence of these different gp41 conformational states in the fusion pathway is indirect, being inferred from the antiviral activity of peptides derived from the two HR regions of gp41 (20, 45). These peptide inhibitors likely act in a dominant-negative manner by binding to the prehairpin intermediate, preventing the formation of the trimer-of-hairpins (6, 13, 27, 31). This intermediate is relatively stable, with a half-life of many minutes, as detected by the capacity of such peptides to inhibit fusion once prefusion gp41 has undergone a conformational transition (21, 31). Although mounting evidence indicates that the prefusogenic and intermediate states are important targets for drug- and vaccine-elicited NAbs (reviewed in references 3 and 10), little is known about their structures and how they modulate gp41 fusogenicity or serve as targets for inhibition.The C-terminal part of the gp41 ectodomain consists of HRC (or C34) and the membrane-proximal external region (MPER) (Fig. (Fig.1).1). The C34 peptide is intrinsically disordered in isolation and forms an outer-layer α-helix only in the six-helix bundle (27, 29). Structural studies of the trimeric coiled-coil state of the MPER and of its bent helix conformation after binding to lipid membranes have begun to provide clues regarding the function of this unusual and important NAb-associated segment (25, 41). The MPER is the established target for two very rare but broadly reactive NAbs, 2F5 and 4E10/z13, which are elicited during natural human infection (50). These neutralizing epitopes seem to be poorly exposed on the surface of both HIV-1-infected cells and virions (reviewed in reference 3). Their exposure is enhanced or triggered by receptor binding but diminishes on the formation of the trimer-of-hairpins, suggesting that both of the NAbs target a more extended intermediate conformation rather than the native gp41 structure (8, 12). Despite extensive efforts, how structural aspects of the MPER explain its antigenicity and immunogenicity remains unclear. Here, we report the identification of the C-terminal dimerization domain of gp41 and present the 1.65-Å crystal structure of this domain. We characterize the role of this antiparallel two-stranded coiled-coil structure in NAb reactivity and viral function. Our study provides a potential structure for the fusion-intermediate state of gp41 and for the future design of new HIV-1 immunogens that may elicit broad and potent NAbs.Open in a separate windowFIG. 1.Structural and functional domains of HIV-1 gp41. (Upper) Schematic view of gp41 showing the location of the fusion peptide (FP), the two HR regions, the MPER, the transmembrane segment (TM), and the cytoplasmic region (CP). HRC and MPER are depicted in blue and green, respectively. (Lower) Sequences of the C56, C54, C54N656L, and C39 peptides employed in the study. The Asn-656→Leu mutation in C54N656L is shown in red. The sequences of T-20 and core epitopes recognized by the human 2F5 and 4E10 MAbs are indicated.  相似文献   

12.
Knowledge of immune mechanisms responsible for the cross-protection between highly divergent viruses such as human immunodeficiency virus type 1 (HIV-1) and HIV-2 may contribute to an understanding of whether virus variability may be overcome in the design of vaccine candidates which are broadly protective across the HIV subtypes. We demonstrate that despite the significant difference in virus amino acid sequence, the majority of HIV-2-infected individuals with different HLA molecules possess a dominant cytotoxic T-cell response which is able to recognize HIV-1 Gag protein. Furthermore, HLA-B5801-positive subjects show broad cross-recognition of HIV-1 subtypes since they mounted a T-cell response that tolerated extensive amino acid substitutions within HLA-B5801-restricted HIV-1 and HIV-2 epitopes. These results suggests that HLA-B5801-positive HIV-2-infected individuals have an enhanced ability to react with HIV-1 that could play a role in cross-protection.Human immunodeficiency virus type 1 (HIV-1) and HIV-2 are related human retroviruses that show various biological and structural differences. HIV-2 is found mainly in West Africa, whereas HIV-1 is spreading throughout the world. HIV-2 is less transmissible, and HIV-2-positive patients exhibit longer clinical latency periods than individuals infected with HIV-1 (23). A recent report has also shown that the mortality in HIV-2-infected individuals is only twice as high as in the uninfected population and, in the majority of adults, survival is not affected by HIV-2 status (31).Although the two viruses are similar in genomic organization, various genetic and enzymatic differences have been found at many stages of the retroviral life cycle. They differ significantly in terms of amino acid sequence, the more conserved being the Pol and Gag sequences, which exhibit less than 60% homology (17).Despite these differences, epidemiological data and animal studies have shown some evidence of cross-protection between the two viral infections. Travers et al. reported that HIV-2-infected women had a lower incidence of HIV-1 infection than did HIV-seronegative women in a cohort of commercial sexual workers in Dakar (37), and rhesus macaques immunized with a recombinant HIV-1 poxvirus vaccine are protected against HIV-2 challenge (2). These studies, though not conclusive (1, 6), suggest that differences in the virus may not necessarily preclude the development of defensive immunity to a subsequent pathogenic infection, an old-fashioned concept pioneered by Jenner, who used cowpox to vaccinate against human smallpox.The immunological basis of cross-protection is largely unknown, and a clear understanding of the role played by the humoral or cell-mediated immune response in HIV protection is still lacking. However, mounting evidence suggests that cytotoxic T-lymphocyte (CTL) response could be the key element. Indeed, the protection afforded in animal models against simian (13) and feline (12) immunodeficiency virus infections is closely correlated with the induction of specific CTL response, and HIV-1 and HIV-2 HLA-B35-restricted cross-reactive CTLs have been postulated to confer protection against repeated HIV exposure (33).CTLs recognize short viral peptides, 8 to 11 amino acids long, that are generated by the intracellular processing of endogenously synthesized viral antigens within the infected cells, which are expressed at the cell surface in the binding groove of HLA class I molecules. The specificity of the T-cell response is determined by the interaction of the antigen-specific T-cell receptor (TCR) with the peptide-HLA complex, and this interaction, together with non-antigen-specific signals, activates the CTLs (15).The presence of cross-reactive CTLs able to lyse HIV-1- or HIV-2-infected cells should be dependent on the extent of conservation between the two viruses within the epitopes selected by particular HLA class I molecules. It is well known that amino acid substitutions within the epitopes can abrogate the CTL response by inhibiting either HLA binding or TCR recognition (32). However, a number of recent studies have shown that T cells can recognize apparently unrelated peptides (10, 41), and crystallographic data have shown physical limits to the TCR epitope specificity due to the limited size of contact between the TCR and the peptide (14), suggesting a flexibility in T-cell recognition of antigen (19).Some individuals with a particular HLA profile which is responsible for presentation of the viral antigen and for selection of the T-cell repertoire may possess a CTL response not affected by mutations within the epitope, as has been demonstrated in subjects with HLA alleles B27 (28) and B35 (33). In these cases, amino acid substitutions within the HIV-1 and -2 epitopes were tolerated by the CTLs.In this study, we have investigated the extent of cross-reacting CTLs between HIV-2 and HIV-1 in a group of HIV-2-infected subjects with different HLA class I types. We have shown that despite differences in amino acid sequence between the two viruses, the majority of HIV-2-positive subjects possess CTLs which are able to recognize HIV-1 Gag protein.Furthermore, analysis of HLA profiles and the fine specificity of the cytotoxic response demonstrated that HLA-B5801-positive subjects show broad cross-recognition of HIV-1 isolates. These subjects mounted a CTL response that tolerated extensive amino acid substitutions within an HLA-B5801-restricted HIV-1 epitope.  相似文献   

13.
14.
Retroviral integrase (IN) cleaves linear viral DNA specifically near the ends of the DNA (cleavage reaction) and subsequently couples the processed ends to phosphates in the target DNA (integration reaction). In vitro, IN catalyzes the disintegration reaction, which is the reverse of the integration reaction. Ideally, we would like to test the role of each amino acid in the IN protein. We mutagenized human immunodeficiency virus type 2 IN in a random way using PCR mutagenesis and generated a set of mutants in which 35% of all residues were substituted. Mutant proteins were tested for in vitro activity, e.g., site-specific cleavage of viral DNA, integration, and disintegration. Changes in 61 of the 90 proteins investigated showed no phenotypic effect. Substitutions that changed the choice of nucleophile in the cleavage reaction were found. These clustered around the active-site residues Asp-116 and Glu-152. We also found alterations of amino acids that affected cleavage and integration differentially. In addition, we analyzed the disintegration activity of the proteins and found substitutions of amino acids close to the dimer interface that enhanced intermolecular disintegration activity, whereas other catalytic activities were present at wild-type levels. This study shows the feasibility of investigating the role of virtually any amino acid in a protein the size of IN.  相似文献   

15.
16.
We have examined mutations in the ectodomain of the human immunodeficiency virus type 1 transmembrane glycoprotein gp41 within a region immediately adjacent to the membrane-spanning domain for their effect on the outcome of the fusion cascade. Using the recently developed three-color assay (I. Muñoz-Barroso, S. Durell, K. Sakaguchi, E. Appella, and R. Blumenthal, J. Cell Biol. 140:315–323, 1998), we have assessed the ability of the mutant gp41s to transfer lipid and small solutes from susceptible target cells to the gp120-gp41-expressing cells. The results were compared with the syncytium-inducing capabilities of these gp41 mutants. Two mutant proteins were incapable of mediating both dye transfer and syncytium formation. Two mutant proteins mediated dye transfer but were less effective at inducing syncytium formation than was wild-type gp41. The most interesting mutant proteins were those that were not capable of inducing syncytium formation but still mediated dye transfer, indicating that the fusion cascade was blocked beyond the stage of small fusion pore formation. Fusion mediated by the mutant gp41s was inhibited by the peptides DP178 and C34.

The human immunodeficiency virus type 1 (HIV-1) gp120-gp41 fusion machine consists of an assembly of viral envelope glycoprotein oligomers which forms a molecular scaffold responsible for bringing the viral membrane close to the target cell membrane and creating the architecture that enables lipid bilayers to merge (7). The fusion reaction undergoes multiple steps before the final event occurs which allows delivery of the nucleocapsid into the cell. In the case of influenza virus hemagglutinin (HA), we have dissected these steps kinetically and analyzed the molecular features of the kinetic intermediates (1). In order to examine the modus operandi of the fusion machine, mutations in various domains of viral envelope glycoproteins have been examined for their effect on the outcome of the fusion cascade. For instance, replacement of the membrane-spanning domain of influenza virus HA with a glycosylphosphatidylinositol anchor results in a very stable hemifusion intermediate (6). Moreover, single-site mutations in the fusion peptide of HA significantly affect fusion pore dilation (9). Recently, cytoplasmic tail acylation mutants of influenza virus HA were identified which induce transfer of lipids and small aqueous molecules but do not induce syncytium formation (4a).High-resolution crystallographic determinations (4, 10, 11) of gp41 fragments from HIV-1 have revealed a bent-in-half, antiparallel, heterotrimeric coiled-coil structure. This is made up of a triple-stranded coiled coil of α-helices from the leucine zipper-like 4-3 repeat domain in gp41 close to the N-terminal fusion peptide termed HR1 (8) flanked by α-helices from the domain in gp41 close to the C-terminal membrane anchor termed HR2 (8). Comparison with the crystal structure of the influenza virus HA2 subunits in a low-pH-induced conformation (2) reveals common structural motifs which provide growing support for the “spring-loaded” type of mechanistic models (3). In this scenario, activation of the fusion protein results in release of the fusion peptide and extension of the central coiled-coil structure. The new positioning of the fusion peptides at the tip of the stalk provides for easy contact with the target cell membrane. A small group of proximal fusion proteins which are simultaneously inserted into both the viral and target membranes would constitute a potential fusion site. A concerted collapse of this protein complex, actuated by the bending in half of the stalks at a central hinge region, would presumably position the C-terminal transmembrane anchors and N-terminal fusion peptides on top of each other in the center, bring the two membranes into contact, and thus allow formation of the fusion pore (7). In this study, we examined the effects on the various stages of the fusion reaction of mutations in the region between HR2 and the transmembrane (TM) anchor (Fig. (Fig.1)1) described in detail by Salzwedel et al. (8a). Open in a separate windowFIG. 1Amino acid sequence and mutations in gp41. FP is the predicted fusion peptide region, and HR1 and HR2 (8) represent, respectively, the N-terminal and C-terminal α-helices of the triple-stranded coiled coil (4, 11). Mutations in the region between HR2 and the TM anchor include deletions of amino acids 665 to 682 and 678 to 682, insertion of a FLAG sequence (YKDDDD), insertion of a DAF sequence (PNKGSGTTS), scrambling of the underlined sequence to SC7 (INNWNFT), and replacement of the five tryptophans with alanines [W(1-5)A]. Peptide C34 represents HR2 amino acids 628 to 663, and peptide DP178 represents amino acids 638 to 673.Mutagenesis of HIV-1 env, construction of plasmids, cell surface expression, CD4 binding, and cell fusion were performed as previously described (8a). The simian virus 40-based env expression plasmids (1 μg of DNA) were transfected into COS-1 cells in 35-mm-diameter plates by using DEAE-dextran (1 mg/ml). At 14 h posttransfection, the cells were replated, and starting at 36 to 48 h posttransfection, they were incubated with 20 μM CMAC (7-amino-4-chloromethylcoumarin) in Dulbecco modified Eagle medium overnight at 37°C. All constructs expressed similar amounts of envelope glycoprotein on the cell surface (8a). The transfected cells were then washed and incubated in fresh medium for 2 h at 37°C before addition of HeLa-CD4 cells which were labeled in the membrane with octadecyl indocarbocyanine (DiI) and in the cytosol with calcein as previously described (7). The method used to detect cell-cell fusion was a three-color assay (7) based on the redistribution of fluorescent probes between effector and target cells upon fusion. The application of three different probes was used to monitor lipid versus cytosolic mixing in the same cell population. Fluorescently labeled gp120-gp41-expressing cells and CD4+ cells were cocultured at a 1:10 ratio for 2 h at 37°C in uncoated microwells (MatTek Corp., Ashland, Mass.). Bright-field and fluorescent images were acquired with an Olympus IX70 microscope coupled to a charge-coupled device camera (Princeton Instruments, Trenton, N.J.) with a 40× UplanApo oil immersion objective. Fluorescein isothiocyanate (exciter, BP470-490; beam splitter, DM505; emitter, BA515-550), rhodamine (exciter, BP530-550; beam splitter, DM570; emitter, BA590), and 4′,6-diamidino-2-phenylindole (DAPI) (exciter, D360/40; beam splitter, 400DCLP; emitter, D450/60) optical filter cubes were carefully chosen to avoid spillover when observing the fluorescence of the three dyes. For each sample, three or four different fields were collected, and data were analyzed by overlaying the images using Metamorph software (Universal Imaging Corporation, West Chester, Pa.). The percentage of lipid mixing and cytoplasmic mixing was calculated as 100 times the number of COS-1 cells stained with DiI and calcein divided by the total number of COS-1–HeLa-CD4 conjugates. Although not all COS-1 cells express env since the transfection efficiency is not 100%, env-expressing COS-1 cells are more likely to adhere to HeLa-CD4 cells.Figure Figure22 shows a montage of video images taken 2 h following incubation of COS-1 cells expressing wild-type (WT), W(1-5)A, and +DAF env with HeLa-CD4 cells at 37°C. As described in detail in the legend to Fig. Fig.2,2, we clearly observed COS-1 cells attached to HeLa-CD4 cells, which showed continuity of all three dyes (CMAC, calcein, and DiI). We know that for +DAF and W(1-5)A env-expressing COS-1 cells, these images do not represent syncytia since even small heterokaryons will show up in the MAGI cell assay (6a), which is based on the transfer of HIV-1 Tat coexpressed with env in COS-1 cells to HeLa-CD4 cells as a result of cell fusion. This transfer induces the expression of a β-galactosidase reporter gene engineered in HeLa-CD4 (MAGI) cells under the control of the viral long terminal repeat promoter (8a). Because the β-galactosidase has been modified to contain a nuclear targeting signal, the nuclei of the resulting heterokaryons stain dark blue with 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside (X-Gal) in situ. The MAGI assay is extremely sensitive and clearly identifies syncytia as small as two nuclei. Such nuclei were common for the Δ678-682 mutant, which produced syncytia with an average size of ∼5 nuclei (Fig. (Fig.3).3). The assay can detect even a few of these fusion events per 100,000 cells. In the MAGI assay, we did not observe any blue nuclei with the W(1-5)A and +DAF constructs, an experiment repeated several times. The three-color assay therefore reveals a distinct phenotype exhibited by the +DAF and W(1-5)A mutant envelope glycoproteins, which form small fusion pores allowing movement of lipids and small molecules (<1,000 Da) but not of large molecules (HIV-1 Tat is about 14 kDa [4b]). Open in a separate windowFIG. 2Three-color assay for WT and mutant HIV-1 gp41s. Simian virus 40-based env expression plasmids (1 μg) containing WT (A to D), W(1-5)A (E to H), and +DAF (I to L) env genes were transfected into COS-1 cells in 35-mm plates using DEAE-dextran (1 μg/ml). At 14 h posttransfection, the cells were replated, and starting at 36 to 48 h posttransfection they were incubated with 20 μM CMAC in Dulbecco modified Eagle medium overnight at 37°C. All constructs expressed similar amounts of envelope glycoprotein on the cell surface (8a). The transfected cells were then washed and incubated in fresh medium for 2 h at 37°C before addition of HeLa-CD4 cells which were labeled in the membrane with DiI and in the cytosol with calcein as previously described (7). The COS-1 cells, labeled with CMAC, were cocultured 1:10 at 37°C for 2 h with HeLa-CD4 cells labeled with DiI and calcein, and images were examined by bright-field microscopy (A, E, and I) and fluorescence microscopy for CMAC staining (B, F, and J), for DiI staining (C, G, and K), and for calcein staining (D, H, and L). CMAC is a fluorescent chloromethyl derivative that freely diffuses through the membranes of live cells. Once inside the cell, this mildly thiol-reactive probe undergoes what is believed to be a glutathione S-transferase-mediated reaction to produce membrane-impermeant fluorescent dye adducts with glutathione, as well as with other intracellular components. Staining of COS-1 cells with CMAC gives rise to bright fluorescence due to reaction with proteins in the perinuclear, endoplasmic reticulum, and Golgi regions, which are immobile, as well as to weaker fluorescence due to the fluorescent glutathione adduct (molecular mass, ∼600 Da) in the cytosol, which is able to diffuse through small fusion pores. The COS-1 cells identified by CMAC staining (B, F, and J) are large and often appear multinuclear, although we do not know whether the round granular structures seen by bright-field microscopy of the COS-1 cells are nuclei or large granules. Panels A to D show one large cell triple stained with CMAC, DiI, and calcein (indicated by a star). DiI is internalized after 2 h at 37°C and appears punctate with nuclear sparing due to its localization in membranes of intracellular organelles. Calcein (465 Da) is evenly distributed throughout the cell (D). One large, granular COS-1 cell (A, left) is only stained with CMAC (B); its lack of staining with DiI (C) and calcein (D) indicates that it has not fused with HeLa-CD4 cells. In panel F, a large structure is seen which seems in continuity with CMAC. However, since the bottom left part of this structure is not in continuity with DiI (G) and calcein (H), it represent two cells. The top right cell (indicated by a star) is in continuity with CMAC, DiI, and calcein. Since COS-1 cells expressing W(1-5)A env do not produce blue nuclei when incubated with MAGI cells (see Fig. Fig.3),3), which requires transfer of the 14-kDa HIV-1 Tat protein (see text), we conclude that this COS-1–HeLa-CD4 conjugate represents a phenotype in which small fusion pores form, allowing movement of lipids and small molecules (<1,000 Da) but not of large molecules. The same phenotype is seen with COS-1 cells expressing DAF env: the COS-1–HeLa-CD4 conjugate indicated by a star in panels J, K, and L is in continuity with CMAC, DiI, and calcein but does not allow transfer of HIV-1 Tat (see Fig. Fig.33).Open in a separate windowFIG. 3Fusogenic activity of WT and mutant HIV-1 gp41s. The three-color assay was performed as described in the legend to Fig. Fig.2.2. Since multiple rounds of fusion may interfere with quantitation in the case of WT and mutant env genes which produce a large number of blue nuclei after 24 h at 37°C (grey bars), incubations were done for 2 h at 37°C. Black bars represent 100 times the number of COS-1 cells stained with DiI and calcein over the total number of COS-1–HeLa-CD4 conjugates measured in the three-color assay. The data are representative of five separate experiments. In each experiment, a total of 30 to 50 COS-1–HeLa-CD4 conjugates were counted. The number of nuclei per syncytium (grey bars) was obtained from the MAGI assay (8a) and represents the ability of HIV-1 Tat to transfer from COS-1 cells to HeLa-CD4 cells.We tallied data from many cell pairs similar to those shown in Fig. Fig.22 and plotted the average percentage of COS-1 cells stained with DiI and calcein. Figure Figure33 shows the data for the WT and a number of mutants described by Salzwedel et al. (8a). The data fall into three groups, in which the envelope glycoproteins mediate (i) both dye and HIV-1 Tat redistribution (WT, Δ678-682, and SC7), (ii) neither dye nor HIV-1 Tat redistribution (Δ665-682 and +FLAG), or (iii) dye but not HIV-1 Tat redistribution [W(1-5)A and +DAF]. The latter represents a nonexpanding fusion pore phenotype.Dye redistribution induced by WT and mutant gp41s was inhibited by the peptide inhibitors DP178 and C34 (Fig. (Fig.4).4). The latter peptide is from the HR2 sequence (residues 628 to 663) which forms the flanking peptide of the heterotrimeric coiled coil in the crystal structure. DP178 is frameshifted 10 amino acids toward the C terminus (residues 638 to 673). The inhibition data indicate that dye redistribution mediated by WT and mutant gp41 molecules is specific for the gp120-gp41-induced fusion reaction and not due to nonspecific transfer. Interestingly, W(1-5)A and SC7 exhibited greater sensitivity than the WT to DP178 inhibition. In the case of C34, inhibition was about the same for the WT and the two mutants. We observed no inhibition by DP178 or C34 of HIV-2 env-mediated fusion at up to 100 nM peptide (data not shown). Open in a separate windowFIG. 4Inhibition of cell-cell fusion by DP178 and C34 peptides. Cell fusion was calculated as a percentage of the control by using the three-color assay method shown in Fig. Fig.22 and and33 and described in the text for the WT, W(1-5)A, and SC7.Although the crystal structure of the gp41 core (4, 11) is based on the HR1-HR2 coiled coil, it is possible that in intact gp41 the bundle is extended to include amino acids downstream from HR2 and upstream from HR1. Extension of the coiled coil might lead to tilting of the TM anchor, which is presumably important for producing sufficient lipid curvature to form a fusion junction (1). Removal of amino acids 665 to 682 may leave no possibility to form this extended coiled coil. Similarly, insertion of the FLAG sequence, which contains four aspartic acid residues, would presumably insert charged residues into a hydrophobic domain, which could also prevent extension of the coiled coil. The other mutations presumably allow extended coiled-coil formation but reduce its efficiency because of weaker interactions between the amino acids in the extended region. The coiled-coil structure might be so frail in mutant gp41s W(1-5)A and +DAF that it is not present for a sufficient amount of time to create the fusion pore dilation necessary to allow transfer of HIV-1 Tat. Since the Δ678-682 and SC7 proteins are, to a limited extent, capable of inducing syncytium formation and dye transfer, we surmise that they possess intermediate extended coiled-coil-forming propensities.Based on the structural information about the gp41 core (4, 10, 11), it has been proposed that the binding site for the peptide inhibitors is in the HR1 bundle. The C34 and DP178 peptides presumably bind in the same way as the corresponding amino acid sequence regions of the three HR2 helices in the crystal structures. At this position, the peptides would sterically block the regular binding of the HR2 helices to the inner core of HR1 helices and thus prevent formation of the bent-in-half, antiparallel, heterotrimeric coiled-coil structure presumably required to bring the viral and target cell membranes into contact for fusion. Since C34 corresponds to HR2 with no amino acids in the extended region, we do not expect any enhanced inhibitory effect on fusion mediated by the mutant gp41s. Figure Figure4b4b shows that this is the case. Since DP178 does contain 10 amino acids downstream from HR2 whose interaction with amino acids upstream from HR1 is weaker in the mutants, we expect greater sensitivity to DP178 inhibition in the mutant proteins. This does seem to be the case, as shown in Fig. Fig.44a.The recent high-resolution X-ray crystallographic determination of the structure of the gp41 core from HIV-1 provides well-defined landmarks in the terrain the viral envelope glycoproteins navigate following CD4 and coreceptor-induced conformational changes (5). The structures include neither fusion peptides and TM anchors nor regions between those domains and HR1 and HR2, respectively, which are crucial for fusion activity. Therefore, mutagenesis of those undetermined domains combined with sensitive assays for the activity of the modified proteins will lead to refinement of our thinking about the HIV-1 gp120-gp41 fusion machine.  相似文献   

17.
Previous studies have shown that in addition to its function in specific RNA encapsidation, the human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) is required for efficient virus particle assembly. However, the mechanism by which NC facilitates the assembly process is not clearly established. Formally, NC could act by constraining the Pr55gag polyprotein into an assembly-competent conformation or by masking residues which block the assembly process. Alternatively, the capacity of NC to bind RNA or make interprotein contacts might affect particle assembly. To examine its role in the assembly process, we replaced the NC domain in Pr55gag with polypeptide domains of known function, and the chimeric proteins were analyzed for their abilities to direct the release of virus-like particles. Our results indicate that NC does not mask inhibitory domains and does not act passively, by simply providing a stable folded monomeric structure. However, replacement of NC by polypeptides which form interprotein contacts permitted efficient virus particle assembly and release, even when RNA was not detected in the particles. These results suggest that formation of interprotein contacts by NC is essential to the normal HIV-1 assembly process.Human immunodeficiency virus type 1 (HIV-1) encodes three major genes, gag, pol, and env, which are commonly found in all mammalian retroviruses. It also encodes accessory genes whose protein products are important for regulation of its life cycle (6, 30, 35). However, of all the genes encoded by HIV-1, only the protein product of the gag gene has been found to be necessary and sufficient for the assembly of virus-like particles (11, 13, 17, 22, 32, 33). The HIV-1 Gag protein initially is expressed as a 55-kDa polyprotein precursor (Pr55gag), but during or shortly after particle release, Pr55gag ordinarily is cleaved by the viral protease (PR). The products of the protease action are the four major viral proteins matrix (MA), capsid (CA), nucleocapsid (NC), and p6, and the two spacer polypeptides p2 and p1, which represent sequences between CA and NC and between NC and p6, respectively (15, 19, 23, 30).The HIV-1 nucleocapsid proteins have two Cys-X2-Cys-X4-His-X4-Cys (Cys-His) motifs, reminiscent of the zinc finger motifs found in many DNA binding proteins, and NC has been shown to facilitate the specific encapsidation of HIV-1 genomic RNAs. In addition to its encapsidation function, NC influences virus particle assembly (7, 10, 17, 21, 40). In particular, Gag proteins lacking the NC domain fail to assemble virus particles efficiently. Nevertheless, some chimeric Gag proteins which carry foreign sequences in place of NC have been shown to assemble and release virus particles at wild-type (wt) levels (2, 37, 40). Thus, it appears that in some circumstances, the role that NC plays in virus particle assembly can be replaced. To date, it is not clear how NC affects particle assembly, although several possibilities might be envisioned. One possibility is that deletion of NC unmasks inhibitory sequences in p2 or the C terminus of CA. Alternatively, NC may simply provide a stable monomeric folded structure which locks CA or other Gag domains into an assembly-competent conformation. Another possibility is that NC facilitates assembly by forming essential protein-protein contacts between neighbor Prgag molecules, as suggested in cross-linking studies (21). Finally, the assembly role of NC may stem from its RNA binding capabilities, a hypothesis supported by studies of Campbell and Vogt (5), which have shown that RNA facilitates the in vitro assembly of retroviral Gag proteins into higher-order structures.To distinguish among possible mechanisms by which NC facilitates HIV-1 assembly, we replaced NC with polypeptides having known structural characteristics and examined particle assembly directed by these chimeric proteins. Using this approach, we have found that NC does not play a passive role in HIV-1 assembly as either a mask to assembly inhibitor domains or a nonspecific, stably folded structure. Rather, sequences known to form strong interprotein contacts were observed to enhance assembly, suggesting a similar role for the NC domain itself. With several assembly-competent chimeric proteins, we detected no particle-associated RNAs. These results suggest that while RNA may be essential to virus assembly in the context of the wt Pr55gag protein, it is dispensable for formation of virus-like particles from chimeric proteins.  相似文献   

18.
Lentiviruses are potentially advantageous compared to oncoretroviruses as gene transfer agents because they can infect nondividing cells. We demonstrate here that human immunodeficiency virus type 1 (HIV-1)-based vectors were highly efficient in transducing purified human hematopoietic stem cells. Transduction rates, measured by marker gene expression or by PCR of the integrated provirus, exceeded 50%, and transduction appeared to be independent of mitosis. Derivatives of HIV-1 were constructed to optimize the vector, and a deletion of most of Vif and Vpr was required to ensure the long-term persistence of transduced cells with relatively stable expression of the marker gene product. These results extend the utility of this lentivirus vector system.  相似文献   

19.
Viral protein U (Vpu) is a 17-kDa phosphoprotein that enhances the release of viral particles from human immunodeficiency virus type 1-infected cells. This study shows that the effect of Vpu on efficient particle release depends on the rate of cell proliferation. Cells arrested by contact inhibition, chemical arresting agents, or terminal differentiation (i.e., macrophages) all exhibited a striking dependence on Vpu for efficient particle release, as shown by examination of particle production from transfections with full-length clones, infections, and the vaccinia virus expression system. In contrast, actively proliferating cells did not exhibit enhanced particle release with Vpu expression. This study demonstrates the necessity of Vpu for efficient viral particle release from quiescent cells.  相似文献   

20.
The C-terminal domain of human immunodeficiency virus type 1 (HIV-1) integrase (IN) is a dimer that binds to DNA in a nonspecific manner. The structure of the minimal region required for DNA binding (IN220–270) has been solved by nuclear magnetic resonance spectroscopy. The overall fold of the C-terminal domain of HIV-1 IN is similar to those of Src homology region 3 domains. Based on the structure of IN220–270, we studied the role of 15 amino acid residues potentially involved in DNA binding and oligomerization by mutational analysis. We found that two amino acid residues, arginine 262 and leucine 234, contribute to DNA binding in the context of IN220–270, as indicated by protein-DNA UV cross-link analysis. We also analyzed mutant proteins representing portions of the full-length IN protein. Amino acid substitution of residues located in the hydrophobic dimer interface, such as L241A and L242A, results in the loss of oligomerization of IN; consequently, the levels of 3′ processing, DNA strand transfer, and intramolecular disintegration are strongly reduced. These results suggest that dimerization of the C-terminal domain of IN is important for correct multimerization of IN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号