首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An alpha-toxin-binding membrane protein, isolated from the head and thoracic ganglia of the locus (Locusta migratoria), was reconstituted into planar lipid bilayers. Cholinergic agonists such as acetylcholine, carbamylcholine, and suberyldicholine induced fluctuations of single channels, which suggests that the protein represents a functional cholinergic receptor channel. The antagonist d-tubocurarine blocked the activation of the channels, whereas hexamethonium had only a weak effect; similar properties have been described for nicotinic insect receptors in situ. The channel was selectively permeable to monovalent cations but was impermeable to anions. The conductance of the channel (75 pS in 100 mM NaCl) was independent of the type of agonist used to activate the receptor. Kinetic analysis of the channel gating revealed that, at high agonist concentrations (50 microM carbamylcholine), more than one closed state exists and that multiple gating events, bursting as well as fast flickering, appeared. At very high agonist concentrations (500 microM carbamylcholine), desensitization was observed. Channel kinetics were dependent on the transmembrane potential. Comparing the conductance, the kinetics, and the pharmacology of nicotinic acetylcholine receptor from insect ganglia and fish electroplax reconstituted into bilayers revealed obvious similarities but also significant differences.  相似文献   

3.
Using 'inside-out' membrane patches obtained from reconstituted giant liposomes containing purified glycine receptor from rat spinal cord, we have detected chloride currents elicited in response to the presence of the agonists glycine or beta-alanine. Regardless of the agonist employed, two different patterns of single channel currents could be detected, which differ in their main conductance, complexity of substates and opening frequency. In agreement with the expectations of glycine receptor heterogeneity suggested recently at the mRNA and cDNA level, our results indicate the existence of functionally different glycine receptors in the adult rat spinal cord.  相似文献   

4.
Freshly isolated monocytes in suspension express 2000 to 4000 high affinity receptors for IFN-gamma. Because monocytes change phenotypically as they migrate out of the circulation and adhere to extracellular matrix, modulation of the expression of IFN-gamma receptors may occur. In order to determine if adherence alone modulates the receptor for IFN-gamma, we have studied receptor expression in adherent human peripheral blood monocytes. Elutriation-purified monocytes were allowed to adhere to polystyrene overnight at 37 degrees C. These cells now expressed 1 to 2 x 10(5) low affinity (Ka = 10(8) liters/M) receptors for [125I]rIFN-gamma. Binding to this receptor was specific and saturable. The expression of these receptors occurred rapidly (within 3 h) after adherence and was not inhibited by cycloheximide treatment. Binding to the receptor was abrogated by treating cells with trypsin, but was enhanced after treatment with alkaline protease or proteinase K. mAb against the high affinity receptor did not block binding to the low affinity receptor on adherent cells. The low affinity receptor transduced a signal to the cell as measured by the IFN-gamma-induced enhancement in FcR for human IgG1. The structure of the receptor on adherent cells was investigated by chemical cross-linking techniques. A receptor-[125I]rIFN-gamma complex was observed by SDS-PAGE to have a Mr of 180,000 to 200,000. Reduction of this complex with 2-ME resulted in the loss of the high Mr complex and the appearance of a doublet of lower Mr of 68,000 and 82,000. In contrast, cross-linking of monocytes in suspension yielded a complex of 110,000 to 120,000 Mr, which was unchanged upon reduction. Upon adherence, human monocytes express large numbers of a novel receptor for rIFN-gamma which is capable of stimulating the cell. This receptor appears to be composed of at least two components which are disulfide linked and structurally differs from the high affinity receptor on nonadherent monocytes.  相似文献   

5.
The hydra GSH receptor. Pharmacological and radioligand binding studies   总被引:1,自引:0,他引:1  
1. The GSH-induced feeding response of hydra has been studied using pharmacological and biochemical methods. 2. Dopaminergic agonists inhibit the response, whereas dopaminergic blocking agents increase it. Phosphodiesterase inhibitors completely inhibit the feeding response. 3. The specific binding of the competitive inhibitor of feeding response, [3H]glutamate, to hydra cellular fractions has been evaluated, and a strong GSH-sensitive binding has been observed in a nematocyst-rich fraction. 4. After pharmacological reduction of the nematocyst number, both feeding response and glutamate binding are severely reduced. 5. Ca2+ ions must be present for the feeding response to occur, whereas glutamate binding occurs both without Ca2+ and in the presence of EDTA.  相似文献   

6.
The properties of beta-adrenoceptors present on the cultured bovine pulmonary artery endothelial cells were studied by radioligand binding. These cell contain a high density of beta-adrenoceptors (approximately 16,000 receptors/cell) having high affinity (Kd 18 pM) for 125I-iodocyanopindolol (ICYP). Competition binding experiments suggested the presence of more than two subtype of beta-adrenoceptors. 25% of the total population of receptors was found to be of beta 1-type. The remaining 75% represented a mixed population containing what is suggested to be a mixture of beta 2- and atypical beta-adrenoceptors.  相似文献   

7.
We have recently characterized a tachykinin receptor subtype (SP-N) whose preferred ligand is the mammalian neuropeptide, neurokinin B (Laufer, R., Wormser, U., Friedman, Z. Y., Gilon, C., Chorev, M., and Selinger, Z. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 7444-7448). To investigate this novel tachykinin receptor, we have now prepared a radiolabeled peptide, N alpha-[( 125I]desamino-3-iodotyrosyl)-[Asp5,6, N-methyl-Phe8]substance P (5-11) heptapeptide (125I-BH-NH-Senktide), which selectively interacts with the SP-N receptor subtype. The binding of 125I-BH-NH-Senktide to rat cerebral cortex membranes was studied under conditions that minimized nonspecific binding. Unlike other tachykinin receptor probes, this radioligand is not degraded during the binding experiment. Binding of 125I-BH-NH-Senktide is reversible, saturable, and of high affinity (KD = 0.9 nM). The radioligand labels a single class of binding site (122 fmol binding sites/mg of protein), as indicated by a linear Scatchard plot and a Hill coefficient close to unity (nH = 1.05). The pharmacological specificity of this binding site corresponds to that of the neuronal SP-N receptor in guinea pig ileum myenteric plexus, which was determined by a functional bioassay. Among various rat brain regions, the highest binding was observed in the cerebral cortex, olfactory bulb, hypothalamus, and hippocampus. These results suggest the existence and specific distribution of a neurokinin B receptor site of the SP-N type in rat brain. 125I-BH-NH-Senktide is the first selective and potent probe for this receptor and is thus an important tool for further studies of its distribution, regulation, and functional role.  相似文献   

8.
Obesity remains a significant public health issue leading to Type II diabetes and cardiovascular disease. CB1 antagonists have been shown to suppress appetite and reduce body weight in animal models as well as in humans. Evaluation of pre-clinical CB1 antagonists to establish relationships between in vitro affinity and in vivo efficacy parameters are enhanced by ex vivo receptor occupancy data. Synthesis and biological evaluation of a novel and highly selective radiolabeled CB1 antagonist is described. The radioligand was used to conduct ex vivo receptor occupancy studies.  相似文献   

9.
Rat brain cortex membranes bind to a conjugate of substance P and 125I-labeled Bolton-Hunter reagent, and this binding can be inhibited by a low concentration of substance P (Kd = 1.2 +/- 0.4 X 10(-8) M). This binding is reversible and saturable (0.5 +/- 0.1 pmol of binding sites/mg of protein). Fragments of substance P as small as the carboxyl-terminal hexapeptide can inhibit the binding although their potency decreases with the decrease in the length of the peptides. The binding affinities of smaller peptides or peptides in which the carboxyl-terminal amide or amino acids are removed are drastically reduced. Biologically active analogs of substance P, physalaemin, eledoisin, substance P methyl ester, [D-Ala0]hepta(5-11)substance P, kassinin, and the eledoisin-related hexapeptide also can inhibit the binding. However, the binding is not inhibited by polypeptides structurally unrelated to substance P or by amine hormones/neurotransmitters. The binding affinities of biologically active peptides to rat brain cortex membranes are almost identical with their affinities for rat parotid cells which we previously determined. Furthermore, the recently described substance P antagonist, [D-Pro, D-Trp]substance P, inhibits the binding of the 125I-labeled substance P derivative to brain cortex membranes and to parotid cells equally well. These results suggest that the substance P receptors in the brain cortex and the parotid gland are similar. The brain cortex membrane binding of the 125I-labeled substance P derivative can be inhibited by micromolar concentrations of GTP, GDP, and their analogs. ITP and IDP were less active. Adenine and pyridine nucleotides were inactive.  相似文献   

10.
The folate receptor (FR) is a valuable therapeutic target that is highly expressed on a variety of cancers. The current development of folate-targeted cancer therapies has created the need for quantitating functional FRs in clinical specimens. In this article, we report on the creation of a highly sensitive radioactive binding method for quantitatively measuring FR expression in frozen tissue homogenates. Expression was positive in approximately 89% of human ovarian carcinomas but was negligible in both mucinous ovarian carcinomas and normal ovary. Expression was also significant in carcinomas of the kidney, endometrium, lung, breast, bladder, and pancreas. Normal tissues from humans and six different laboratory species were also analyzed; surprisingly, some interspecies variability in FR expression (especially in kidney, spleen, and lung tissue) was found. Interestingly, normal human lung tissue displayed high expression levels, whereas expression in normal lung of the other species was negligible. However, considering that folate-drug conjugates fail to accumulate in the lungs of patients, the consequence of this finding was not considered to be of clinical concern. Overall, this new methodology is reliable for determining functional FR expression levels in tissues, and it could possibly be a useful clinical test to determine patient candidacy for FR-targeted therapeutics.  相似文献   

11.
Lazarova T  Brewin KA  Stoeber K  Robinson CR 《Biochemistry》2004,43(40):12945-12954
Human adenosine A(2)a receptor is a member of the G-protein-coupled receptor (GPCR) superfamily of seven-helix transmembrane (TM) proteins. To test general models for membrane-protein folding and to identify specific features of folding and assembly for this representative member of an important and poorly understood class of proteins, we synthesized peptides corresponding to its seven TM domains. We assessed the ability of the peptides to insert into micelles and vesicles and measured secondary structure for each peptide in aqueous and membrane-mimetic environments. CD spectra indicate that each of the seven TM peptides form thermally stable, independent alpha-helical structures in both micelles and vesicles. The helical content of the peptides depends on the nature of the membrane-mimetic environment. Four of the peptides (TM3, TM4, TM5, and TM7) exhibit very high-helical structure, near the predicted maximum for their TM segments. The TM1 peptide also adopts relatively high alpha-helical structures. In contrast, two of peptides, TM2 and TM6, display low alpha helicity. Similarly, the ability of the peptides to insert into membrane-mimetic environments, assayed by intrinsic tryptophan fluorescence and fluorescence quenching, varied markedly. Most peptides exhibit higher alpha helicity in anionic sodium dodecyl sulfate than in neutral dodecyl-beta-D-maltoside micelles, and TM2 was disordered in zwiterionic DMPC but was alpha-helical in negatively charged DMPC/DMPG vesicles. These findings strongly suggest that electrostatic interactions between lipids and peptides control the insertion of the peptides and may be involved in membrane-protein-folding events. The measured helical content of these TM domains does not correlate with the predicted helicity based on amino acid sequence, pointing out that, while hydrophobic interactions can be a major determinant for folding of TM peptides, other factors, such as electrostatic interactions or helix-helix interactions, may play significant roles for specific TM domains. Our results represent a comprehensive analysis of helical propensities for a human GPCR and support models for membrane-protein folding in which interactions between TM domains are required for proper insertion and folding of some TM helix domains. The tendency of some peptides to self-associate, especially in aqueous environments, underscores the need to prevent improper interactions during folding and refolding of membrane proteins in vivo and in vitro.  相似文献   

12.
Class I major histocompatibility complex (MHC I) molecules are transmembrane proteins that bind and present peptides to T-cell antigen receptors. The role of membrane lipids in controlling MHC I structure and function is not understood, although membrane lipid composition influences cell surface expression of MHC I. We reconstituted liposomes with purified MHC I (Kb) and probed the effect of lipid composition on MHC I structure (monoclonal anti-MHC I antibody binding). Four phospholipids were compared; each had a phosphocholine head group, stearic acid in the sn-1 position, and either oleic, alpha-linolenic, arachidonic, or docosahexaenoic acid (DHA) in the sn-2 position. The greatest binding of monoclonal antibody AF6-88.5, which detects a conformationally sensitive epitope in the extracellular region of the MHC I alpha-chain, was achieved with DHA-containing proteoliposomes. Other epitopes (CTKb, 5041.16.1) showed some sensitivity to lipid composition. The addition of beta2-microglobulin, which associates non-covalently with the alpha-chain and prevents alpha-chain aggregation, did not equalize antibody binding to proteoliposomes of different lipid composition, suggesting that free alpha-chain aggregation was not responsible for disparate antibody binding. Thus, DHA-containing membrane lipids may facilitate conformational change in the extracellular domains of the alpha-chain, thereby modulating MHC I function through effects on that protein's structure.  相似文献   

13.
Using electron spin resonance spectroscopy and a spin-labeled analog of a tertiary amine local anesthetic, we have identified several populations of the local anesthetic within reconstituted lipid membranes containing purified acetylcholine receptors. These populations represent the local anesthetic interacting with membrane lipid and with the acetylcholine receptor. The data also suggest the existence of at least two classes of binding sites for the local anesthetic on the acetylcholine receptor.  相似文献   

14.
We have used a homology model of the extracellular domain of the 5-HT(3) receptor to dock granisetron, a 5-HT(3) receptor antagonist, into the binding site using AUTODOCK. This yielded 13 alternative energetically favorable models. The models fell into 3 groups. In model type A the aromatic rings of granisetron were between Trp-90 and Phe-226 and its azabicyclic ring was between Trp-183 and Tyr-234, in model type B this orientation was reversed, and in model type C the aromatic rings were between Asp-229 and Ser-200 and the azabicyclic ring was between Phe-226 and Asn-128. Residues located no more than 5 A from the docked granisetron were identified for each model; of 26 residues identified, 8 were found to be common to all models, with 18 others being represented in only a subset of the models. To identify which of the docking models best represents the ligand-receptor complex, we substituted each of these 26 residues with alanine and a residue with similar chemical properties. The mutant receptors were expressed in human embryonic kidney (HEK)293 cells and the affinity of granisetron determined using radioligand binding. Mutation of 2 residues (Trp-183 and Glu-129) ablated binding, whereas mutation of 14 other residues caused changes in the [(3)H]granisetron binding affinity in one or both mutant receptors. The data showed that residues both in and close to the binding pocket can affect antagonist binding and overall were found to best support model B.  相似文献   

15.
16.
A highly sensitive assay based on new internally quenched fluorogenic peptide substrates has been developed for monitoring protease activities. These novel substrates comprise an Edans (5-(2-aminoethylamino)-1-naphthalenesulfonic acid) group at the C terminus and a Dabsyl (4-(dimethylamino)azobenzene-4'-sulfonyl chloride) fluorophore at the N terminus of the peptide chains. The Edans fluorescence increases upon peptide hydrolysis by Pseudomonas aeruginosa proteases, and this increase is directly proportional to the amount of substrate cleaved, i.e., protease activity. The substrates Dabsyl-Ala-Ala-Phe-Ala-Edans and Dabsyl-Leu-Gly-Gly-Gly-Ala-Edans were used for testing the peptidasic activities of P. aeruginosa elastase and LasA protease, respectively. Elastase and LasA kinetic parameters were calculated and a sensitive assay was designed for the detection of P. aeruginosa proteases in bacterial supernatants. The sensitivity and the small sample requirements make the assay suitable for high-throughput screening of biological samples. Furthermore, this P. aeruginosa protease assay improves upon existing assays because it is simple, it requires only one step, and even more significantly it is enzyme specific.  相似文献   

17.
A combination of fluorescence spectroscopy and molecular dynamics (MD) is applied to assess the conformational dynamics of a peptide making up the outermost ring of the nicotinic acetylcholine receptor (AChR) transmembrane region and the effect of membrane thickness and cholesterol on the hydrophobic matching of this peptide. The fluorescence studies exploit the intrinsic fluorescence of the only tryptophan residue in a synthetic peptide corresponding to the fourth transmembrane domain of the AChR gamma subunit (gammaM4-Trp(6)) reconstituted in lipid bilayers of varying thickness, and combine this information with quenching studies using depth-sensitive phosphatidylcholine spin-labeled probes and acrylamide, polarization of fluorescence, and generalized polarization of Laurdan. A direct correlation was found between bilayer width and the depth of insertion of Trp(6). We further extend our recent MD study of the conformational dynamics of the AChR channel to focus on the crosstalk between M4 and the lipid-belt region. The isolated gammaM4 peptide is shown to possess considerable orientational flexibility while maintaining a linear alpha-helical structure, and to vary its tilt depending on bilayer width and cholesterol (Chol) content. MD studies also show that gammaM4 also establishes contacts with the other TM peptides on its inner face, stabilizing a shorter TM length that is still highly sensitive to the lipid environment. In the native membrane the topology of the M4 ring is likely to exhibit a similar behavior, dynamically modifying its tilt to match the hydrophobic thickness of the bilayer.  相似文献   

18.
Binding of the tricyclic antidepressant imipramine (IMI) to neutral and negatively charged lipid membranes was investigated using a radioligand binding assay combined with centrifugation or filtration. Lipid bilayers were composed of brain phosphatidylcholine (PC) and phosphatidylserine (PS). IMI binding isotherms were measured up to IMI concentration of 0.5 mmol/l. Due to electrostatic attraction, binding between the positively charged IMI and the negatively charged surfaces of PS membranes was augmented compared to binding to neutral PC membranes. After correction for electrostatic effects by means of the Gouy-Chapman theory, the binding isotherms were described both by surface partition coefficients and by binding parameters (association constants and binding capacities). It was confirmed that binding of IMI to model membranes is strongly affected by negatively charged phospholipids and that the binding is heterogeneous; in fact, weak surface adsorption and incorporation of the drug into the hydrophobic core of lipid bilayer can be seen and characterized. These results support the hypothesis suggesting that the lipid part of biological membranes plays a role in the mechanism of antidepressant action.  相似文献   

19.
Ottensmeyer FP  Beniac DR  Luo RZ  Yip CC 《Biochemistry》2000,39(40):12103-12112
Transmembrane signaling via receptor tyrosine kinases generally requires oligomerization of receptor monomers, with the formation of ligand-induced dimers or higher multimers of the extracellular domains of the receptors. Such formations are expected to juxtapose the intracellular kinase domains at the correct distances and orientations for transphosphorylation. For receptors of the insulin receptor family that are constitutively dimeric, or those that form noncovalent dimers without ligands, the mechanism must be more complex. For these, the conformation must be changed by the ligand from one that prevents activation to one that is permissive for kinase phosphorylation. How the insulin ligand accomplishes this action has remained a puzzle since the discovery of the insulin receptor over 2 decades ago, primarily because membrane proteins in general have been refractory to structure determination by crystallography. However, high-resolution structural evidence on individual separate subdomains of the insulin receptor and of analogous proteins has been obtained. The recently solved quaternary structure of the complete dimeric insulin receptor in the presence of insulin has now served as the structural envelope into which such individual domains were fitted. The combined structure has provided answers on the details of insulin/receptor interactions in the binding site and on the mechanism of transmembrane signaling of this covalent dimer. The structure explains many observations on the behavior of the receptor, from greater or lesser binding of insulin and its variants, point and deletion mutants of the receptor, to antibody-binding patterns, and to the effects on basal and insulin-stimulated autophosphorylation under mild reducing conditions.  相似文献   

20.
H I Magazine  H M Johnson 《Biochemistry》1991,30(23):5784-5789
A receptor binding region of mouse interferon gamma (IFN gamma) has previously been localized to the N-terminal 39 amino acids of the molecule by use of synthetic peptides and monoclonal antibodies. In this report, a detailed analysis of the synthetic peptide corresponding to this region, IFN gamma (1-39), is presented. Circular dichroism (CD) spectroscopy indicated that the peptide has stable secondary structure under aqueous conditions and adopts a combination of alpha-helical and random structure. A peptide lacking two N-terminal amino acids, IFN gamma (3-39), had similar secondary structure and equivalent ability to compete for receptor binding, while peptides lacking four or more N-terminal residues had reduced alpha-helical structure and did not inhibit 125I-IFN gamma binding. Substitution of proline, a helix-destabilizing amino acid, for leucine (residue 8) of a predicted amphipathic alpha-helix (residues 3-12), IFN gamma (1-39) [Pro]8, resulted in a substantial reduction in the helical content of the peptide, supporting the presence of helical structure in this region. However, destabilization of the helix did not reduce the competitive ability of the peptide. A peptide lacking eight C-terminal residues, IFN gamma (1-31), did not block 125I-IFN gamma binding and had no detectable alpha-helical structure, suggesting a requirement of the predicted second alpha-helix (residues 20-34) for receptor interaction and helix stabilization. Substitution of phenylalanine for tyrosine at position 14, IFN gamma (1-39) [Phe]14, a central location of a predicted omega-loop structure, did not affect the secondary structure associated with the region yet resulted in a 30-fold increase in receptor competition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号