首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cycocel stimulated the activity of partial purified choline kinase from spinach or squash leaves, but it inhibited the activity of yeast choline kinase. The activity of different Cycocel analogs on plant growth corresponded to their stimulatory effect on the isolated choline kinase. Cycocel had no effect upon the activity of a plant phosphatase which hydrolyzed phosphorylcholine nor upon adenosine triphosphatase from wheat roots or leaves.Gibberellin A(3) inhibited choline kinase activity and reversed the stimulatory effect of Cycocel on the kinase.Total choline kinase activity per squash plant was not greatly increased by Cycocel treatment. However, on the basis of fresh weight, total kinase activity was increased by Cycocel treatment. Gibberellin A(3) partially reversed these increases. Treatment with Cycocel plus indoleacetic acid resulted in a large increase in choline kinase activity.The same distribution of tracer among phosphorylcholine, choline and betaine was observed when either phosphorylcholine-C(14) or choline-C(14) was fed to barley or wheat roots. Cycocel stimulated the incorporation of choline-C(14) into the insoluble fraction and into lipids. Cycocel inhibited phosphorylcholine uptake by roots.Thus Cycocel stimulated choline kinase activity and the utilization of choline-C(14). The effect of Cycocel upon kinase activity in vivo and in vitro was reversed by gibberellin A(3).  相似文献   

2.
Phosphoglycolate (P-glycolate) phosphatase was purified 223-fold from spinach leaves by (NH4)2SO4 fractionation, DEAE-cellulose chromatography, and Sephadex G-200 chromatography. The partially purified enzyme had a broad pH optimum between 5.6 and 8.0 and was specific for the hydrolysis of P-glycolate with a Km (P-glycolate) of 26 microM. The enzyme was activated by divalent cations including Mg2+, Co2+, Mn2+, and Zn2+, and by anions including Cl-, Br-, NO-3, and HCOO-. Neither anions nor divalent cations activated the enzyme without the other. The P-glycolate phosphatase activities from tobacco leaves or the green algae, Chlamydomonas reinhardtii, also required Mg2+ and were activated by chloride. In addition, the enzyme was allosterically inhibited by ribose 5-phosphate. The activation of P-glycolate phosphatase by both anions and divalent cations and the inhibition by ribose 5-phosphate may be involved in the in vivo regulation of P-glycolate phosphatase activity.  相似文献   

3.
The activity of nitrate reductase (+Mg(2+), NR(act)) in illuminated leaves from spinach, barley and pea was 50-80% of the maximum activity (+EDTA, NR(max)). However, NR from leaves of Ricinus communis L. had a 10-fold lower NR(act), while NR(max) was similar to that in spinach leaves. The low NR(act) of Ricinus was independent of day-time and nitrate nutrition, and varied only slightly with leaf age. Possible factors in Ricinus extracts inhibiting NR were not found. NR(act) from Ricinus, unlike the spinach enzyme, was very low at pH 7.6, but much higher at more acidic pH with a distinct maximum at pH 6.5. NR(max) had a broad pH response profile that was similar for the spinach and the Ricinus enzyme. Accordingly, the Mg(2+)-sensitivity of NR from Ricinus was strongly pH-dependent (increasing sensitivity with increasing pH), and as a result, the apparent activation state of NR from a Ricinus extract varied dramatically with pH and Mg(2+)concentration. Following a light-dark transition, NR(act) from Ricinus decreased within 1 h by 40%, but this decrease was paralleled by NR(max). In contrast to the spinach enzyme, Ricinus-NR was hardly inactivated by incubating leaf extracts with ATP plus okadaic acid. A competition analysis with antibodies against the potential 14-3-3 binding site around ser 543 of the spinach enzyme revealed that Ricinus-NR contains the same site. Removal of 14-3-3 proteins from Ricinus-NR by anion exchange chromatography, activated spinach-NR but caused little if any activation of Ricinus-NR. It is suggested that Mg(2+)-inhibition of Ricinus-NR does not require 14-3-3 proteins. The rather slow changes in Ricinus-NR activity upon a light/dark transient may be mainly due to NR synthesis or degradation.  相似文献   

4.
A particulate form of protein-phosphotyrosine phosphatase was solubilized and purified over 2,000-fold from the particulate fraction of rat spleen. Phosphorylated poly(Glu, Tyr), a random copolymer of glutamic acid and tyrosine, was used as substrate for measuring protein-phosphotyrosine phosphatase activity. Nonionic detergents like Triton X-100 increased the protein-phosphotyrosine phosphatase activity of the particulate fraction (but not of the soluble fraction) by 4-8-fold. Chromatography of the Triton extract of the particulate fraction on DEAE-Sephacel gave three peaks of protein-phosphotyrosine phosphatase activity. The major peak of activity was further purified on Bio-Gel HTP, Sephadex G-75, and phosphocellulose columns. On polyacrylamide gel electrophoresis in the presence of Na-dodecyl-SO4 the purified enzyme showed a major protein band of Mr 36,000 which comigrated with enzyme activity on the phosphocellulose column. The apparent Vmax and Km for phosphorylated poly(Glu,Tyr) were 6,150 nmol min-1 mg-1 and 1.6 microM, respectively. This enzyme was strongly inhibited by microM concentrations of orthovanadate and zinc acetate. Fluoride (50 mM) inhibited this enzyme only by 30-40%. Divalent metal ions Ca2+, Mg2+, and Mn2+ were inhibitory at 1-10 mM concentration. EDTA had no effect on the activity of the purified enzyme. This phosphatase could dephosphorylate and inactivate the phosphorylated form of a tyrosine-specific protein kinase (TK-I) previously purified from rat spleen. Dephosphorylation and inactivation of TK-I by purified phosphatase were inhibited by orthovanadate. After dephosphorylation and inactivation by phosphatase, TK-I could be rephosphorylated and reactivated on incubation with ATP. These results suggest that this protein-phosphotyrosine phosphatase may be involved in the regulation of the kinase activity of TK-I.  相似文献   

5.
A novel form of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase that possesses little 2-kinase or bisphosphatase activity as isolated has been partially purified from spinach (Spinacia oleracea L.) leaves. However, the new form can be activated by pretreatment with Mg X ATP at room temperature. After ATP activation, the fructose 2,6-bisphosphatase activity has a Michaelis constant for fructose 2,6-bisphosphate of about 1 mM, and is inhibited by high substrate concentrations (greater than 2 mM) and both end products. The kinase/phosphatase activity ratio of the new form was dependent on pH and varied from 0.3 at pH 7.0 to 5.0 at pH 8.2. In contrast, the previously characterized form of the enzyme (which is isolated in an active form and is unaffected by preincubation with Mg X ATP) had an activity ratio of about 2 that was insensitive to pH over the range tested. The ATP-dependent activation of the new enzyme form was stimulated by fructose 6-phosphate and inhibited by glucose 6-phosphate. These results explain why activation is not observed during assay of this enzyme, and indicate that the activation process may be regulated by metabolites. Collectively, these data provide further evidence for the existence, in spinach leaves, of two molecular forms of the enzyme which exhibit different kinetic properties.  相似文献   

6.
Aquaporins are water channel proteins that facilitate the movement of water and other small solutes across biological membranes. Plants usually have large aquaporin families, providing them with many ways to regulate the water transport. Some aquaporins are regulated post-translationally by phosphorylation. We have previously shown that the water channel activity of SoPIP2;1, an aquaporin in the plasma membrane of spinach leaves, was enhanced by phosphorylation at Ser115 and Ser274. These two serine residues are highly conserved in all plasma membrane aquaporins of the PIP2 subgroup. In this study we have purified and characterized two protein kinases phosphorylating Ser115 and Ser274 in SoPIP2;1. By anion exchange chromatography, the Ser115 kinase was purified from the soluble protein fraction isolated from spinach leaves. The Ca2+-dependent Ser274 kinase was purified by peptide affinity chromatography using plasma membranes isolated from spinach leaves. When characterized, the Ser115 kinase was Mg2+-dependent, Ca2+-independent and had a pH-optimum at 6.5. In accordance with previous studies using the oocyte expression system, site-directed mutagenesis and kinase and phosphatase inhibitors, the phosphorylation of Ser274, but not of Ser115, was increased in the presence of phosphatase inhibitors while kinase inhibitors decreased the phosphorylation of both Ser274 and Ser115. The molecular weight of the Ser274 kinase was approximately 50 kDa. The identification and characterization of these two protein kinases is an important step towards elucidating the signal transduction pathway for gating of the aquaporin SoPIP2;1.  相似文献   

7.
A flavoprotein with properties similar to those of ferredoxin:NADP+ oxidoreductases found in the leaves of higher plants has been purified to apparent homogeneity from bean sprouts, a nonphotosynthetic plant tissue. The absorbance and circular dichroism spectra of the bean sprout protein are similar to those of spinach leaf ferredoxin:NADP+ oxidoreductase and an antibody raised against the spinach enzyme recognized the bean sprout enzyme. The bean sprout enzyme catalyzed ferredoxin-dependent electron transfer from NADPH to equine cytochrome c at a high rate but, unlike the spinach enzyme, exhibited little NADPH to 2,6-dichlorophenol indophenol diaphorase activity. The bean sprout enzyme forms a 1:1 electrostatically stabilized complex with ferredoxins isolated from either bean sprouts or spinach leaves.  相似文献   

8.
We have recently reported that the activity of maize leaf glycerate kinase [EC 2.7.1.31] is regulated in vivo by the light/dark transition, possibly involving the ferredoxin/thioredoxin mechanism, and that the stimulating effect of light can be mimicked in vitro by incubation of crude leaf extract with reducing compounds (LA Kleczkowski, DD Randall 1985 Plant Physiol 79: 274-277). In the present study it was found that the time course of thiol activation of the enzyme was substantially dependent on the presence of some low molecular weight inhibitor(s) of activation found both in leaf extracts and mesophyll chloroplasts. Activity of glycerate kinase from maize as well as wheat leaves increased upon greening of etiolated plants and was correlated with the development of photosynthetic apparatus in these species. The maize enzyme was strongly activated by thiols at all stages of development from etiolated to green seedlings. Thiol activation of glycerate kinase was observed for a number of C4 plants, notably of the nicotinamide adenine dinucleotide phosphate-malic enzyme type, with the strongest effect found for the enzyme from leaf extracts of maize and sorghum (10- and 8-fold activation, respectively). Among the C3 species tested, only the enzyme from soybean leaves was affected under the same conditions (1.6-fold activation). This finding was reflected by an apparent lack of cross-reactivity between the enzyme from maize leaves and antibodies raised against purified spinach leaf glycerate kinase. We suggest that, in addition to its role as a final step of photorespiration in leaves, glycerate kinase from C4 species may serve as a part of the facilitative diffusion system for the intercellular transport of 3-phosphoglycerate. Simultaneous operation of both the passive and the facilitative diffusion mechanisms of 3-phosphoglycerate transport in C4 plants is postulated.  相似文献   

9.
Nitrate reductase activity and NR protein levels in various leaf tissues were drastically decreased (<3.5% of normal activity) either by keeping detached leaves in continuous darkness for up to 6 d (spinach), or by growing plants (pea, squash) hydroponically on ammonium as the sole N-source, or by germinating and growing etiolated seedlings in complete darkness (squash). The presence of nitrate reductase protein kinase (NRPK), nitrate reductase protein phosphatase (NRPP) and inhibitor protein (IP) was examined by measuring the ability of NR-free desalted extracts to inactivate (ATP-dependent) and reactivate (5-AMP/EDTA-dependent) added purified spinach NR in vitro. Extracts from low-NR plants (ammonium-grown pea and squash) were also prepared from leaves harvested at the end of a normal light or dark phase, or after treating leaves with anaerobiosis, uncouplers or mannose, conditions which usually activate NR in nitrategrown normal plants. Without exception, extracts from NR-deficient plant tissues were able to inactivate and reactivate purified spinach NR with normal velocity, irrespective of pretreatment or time of harvest. Considerable NRPK, NRPP and IP activities were also found in extracts from almost NR-free ripe fruits (cucumber and tomato). Activities were totally absent, however, in extracts from isolated spinach chloroplasts. The NRPK and IP fractions were partially purified with normal yields from NR-deficient squash or spinach leaves, following the purification protocol worked out for nitrate-grown spinach. The Ca2+/Mg2+-dependent kinase fraction from NR-deficient squash or spinach phosphorylated added purified spinach NR with -[32P]ATP and inactivated the enzyme after addition of IP. It is suggested (i) that the auxiliary proteins (NRPK, IP, NRPP) which modulate NR are rather species- or organ-unspecific, (ii) that they do not turn over as rapidly as does NR, (iii) that they are probably expressed independently of NR, and (iiii) that they are not covalently modulated, but under control of metabolic and/or physical signals which are removed by desalting.Abbreviations IP inhibitor protein - NR NADH-nitrate reductase - NRA nitrate reductase activity - NRPK nitrate reductase protein kinase - NRPP nitrate reductase protein phosphatase - PK protein kinase This work was supported by the Deutsche Forschungsgemeinschaft (SFB 251).  相似文献   

10.
Phosphoglycolate phosphatase (EC 3.1.3.18) was purified 1500-fold from field-grown tobacco leaves by acetone fractionation, DEAE-cellulose and molecular sieve chromatography, and preparative polyacrylamide gel electrophoresis. Preparations were judged 90 to 95% homogeneous by chromatography on DEAE-cellulose, polyacrylamide gel electrophoresis, and by isoelectric focusing. The highest specific activity obtained was 468 mumol of phosphate released/min/mg of protein. The native protein has a molecular weight of 80,500 by Ferguson plot analysis and 86,300 by sedimentation velocity on sucrose density gradients. Sodium dodecyl sulfate-polyacrylamide gels gave a molecular weight of 20,700, indicating the P-glycolate phosphatase is a tetramer with identical or near identical subunits. The enzyme, freshly purified or in crude homogenates, had a pI of 3.8 to 3.9 pH units by isoelectric focusing. Phosphosphoglycolate phosphatase from spinach leaves has a molecular weight of 93,000 and, unlike the enzyme from tobacco leaves, it is extremely unstable after DEAE-cellulose chromatography and is inactivated by lipase (EC 3.1.1.3). The phosphatase from both plants was stabilized by the addition of citrate or isocitrate in the buffers. Ribose 5-phosphate is a competitive inhibitor of phosphoglycolate phosphatase at physiological concentration, while other phosphate esters of the photosynthetic carbon cycle were without effect.  相似文献   

11.
R Dumas  J Joyard    R Douce 《The Biochemical journal》1989,262(3):971-976
Acetohydroxyacid reductoisomerase was purified over 400-fold to a specific activity of 62 nkat.mg-1, with 2-aceto-2-hydroxybutyrate as substrate, from the stroma of spinach leaf chloroplasts. The enzyme was not intrinsically membrane bound. The native enzyme was a tetramer with a subunit Mr of 59,000. The activity was optimum between pH 7.5 and 8.5. The apparent Km for 2-acetolactate was 25 microM and for 2-aceto-2-hydroxybutyrate was 37 microM. The enzyme required Mg2+ and the Vmax. was attained at physiological Mg2+ concentrations. NADP+ competitively inhibited the reaction when NADPH was the varied substrate. The native enzyme eluted from Mono-Q ion-exchange resins as three distinct peaks of activity. This elution pattern was preserved when the peaks were combined, dialysed and re-chromatographed. Each form exhibited identical Mr of 59,000 after SDS/polyacrylamide gel electrophoresis (PAGE), whereas they were easily distinguishable from each other after PAGE under non-denaturing conditions. These results provide evidence for the existence of multiple forms of acetohydroxyacid reductoisomerase in chloroplasts isolated from spinach leaves.  相似文献   

12.
1. NADPH-dependent nitrite reductase from the leaves of higher plants was purified at least 70-fold and separated into two enzyme fractions. The first enzyme, a diaphorase with ferredoxin-NADP-reductase activity, is required only to transfer electrons from NADPH to a suitable electron acceptor, which then donates electrons to nitrite reductase proper. 2. Purified nitrite reductase accepted electrons from ferredoxin (the natural donor) or from reduced dyes. Ferredoxin was reduced by illuminated chloroplasts or dithionite, or by NADPH when diaphorase was present. The purified enzyme did not accept electrons directly from NADPH. 3. Ferredoxins purified from maize, spinach or Clostridium were interchangeable in the nitrite-reductase system. 4. Nitrite reductase had K(m) 0.15mm for nitrite. The pH optimum varied with plant and method of assay. The preparation had low sulphite-reductase activity. Ammonia was the product of nitrite reduction. 5. For some plants, the assay of crude preparations with NADPH was limited by diaphorase and the addition of diaphorase gave a better estimate of nitrite-reductase activity. A simple method of assay is described that uses dithionite with benzyl viologen as electron donor.  相似文献   

13.
Protoplasts from barley (Hordeum vulgare), pea (Pisum sativum), wheat (Triticum aestivum), and spinach (Spinacia oleracea) leaves were fractionated into chloroplast- and mitochondrion-enriched fractions. Pyruvate dehydrogenase complex capacities in mitochondria (mtPDC) and chloroplasts (cpPDC) were measured in appropriate fractions under conditions optimal for each isozyme. The total cellular capacity of PDC was similar in barley and pea but about 50% lower in wheat and spinach. In pea a distribution of 87% mtPDC and 13% cpPDC was found on a cellular basis. In barley, wheat, and spinach the subcellular distribution was the opposite, with about 15% mtPDC and 85% cpPDC. cpPDC activity was constant at about 0.1 nmol cell-1 h-1 in cells from different regions along the developing barley leaf and showed no correlation with developmental patterns of photosynthetic parameters, such as increasing Chl and NADP-glyceraldehyde-3-phosphate dehydrogenase activity. Similarly, the capacity of the mitochondrial isoform did not change during barley leaf development and had a developmental pattern similar to that of citrate synthase and fumarase. Differences in subcellular distribution of PDCs in barley and pea are proposed to be due to differences in regulation, not to changes in isozyme proportions during leaf development or to species-specific differences in phosphorylation state of mtPDC after organelle separation.  相似文献   

14.
Tartrate-resistant acid phosphatase is one of the major enzymes produced and secreted by osteoclasts. To obtain sufficient enzyme for biochemical characterization, we have purified this enzyme from human osteoclastomas by sequential chromatography on SP-Sephadex, CM-Sephadex, hydroxylapatite, Sephadex G-150 and concanavalin A-Sepharose. The purification over the original tumour extract was about 2000-fold, with a yield of 10%. The enzyme appeared to be homogeneous when assessed by SDS/polyacrylamide-gel electrophoresis. Both gel filtration and SDS/polyacrylamide-gel electrophoresis indicated an Mr of about 30,000. The reduced and alkylated enzyme consists of two subunits with Mrs of 15,000 and 17,500. The N-terminal amino acid sequence of both subunits indicates that there is a high degree of identity between the osteoclastoma enzyme and similar enzymes purified from spleen and uterus. Using 4-methylumbelliferyl phosphate as substrate, the specific activity of the purified enzyme was 387 units.mg-1, and the Km was 284 microns. The pH optimum was 5.7. Unlike similar enzymes purified from human and bovine bone, osteoclastoma acid phosphatase is not activated by reducing agents (2-mercaptoethanol or ascorbic acid). The enzyme contains 4.8 mol of Fe2+/3+, 0.3 mol of Mn2+ and 1.7 mol of Mg2+ per mol of enzyme. Although the enzyme loses 50% of its activity in the presence of EDTA, it is not inhibited by the iron chelator 1,10-phenanthroline. However, the enzyme is activated to a small extent by Mn2+ and Mg2+. Using a variety of substrates and inhibitors, we demonstrate that there are differences between the osteoclastoma acid phosphatase and the enzyme purified from other sources.  相似文献   

15.
Chloroplast FDPase was purified from spinach leaves by ammonium sulfate precipitation, Sephadex G-100 chromatography and DEAE-cellulose chromatography. It was found that treatment of the spinach leaves with liquid nitrogen prior to homoge- nization facilitated the subsequent isolation process, the optimal pH for FDPase activity was 8 to 9 and the enzyme was most stable at pH 6, under which it could be stored over several months without appreciable loss of activity. Acrylamide disc electrophoresis of the final enzyme fraction showed only one essential band. The two forms of FDPase, purified spinach chloroplast FDPase and that in fresilly ruptured spinach chloroplast, behaved differently in some of their kinetic properties. Their activities depended throughout on the concentration of Mg++, but the Km (Mg++) were quite different. The Km (Mg++) of the purified enzyme was about 6.0 mM, that of FDPase in freshly ruptured chloroplasts was, however, 1.0 mM, which corresponded to the concentration of Mg+* in the stroma of illuminated chloroplasts. Mg++ concentration was a limiting factor for the activity of purified FDPase. As the amount of Mg++ in the reaction mixture was lowered, the Km and Vmax were both greatly changed. The shortage of Mg++ could not be compensated by increasing the substrate concentration. The purified FDPase was completely inhibited by 15 μ moles EDTA in the teaction mixture, whereas the FDPase in freshly ruptured chloroplasts was inhibited only 70% by 30 to 45 μ moles EDTA, which was 2 to 3 fold of the concentration sufficient to inhibit completely the activity of the purified enzyme. Moreover, the former was more stable. Its activity did not decline even after incubation for over two hours The FDPase activity was higher in chloroplasts ruptured in 0.2% (w/v) Triton X-100 than that ruptured in water. This phenomenon suggests that this enzyme in vivo might be in some way associated, at least partly; with chloroplast lamellae.  相似文献   

16.
Protoplasts from the leaves of wheat, spinach, and barley were found to synthesize [14C]sucrose from 14CO2 at rates comparable with those of the parent tissue. CO2 fixation and sucrose biosynthesis ceased virtually immediately when the light was switched off. The effect of sucrose pretreatment on the rate of de novo sucrose biosynthesis was found to vary with leaf age and with plant species. Protoplasts from young wheat and spinach leaves showed an apparent stimulation of the rate of sucrose biosynthesis after sucrose pretreatment. In protoplasts from mature leaves of spinach, sucrose pretreatment produced inhibition. After sucrose pretreatment protoplasts from mature spinach leaves showed low rates of CO2 fixation, and sucrose biosynthesis compared with controls. Conversely, with protoplasts from mature leaves of wheat and barley, the rate of CO2 fixation was unchanged and there was little or no effect on the rate of sucrose biosynthesis after sucrose pretreatment. Preincubation with sucrose had no effect on the activity of sucrose-phosphate synthetase (EC 2.4.1.14), cytoplasmic fructose-1,6-bisphosphatase (EC 3.1.3.11), or UDPglucose pyrophosphorylase (EC 2.7.7.9) from spinach leaves. It was concluded that there is no direct feedback inhibition of sucrose on the sucrose biosynthetic pathway in leaves of spinach, wheat, and barley. The mechanism of inhibition of sucrose biosynthesis by sucrose in spinach remains to be elucidated.  相似文献   

17.
Glutathione S-transferases (GSTs) (EC 2.5.1.18) are multifunctional proteins involved in such diverse intracellular events as primary and secondary metabolism, signaling and stress metabolism. In this study, we found a senescence-induced tau-class GST (SIGST) in senescent leaves of barley (Hordeum vulgare L.). The SIGST was purified 19-fold to homogeneity from initial crude extracts by three steps of chromatography with a yield of 5%. The purified SIGST had a GSH-conjugating activity and peroxidase (POD) activity at the same level of 1.7 micromol min(-1) mg protein(-1), although restricted substrate selectivity could be seen in POD activity. Barley SIGST is a slightly acidic protein with a molecular weight of 49 k and is composed of two subunits. The enzyme exhibited a single pH optimum at pH 8.3. The K(m) values were 0.285 mM for GSH and 0.293 mM for 1-chloro-2,4-dinitrobenzene. In most respects, the barley enzyme resembles those that have been reported from other higher plants. The SIGST gene was cloned from cDNA of senescent barley leaves. DNA sequence analysis shows that the cloned SIGST had only one base different from the barley embryo GST, ECGST. The obtained sequence indicates that SIGST is classified into the plant-specific tau class. mRNA expression analysis showed that in addition to senescence, SIGST was strongly induced by treatment with a herbicide and low temperature. The responses to these stresses suggest that SIGST may be involved at least partly in the secondary metabolism as an antioxidant and enhancement of enzymatic activity during senescence.  相似文献   

18.
A novel reductase displaying high specificity for glyoxylate and NADPH was purified 3343-fold from spinach leaves. The enzyme was found to be an oligomer of about 125 kDa, composed of four equal subunits of 33 kDa each. A Km for glyoxylate was about 14-fold lower with NADPH than with NADH (0.085 and 1.10 mM respectively), but the maximal activity, 210 mumol/min per mg of protein, was similar with either cofactor. Km values for NADPH and NADH were 3 and 150 microM respectively. Optimal rates with either NADPH or NADH were found in the pH range 6.5-7.4. The enzyme also showed some reactivity towards hydroxypyruvate with rates less than 2% of those observed for glyoxylate. Results of immunological studies, using antibodies prepared against either glyoxylate reductase or spinach peroxisomal hydroxypyruvate reductase, suggested substantial differences in molecular structure of the two proteins. The high rates of NADPH(NADH)-glyoxylate reductase in crude leaf extracts of spinach, wheat and soya bean (30-45 mumol/h per mg of chlorophyll) and its strong affinity for glyoxylate suggest that the enzyme may be an important side component of photorespiration in vivo. In leaves of nitrogen-fixing legumes, this reductase may also be involved in ureide breakdown, utilizing the glyoxylate produced during allantoate metabolism.  相似文献   

19.
Aquaporins are water channel proteins that facilitate the movement of water and other small solutes across biological membranes. Plants usually have large aquaporin families, providing them with many ways to regulate the water transport. Some aquaporins are regulated post-translationally by phosphorylation. We have previously shown that the water channel activity of SoPIP2;1, an aquaporin in the plasma membrane of spinach leaves, was enhanced by phosphorylation at Ser115 and Ser274. These two serine residues are highly conserved in all plasma membrane aquaporins of the PIP2 subgroup. In this study we have purified and characterized two protein kinases phosphorylating Ser115 and Ser274 in SoPIP2;1. By anion exchange chromatography, the Ser115 kinase was purified from the soluble protein fraction isolated from spinach leaves. The Ca2+-dependent Ser274 kinase was purified by peptide affinity chromatography using plasma membranes isolated from spinach leaves. When characterized, the Ser115 kinase was Mg2+-dependent, Ca2+-independent and had a pH-optimum at 6.5. In accordance with previous studies using the oocyte expression system, site-directed mutagenesis and kinase and phosphatase inhibitors, the phosphorylation of Ser274, but not of Ser115, was increased in the presence of phosphatase inhibitors while kinase inhibitors decreased the phosphorylation of both Ser274 and Ser115. The molecular weight of the Ser274 kinase was approximately 50 kDa. The identification and characterization of these two protein kinases is an important step towards elucidating the signal transduction pathway for gating of the aquaporin SoPIP2;1.  相似文献   

20.
1-Pyrrolidinecarbothioic acid (2-pyridylmethylene) hydrazide chelates Zn2+ but not Mg2+. This compound is about twice as effective as EDTA for inhibiting alkaline phosphatase from calf mucosa, and approx. 1000-fold more effective than EDTA for inhibiting acid phosphatase from wheat germ. The compound did not inhibit pyridoxine kinase activity in human leucocytes at the highest concentration tested (33 micron). Therefore it may be a useful tool for either examining or eliminating the effects of phosphatases in complex enzyme systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号