首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Cytochrome cd(1) (cd(1)NIR) from Paracoccus pantotrophus, which is both a nitrite reductase and an oxidase, was reduced by ascorbate plus hexaamineruthenium(III) chloride on a relatively slow time scale (hours required for complete reduction). Visible absorption spectroscopy showed that mixing of ascorbate-reduced enzyme with oxygen at pH = 6.0 resulted in the rapid oxidation of both types of heme center in the enzyme with a linear dependence on oxygen concentration. Subsequent changes on a longer time scale reflected the formation and decay of partially reduced oxygen species bound to the d(1) heme iron. Parallel freeze-quench experiments allowed the X-band electron paramagnetic resonance (EPR) spectrum of the enzyme to be recorded at various times after mixing with oxygen. On the same millisecond time scale that simultaneous oxidation of both heme centers was seen in the optical experiments, two new EPR signals were observed. Both of these are assigned to oxidized heme c and resemble signals from the cytochrome c domain of a "semi-apo" form of the enzyme for which histidine/methionine coordination was demonstrated spectroscopically. These observations suggests that structural changes take around the heme c center that lead to either histidine/methionine axial ligation or a different stereochemistry of bis-histidine axial ligation than that found in the as prepared enzyme. At this stage in the reaction no EPR signal could be ascribed to Fe(III) d(1) heme. Rather, a radical species, which is tentatively assigned to an amino acid radical proximal to the d(1) heme iron in the Fe(IV)-oxo state, was seen. The kinetics of decay of this radical species match the generation of a new form of the Fe(III) d(1) heme, probably representing an OH(-)-bound species. This sequence of events is interpreted in terms of a concerted two-electron reduction of oxygen to bound peroxide, which is immediately cleaved to yield water and an Fe(IV)-oxo species plus the radical. Two electrons from ascorbate are subsequently transferred to the d(1) heme active site via heme c to reduce both the radical and the Fe(IV)-oxo species to Fe(III)-OH(-) for completion of a catalytic cycle.  相似文献   

2.
R K Watt  R B Frankel  G D Watt 《Biochemistry》1992,31(40):9673-9679
Apo horse spleen ferritin undergoes a 6.3 +/- 0.5 electron redox reaction at -310 mV at pH 6.0-8.5 and 25 degrees C to form reduced apoferritin (apoMFred). Reconstituted ferritin containing up to 50 ferric ions undergoes reduction at the same potential, taking up one electron per ferric ion and six additional electrons by the protein. We propose that apo mammalian ferritin (apoMF) contains six redox centers that can be fully oxidized forming oxidized apoferritin (apoMFox) or fully reduced forming apoMFred. ApoMFred can be prepared conveniently by dithionite or methyl viologen reduction. ApoMFred is slowly oxidized by molecular oxygen but more rapidly by Fe(CN)6(3-) to apoMFox. Fe(III)-cytochrome c readily oxidizes apoMFred to apoMFox with a stoichiometry of 6 Fe(III)-cytochrome c per apoMFred, demonstrating a rapid interprotein electron-transfer reaction. Both redox states of apoMF react with added Fe3+ and Fe2+. Addition of eight Fe2+ to apoMFox under anaerobic conditions produced apoMFred and Fe3+, as evidenced by the presence of a strong g = 4.3 EPR signal. Subsequent addition of bipyridyl produced at least six Fe(bipyd)3(2+) per MF, establishing the reversibility of this internal electron-transfer process between the redox centers of apoMF and bound iron. Incubation of apoMFred with the Fe(3+)-ATP complex under anaerobic conditions resulted in the formation and binding of two Fe2+ and four Fe3+ by the protein. The various redox states formed by the binding of Fe2+ and Fe3+ to apoMFox and apoMFred are proposed and discussed. The yellow color of apoMF appears to be an integral characteristic of the apoMF and is possibly associated with its redox activity.  相似文献   

3.
Previous M?ssbauer and electron nuclear double resonance (ENDOR) studies of oxidized hydrogenase I (bidirectional) from Clostridium pasteurianum W5 demonstrated that this enzyme contains two diamagnetic [4Fe-4S]2+ clusters and an iron-sulfur center of unknown structure and composition that is characterized by its novel M?ssbauer and ENDOR properties. In the present study we combine ENDOR and EPR measurements to show that the novel cluster contains 3-4 iron atoms. In addition, we have used EPR and ENDOR spectroscopies to investigate the effect of binding the competitive inhibitor carbon monoxide to oxidized hydrogenase I, using 13C-labeled CO and enzyme isotopically enriched in 57Fe. Treatment of oxidized enzyme with CO causes the g-tensor of the paramagnetic center to change from rhombic to axial symmetry. The observation of a 13C signal by ENDOR spectroscopy and analysis of the EPR broadening show that a single CO covalently binds to the paramagnetic center. The 13C hyperfine coupling constant (Ac approximately equal to 21 MHz) is within the range observed for inorganic iron-carbonyl clusters. The observation of 57Fe ENDOR signals from two types of iron site ([A1c] approximately 30-34 MHz; [A2c] approximately 6 MHz) and resolved 57Fe hyperfine interactions in the EPR spectrum from two nuclei characterized by [A1c] confirm that the iron-sulfur cluster remains intact upon CO coordination, but show that CO binding greatly changes the 57Fe hyperfine coupling constants.  相似文献   

4.
Yeast tRNA Phe, enriched in carbon-13 specifically at the naturally occurring methyl groups, has been produced through biosynthesis, then purified, and analyzed. Transfer RNA Phe was purified from the [13C]methyl-enriched, unfractionated tRNA that had been extracted from a methionine auxotroph of Saccharomyces cerevisiae [Agris, P. F., Kovacs, S. A. H., Smith, C., Kopper, R. H., & Schmidt, P. G. (1983) Biochemistry 22, 1402-1408]. The yeast had been grown in minimal medium supplemented with [13C]methylmethionine. Transfer RNA Phe purity and the full extent of nucleoside modification were confirmed by high-performance liquid chromatography of constituent nucleosides with simultaneous UV spectral identification and quantitation. Mass spectometry of [13C]methyl-enriched nucleosides and NMR of the tRNA indicated an enrichment of at least 70 atom %. Twelve resolved and prominent carbon-13 NMR signals from the tRNA were seen between 10 and 60 ppm. These have been assigned to 13 of the 14 naturally occurring methyl groups. However, the partially resolved signals assigned to the two 5-methylcytidines could not be assigned to their specific nucleoside positions of either 40 or 49 in the molecule. In addition, the partially resolved signals of the two methyl esters of wybutosine could not be distinguished. The methyl group found not to be enriched with 13C is bound to the ring carbon in the hypermodified nucleoside wybutosine (Y). A 13th enriched signal downfield (120.9 ppm) has been assigned to one of the two carbons added to guanosine to form the third ring in the biosynthesis of Y. The 13C enrichment of this ring carbon demonstrates its origin from the methionine methyl group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The pH and temperature dependences of the 270-MHz proton nuclear magnetic resonance and resonance Raman spectra of Thermus thermophilus cytochrome c-552 were studied. Observation of the NMR methyl signal of the iron-bound methionine indicates that a methionine residue is the sixth ligand of heme iron in both ferric and ferrous states, although the environment of this methionine is not similar to that in mitochondrial cytochrome c. The NMR methyl signal of the coordinated methionine in the ferrous state was observed even at 87 degrees C, indicating the retention of the methionine ligand at the sixth coordination position. None of resonance Raman lines in ferrous cytochrome c-552 at higher temperatures showed a prominant temperature-dependent frequency shift, which implies that the heme iron was still bound with strong ligands and retained the low-spin state. In either redox state overall thermal denaturation did not occur even at 87 degrees C, although the ferric form existed in thermal spin mixture of the low-spin and high-spin species at higher temperatures. The hyperfine-shifted NMR resonances of the ferric form indicated rapid exchange of the sixth ligand at alkaline pH in the process of a single-step alkaline isomerization.  相似文献   

6.
The biological conversions of O(2) and peroxides to water as well as certain incorporations of oxygen atoms into small organic molecules can be catalyzed by metal ions in different clusters or cofactors. The catalytic cycle of these reactions passes through similar metal-based complexes in which one oxygen- or peroxide-derived oxygen atom is coordinated to an oxidized form of the catalytic metal center. In haem-based peroxidases or oxygenases the ferryl (Fe(IV)O) form is important in compound I and compound II, which are two and one oxidation equivalents higher than the ferric (Fe(III)) form, respectively. In this study we report the 1.35 A structure of a compound II model protein, obtained by reacting hydrogen peroxide with ferric myoglobin at pH 5.2. The molecular geometry is virtually unchanged compared to the ferric form, indicating that these reactive intermediates do not undergo large structural changes. It is further suggested that at low pH the dominating compound II resonance form is a hydroxyl radical ferric iron rather than an oxo-ferryl form, based on the short hydrogen bonding to the distal histidine (2.70 A) and the Fe...O distance. The 1.92 A Fe...O distance is in agreement with an EXAFS study of compound II in horseradish peroxidase.  相似文献   

7.
Phenylalanine hydroxylase (PAH) is a tetrahydrobiopterin (BH(4)) and non-heme iron-dependent enzyme that hydroxylates L-Phe to L-Tyr. The paramagnetic ferric iron at the active site of recombinant human PAH (hPAH) and its midpoint potential at pH 7.25 (E(m)(Fe(III)/Fe(II))) were studied by EPR spectroscopy. Similar EPR spectra were obtained for the tetrameric wild-type (wt-hPAH) and the dimeric truncated hPAH(Gly(103)-Gln(428)) corresponding to the "catalytic domain." A rhombic high spin Fe(III) signal with a g value of 4.3 dominates the EPR spectra at 3.6 K of both enzyme forms. An E(m) = +207 +/- 10 mV was measured for the iron in wt-hPAH, which seems to be adequate for a thermodynamically feasible electron transfer from BH(4) (E(m) (quinonoid-BH(2)/BH(4)) = +174 mV). The broad EPR features from g = 9.7-4.3 in the spectra of the ligand-free enzyme decreased in intensity upon the addition of L-Phe, whereas more axial type signals were observed upon binding of 7,8-dihydrobiopterin (BH(2)), the stable oxidized form of BH(4), and of dopamine. All three ligands induced a decrease in the E(m) value of the iron to +123 +/- 4 mV (L-Phe), +110 +/- 20 mV (BH(2)), and -8 +/- 9 mV (dopamine). On the basis of these data we have calculated that the binding affinities of L-Phe, BH(2), and dopamine decrease by 28-, 47-, and 5040-fold, respectively, for the reduced ferrous form of the enzyme, with respect to the ferric form. Interestingly, an E(m) value comparable with that of the ligand-free, resting form of wt-hPAH, i.e. +191 +/- 11 mV, was measured upon the simultaneous binding of both L-Phe and BH(2), representing an inactive model for the iron environment under turnover conditions. Our findings provide new information on the redox properties of the active site iron relevant for the understanding of the reductive activation of the enzyme and the catalytic mechanism.  相似文献   

8.
The oxidation of the activated form of recombinant coagulation factor VII (FVIIa) by hydrogen peroxide has been studied. The three predominant oxidation products observed at pH 7.5 have been characterized as methionine sulfoxide derivatives of the parent protein involving two of the four methionine residues of the protein, Met298 and Met306. We conclude that oxidation of FVIIa with hydrogen peroxide only affects methionine residues and selectively oxidizes those which are readily accessible to the solvent. The oxidation process has been studied in the pH range 3.5-9.5. The total rate of oxidation of FVIIa as well as the formation of the three oxidation products is consistent over the pH interval 7.5-9.5. However, under acidic conditions, significant variations have been observed indicating a conformational change of FVIIa. Oxidized FVIIa had the same amidolytic activity as the native protein. The binding to soluble tissue factor (TF) was weaker after oxidation as manifested by a threefold increase in dissociation constant and the amidolytic activity in complex with soluble TF was 80% compared to that of native FVIIa. In complex with lipid surface TF, the rate of factor X activation catalyzed by oxidized FVIIa was also reduced by approximately 20% compared to that of native FVIIa. However, native and oxidized FVIIa appeared to bind lipidated TF with indistinguishable affinities.  相似文献   

9.
Three isoforms of human tyrosine hydroxylase were expressed in Escherichia coli and purified to homogeneity as the apoenzymes (metal-free). The apoenzymes exhibit typical tryptophan fluorescence emission spectra when excited at 250-300 nm. The emission maximum (342 nm) was not shifted by the addition of metal ions, but reconstitution of the apoenzymes with Fe(II) at pH 7-9 reduced the fluorescence intensity by about 35%, with an end point at 1.0 iron atom/enzyme subunit. The fluorescence intensity of purified bovine adrenal tyrosine hydroxylase, containing 0.78 mol tightly bound iron/mol subunit, was reduced by only 6% on addition of an excess amount of Fe(II). Other divalent metal ions [Zn(II), Co(II), Mn(II), Cu(II) and Ni(II)] also reduced the fluorescence intensity of the human enzyme by 12-30% when added in stoichiometric amounts. The binding of Co(II) at pH 7.2 was also found to affect its 1H-NMR spectrum and this effect was reversed by lowering the pH to 6.1. The quenching of the intrinsic fluorescence of the human isoenzymes by Fe(II) was reversed by the addition of metal chelators. However, the addition of stoichiometric amounts of catecholamines, which are potent feedback inhibitors of tyrosine hydroxylase, to the iron-reconstituted enzyme, prevented the release of iron by the metal chelators. Fluorescence quenching, nuclear magnetic relaxation measurements and EPR spectroscopy all indicate that the reconstitution of an active holoenzyme from the isolated apoenzyme, with stoichiometric amounts of Fe(II) at neutral pH, occurs without a measurable change in the redox state of the metal. However, on addition of dopamine or suprastoichiometric amounts of iron, the enzyme-bound iron is oxidized to a high-spin Fe(III) (S = 5/2) form in an environment of nearly axial symmetry, thus providing an explanation for the inhibitory action of the catecholamines.  相似文献   

10.
The titration of chicken liver sulfite oxidase (SO) with the one-electron reductant Ti(III) citrate, at pH 7.0, results in nearly quantitative selective reduction of the Mo(VI) center to Mo(V), while the b-type heme center remains in the fully oxidized Fe(III) state. The selective reduction of the Mo(VI/V) couple has been established from electronic and EPR spectra. The electronic spectrum of the Fe(III) heme center is essentially unchanged during the titration, and the continuous wave (CW)-EPR spectrum shows the appearance of the well-known Mo(V) signal due to the low pH ( lpH) form of SO. Further confirmation of the selective formation of the Mo(V)/Fe(III) form of SO is provided by the approximately 1:1 ratio of the integrated intensities of the Mo(V) and low-spin Fe(III) EPR signals after addition of one equivalent of Ti(III). The selective generation of the Mo(V)/Fe(III) form of SO is unexpected, considering that previous microcoulometry and flash photolysis investigations have indicated that the Mo(VI/V) and Fe(III/II) couples of SO have similar reduction potentials at pH 7. The nearly quantitative preparation of the one-electron reduced Mo(V)/Fe(III) form of SO by reduction with Ti(III) has enabled the interaction between these two paramagnetic metal centers, which are linked by a flexible loop with no secondary structure, to be investigated for the first time by variable-frequency pulsed electron-electron double resonance (ELDOR) spectroscopy. The ELDOR kinetics were obtained from frozen solutions at 4.2 K at several microwave frequencies by pumping on the narrow Mo(V) signal and observing the effect on the Fe(III) primary echo at both higher and lower frequencies within the microwave C-band region. The ELDOR data indicate that freezing the solution of one-electron reduced SO produces localized regions where the concentration of SO approaches that in the crystal structure, which results in the interpair interactions being the dominant dipolar interaction. However, thorough analysis of the ELDOR decay curves and simulations suggests a distribution of intramolecular Mo...Fe distances, consistent with the proposal of multiple conformations in solution for the flexible loop that connects the Mo and heme domains of SO.  相似文献   

11.
1. A stable ferredoxin was prepared from Bacillus stearothermophilus and purified by chromatography on DEAE-cellulose and by electrophoresis. 2. The minimum molecular weight determined from the amino acid composition was about 7900 and this was in reasonable agreement with a value of 8500 determined by polyacrylamide-gel electrophoresis. The ferredoxin contained four iron atoms and four labile sulphide groups per molecule. 3. The optical absorption, optical-rotatory-dispersion and circular-dichroism spectra are typical of ferredoxins containing 4Fe-4S clusters. 4. Oxidation-reduction titrations, combined with electron-paramagnetic-resonance (e.p.r.) spectroscopy, showed that the protein has a mid-point potential, at pH8, of -280 +/- 10mV, and that only one electron-accepting paramagnetic species is present. 5. The e.p.r. spectrum of the reduced ferredoxin is more readily saturated with microwave power at low temperatures than those of the eight-iron ferredoxins, indicating that there is another mechanism of electron-spin relaxation in the latter. 6. Mossbauer spectra of both redox states were observed over a range of temperatures and in magnetic fields. At high temperatures (77 degrees K and above) both redox states appear as quadrupole-split doublets; in the reduced state two resolved doublets are seen, suggesting appreciable localization of the additional reducing electron. 7. The average chemical shift indicates formal valences of two Fe3+ and two Fe2+ in the oxidized state and three Fe2+ and one Fe3+ in the reduced state. However, the spectra indicate that there are differing degrees of electron delocalization over the iron atoms. 8. At low temperatures (4.2 degrees K) the oxidized form shows no hyperfine magnetic interaction, even in an applied magnetic field, evidence that the oxidized ferredoxin is in a non-magnetic state as a result of antiferromagnetic coupling between the iron atoms. 9. At 4.2 degrees K the reduced form shows a broad asymmetric pattern resulting from magnetic hyperfine interaction. This contrasts with the reduced ferredoxin of Clostridium pasteurianum, which shows a doublet, suggesting that in the latter there may be interaction between the two 4Fe-4S centres. 10. In large applied magnetic fields, positive and negative hyperfine fields are seen in the Mossbauer spectra of the reduced ferredoxin, evidence for antiferromagnetic coupling between the iron atoms in the 4Fe-4S centre. The high-field spectra of the reduced ferredoxin of B. stearothermophilus are similar to those of the reduced ferredoxin of C. pasteurianum.  相似文献   

12.
Pink (reduced) uteroferrin exhibits well resolved paramagnetic NMR spectra with resonances ranging from 90 ppm downfield to 70 ppm upfield. The intensities of these signals depend on the degree of reduction and correlate well with the intensity of the EPR signals with gave = 1.74. Analyses of chemical shifts and the temperature dependence of the paramagnetically shifted resonances indicate that the Fe(III)-Fe(II) cluster in the reduced protein exhibits weak antiferromagnetic exchange coupling (-J approximately equal to 10 cm-1), in agreement with the estimate derived from the temperature dependence of the EPR signal intensity. Purple (oxidized) uteroferrin, on the other hand, exhibits no discernible paramagnetically shifted resonances, reflecting either strong antiferromagnetic coupling or an unfavorable electron spin-lattice relaxation time. Evans susceptibility comparisons between pink and purple uteroferrin show that the Fe(III)-Fe(III) cluster in the oxidized protein is more strongly coupled (-J greater than 40 cm-1). This value concurs with low temperature magnetic susceptibility measurements on both the porcine and splenic purple acid phosphatases. The isotropically shifted protons of tyrosine coordinated to the cluster are assigned by comparison with synthetic complexes. Tyrosine, earlier implicated as a ligand by resonance Raman spectroscopy, appears to coordinate only to the ferric site in pink uteroferrin. This is consistent with the relatively invariant extinction coefficients of uteroferrin in its oxidized and reduced forms and the ease of reduction of the nonchromophoric iron compared to its chromophoric partner. Other possible ligands to the cluster include histidine, suggested by the presence of downfield-shifted solvent-exchangeable resonances with appropriate isotropic shifts.  相似文献   

13.
The interaction of soybean lipoxygenase-1 with 13-Ls-hydroperoxy-9-cis,11-trans-octadecadienoic acid, the product of the enzymic dioxygenation of linoleic acid, results in the formation of either a yellow or a purple coloured enzyme form depending on the amount of product used. The composition of the high-spin Fe(III) signals in the EPR spectra of both enzyme forms has been studied and the amount of EPR-visible iron determined by integration and simulation. Sets of g values of the species building up the high-spin Fe(III) signal around g 6 are derived from both third-order perturbation calculation and exact numerical diagonalization of the spin Hamiltonian describing the system. The results of these calculations are generally applicable to systems having S = 5/2. The iron in the native, colourless enzyme is almost EPR-nondetectable. The yellow form of the enzyme shows a complex EPR signal around g 6 which consists of contributions of at least three species with different ligand symmetry. The signal corresponds to approx. 75% of the total iron content. The g 6 signal of the purple Fe(III) enzyme corresponds roughly to the same amount of iron but the ratio between the different species is not the same as in the yellow enzyme. This enzyme form also shows an additional g 4.3 signal with a large amplitude but a relatively low integrated intensity (approx. 10% of the total iron content). The results are consistent with the suggested mechanism of the catalytic function of iron in lipoxygenase which was based on qualitative EPR results (De Groot, J.J.M.C., Veldink, G.A., Vliegenthart, J.F.G., Boldingh, J., Wever, R. and van Gelder, B.F. (1975) Biochim. Biophys. Acta 377, 71--79).  相似文献   

14.
At neutral pH values 1,10-phenanthroline forms a colored complex with Fe(II), but it does not form such a complex with Fe(III). On the contrary, only Fe(III) forms with desferal a yellow complex with a g = 4.3 electron paramagnetic resonance (EPR) signal, but Fe(II) is rapidly oxidized by desferal to Fe(III), which gives then a yellow complex. On the basis of these facts, a method for simultaneous determination of both Fe(II) and Fe(III) ions was elaborated using a desferal-phenanthroline mixture. Two ways of detecting Fe(II) and Fe(III) have been suggested: (1) the spectrophotometric method for transparent water solutions, and (2) the EPR-spectrometric method for turbid solutions and tissue homogenates. The latter method was applied for determination of free and weakly bound iron in rat liver. The Fe(II) amount in intact liver was 22.2 ± 7.6 nmol/g of wet tissue; free Fe(III) was not found.  相似文献   

15.
The catalytic activity of phosvitin in Fe(II) oxidation and the addition of iron to transferrin were studied under various conditions. It was concluded that the Fe(II) oxidized by phosvitin would bind to apotransferrin, although an appreciable fraction of Fe(III) remained bound to phosvitin. Fe(III) also migrated from phosvitin to apotransferrin. This reaction was first-order with respect to Fe(III)-phosvitin concentration with a half-time (t1/2) of 10 min, and a first-order rate constant, k=0.069min-1, in 700 muM-phosphate buffer, pH 7.2, at 30 degrees C. The catalysis of the oxidation of Fe(III) by phosvitin was proportional to O2 concentration, and is quite different from the relative O2 independence of Fe(II) oxidation as catalysed by ferroxidase. A scheme for the mobilization and transfer of iron in the chicken, including the role of ferroxidase, phosyitin and transferrin, is presented.  相似文献   

16.
This study examined the photo-induced generation of reactive oxygen species (ROS) by the carcinogenic iron(III)-NTA complex. Iron(III)-NTA complex (1:1) has three conformations (type (a) in acidic conditions of pH 1-6, type (n) in neutral conditions of pH 3-9, and type (b) in basic conditions of pH 7-10) with two pK(a) values (pK(a1) approximately 4, pK(a2) approximately 8). The iron(III)-NTA complex was reduced to iron(II) under cool-white fluorescent light without the presence of any reducing agent, and the reduction rates of the three conformations of iron(III)-NTA were in the order type (a)>type (n)>type (b) as reported previously (Akai K. et al., Free Radic. Res. 38, 951-962, 2004). ROS generation was investigated by electron paramagnetic resonance (EPR) spectroscopy with a spin-trapping technique. Apparent EPR signals attributed to PBN/*(13)CH(3) and PBN/*OCH(3) spin adducts were observed after incubation of the iron(III)-NTA complex was mixed with alpha-phenyl-tert-butylnitrone (PBN) and (13)C-DMSO in an aerobic condition. The addition of catalase effectively attenuated the PBN adducts, but superoxide dismutase enhanced them. Taken together, these results indicate that the iron(III)-NTA complex is spontaneously reduced to the iron(II)-NTA complex by light under acidic to neutral pH, and in turn transfers an electron to molecular oxygen to form ROS.  相似文献   

17.
The dehydration of human and bovine methemoglobins was monitored using ESR spectroscopy of the iron signal. The interconversion of the Fe(III) signal between the high spin form (at g 6) in solution and low spin form (at g 2) was quantitatively studied as a function of hydration. The dehydration process leads also to a loss of paramagnetism resulting in the appearance of about 40% Fe(II) below 0.40 grH2O/grHb. The remaining 60% of Fe(III) ESR signal is distributed as the residual high spin form (at g 6, 5%) and low spin form (hemichromes H and P, 55%). The formation of hemichrome P was explained as resulting from the coordination of the cysteine residue at β93 with the iron atom which follows the rupture of the proximal histidine bond. Experiments with hemoglobins where the sulphur atom of cysteine β was blocked (N-ethylmaleimide) did not showed the hemichrome P, confirming the involvement of the sulphur atom. This implies that the dehydration process induces displacements and torsion of the F helix, drastically changing the iron coordination at proximal site. In agreement with this proposition the Fe(II) symmetry is pentacoordinated with the disrupted bond to the proximal histidine at fifth coordination. This is also supported by ESR experiments with nitrosyl complex at low hydrations. All conformational changes were reversibly modulated by hydration degree and partially by lyophilization rate. A one-cycle dehydration of bovine hemoglobin followed by solubilization shows 100% reversibility of hemichrome P. Increasing the number of cycles of dehydration-hydration reduces the reversibility degree. With three cycles a reversibility of 70%–75% is observed. The level of 0.40 grH2O/grHb was the critical hydration for the molecules to return to aquo met form and correspond also to a minimal water content necessary to cover all protein surface as obtained from other techniques.  相似文献   

18.
Oxidation of the reduced (pink) phosphate-free bovine spleen acid phosphatase with 1.5 mol H2O2 or sodium peroxodisulfate/mol, in the presence of Mes or Bistris pH 5, leads to a species with an absorption maximum at 558 nm. Addition of acetate or oxidation in the presence of acetate buffer engenders a species with a maximum at 550 nm. Addition of phosphate to both species shifts the maximum immediately to 540 nm; this is the species also found after preparation from the spleen. The assumption that these species represent strongly bidentate-binding hydroxo, acetato and phosphato complexes of the Fe(III)-Fe(III) system is supported by replacement reactions with other ligating oxoanions followed by their typical spectral shifts. These oxoanion complexes cannot be dissociated by gel filtration; this is possible only after reduction to the Fe(II)-Fe(III) system. The oxidized species without EPR signals below g values of 2 still reveals 5% activity which cannot be reduced to zero even in the presence of higher concentrations of peroxodisulfate. The pH optimum of the reaction with alpha-naphthyl phosphate shifts from 5.9 to 5.3 in the oxidized species. The apparent pK values around 4.5 as derived from the pH dependence of activity, of the EPR spectra, and the spectral shifts of the phosphate-saturated reduced and oxidized species are assigned to an aquo/hydroxo equilibrium at the Fe(III) or an equilibrium, where the phosphato ligand is replaced by a hydroxo ligand. A reaction mechanism is proposed in which a hydroxo ligand at the chromophoric Fe(III) attacks the phosphoric acid ester group only when that is monoprotonated and pre-oriented by electrostatic interaction with the nonchromophoric metal ion. Binding and inhibition studies with the oxoanions indicate that they compete with the catalytically active hydroxo group of the reduced and oxidized enzyme with nearly the same inhibition constants. Catalysis is not affected by the oxoanions which replace the additional mu-hydroxo ligand in the 558-nm-absorbing Fe(III)-Fe(III) species. In contrast to hemerythrin and ribonucleotide reductase, a binuclear iron center is proposed for the purple acid phosphatase, which is bridged by a carboxylato and two aquo/hydroxo groups, but without a mu-oxo bridge.  相似文献   

19.
Cytochromes cd(1) are dimeric bacterial nitrite reductases, which contain two hemes per monomer. On reduction of both hemes, the distal ligand of heme d(1) dissociates, creating a vacant coordination site accessible to substrate. Heme c, which transfers electrons from donor proteins into the active site, has histidine/methionine ligands except in the oxidized enzyme from Paracoccus pantotrophus where both ligands are histidine. During reduction of this enzyme, Tyr(25) dissociates from the distal side of heme d(1), and one heme c ligand is replaced by methionine. Activity is associated with histidine/methionine coordination at heme c, and it is believed that P. pantotrophus cytochrome cd(1) is unreactive toward substrate without reductive activation. However, we report here that the oxidized enzyme will react with nitrite to yield a novel species in which heme d(1) is EPR-silent. Magnetic circular dichroism studies indicate that heme d(1) is low-spin Fe(III) but EPR-silent as a result of spin coupling to a radical species formed during the reaction with nitrite. This reaction drives the switch to histidine/methionine ligation at Fe(III) heme c. Thus the enzyme is activated by exposure to its physiological substrate without the necessity of passing through the reduced state. This reactivity toward nitrite is also observed for oxidized cytochrome cd(1) from Pseudomonas stutzeri suggesting a more general involvement of the EPR-silent Fe(III) heme d(1) species in nitrite reduction.  相似文献   

20.
Redox thermodynamic data provide a detailed insight into control of the reduction potential E degrees' of the [Fe(S-Cys)4] site in rubredoxin. Mutant forms were studied in which specific structural changes were made in both the primary and secondary coordination spheres. Those changes have been probed by resonance Raman spectroscopy. The decrease of approximately 200 mV in E degrees' observed for the [Fe(S-Cys)3(O-Ser)]-/2- couples in the surface ligand mutants C9S and C42S is essentially enthalpic in origin and associated with the substitution of ligand thiolate by ligand olate. However, the pH dependence of the potentials below characteristic pKa(red) approximately equals 7 is an entropic contribution, plausibly associated with increased conformational flexibility induced by a longer Fe(II)-O(H)-Ser bond in the reduced form. The presence of a second surface Ser ligand in the new double mutant protein C9S/C42S affects the enthalpic term primarily for pH>pKa(red) > or = 9.3, but for pHpKa approximately 9: [Fe(III)(S-Cys)3(OH)]- + e- --> [Fe(II)(S-Cys)3(OH)]2-. pH [Fe(II)(S-Cys)3(OH2)]-.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号