首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sensitivity of several microporous virus-adsorbent media for reliably detecting low levels of poliovirus from 380 and 1,900 liters of drinking water by use of the tentative standard method was investigated. The virus-adsorbent media tested were (i) nitrocellulose membrane filters, (ii) epoxy-fiber glass-asbestos filters, (iii) yarn-wound fiber glass depth filters, and (iv) epoxy-fiber glass filter tubes. Virus was adsorbed to the filter media at pH 3.5 and eluted with glycine buffer, pH 11.5. The results from 44 samples demonstrated that poliovirus was detected with a 95% reliability at mean virus input levels of 3 to 7 plaque-forming units/380 liters when 1,900 liters of water was sampled. At mean virus input levels of less than 1 to 2 plaque-forming units/380 liters, the detection reliability was 66% in 76 samples when 1,900 liters of water was sampled. No significant difference in virus detection sensitivity was observed among the various virus adsorbent media tested. Overall virus recovery efficiency ranged from 28 to 42%, with a grand average of 35%. Members of the coxsackievirus groups A and B, echovirus, and adenovirus were also detected when 380 and 1,900 liters of water were sampled. These experimental observations attest to the sensitivity of the tentative standard method for detecting low levels of virus in large volumes of drinking water.  相似文献   

2.
Four microporous virus-absorbent filter media for recovering low levels of virus from 380 liters of drinking water were compared. In addition two of the filter media were compared with 1,900 liters of drinking water. The filter media evaluated were MF nitrocellulose membranes (293 mm), AA Cox M-780 epoxy-fiberglass-asbestos disks (267 mm), K-27 yarn-wound fiberglass cartridges + AA Cox M-780 disks (127 mm), and Balston epoxy-fiberglass tubes (24.5 by 63.5 mm). The filters were used to concentrate seeded poliovirus from 380 liters of finished drinking water. Sodium thiosulfate was added to the drinking water to neutralize chlorine, and hydrochloric acid was added to adjust the pH to 3.5. Virus was eluted from the filters with glycine-NaOH buffer at pH 11.5. In terms of virus recovery efficiency, the filter media ranked Balston greater than Cox 267-mm greater than MF 293-mm congruent to K-27 + Cox 127-mm, but differences were slight. The Balston filters and holders were also superior to the other systems in terms of size, weight, cost, and handling factors. Experiments with 2- and 8-mum porosity Balston filters showed no statistically significant difference in virus recovery. Virus was readily detected by the Balston and the MF 293-mm systems at input levels of 12 to 22 PFU/1,900 liters. Preliminary experiments indicated that an elution pH lower than 11.5 may be satisfactory.  相似文献   

3.
Concentration of enteroviruses from estuarine water.   总被引:11,自引:10,他引:1       下载免费PDF全文
Pleated cartridge filters readily adsorb viruses in estuarine water at low pH containing aluminum chloride. Adsorbed viruses are efficiently recovered by treating filters with glycine buffer at high pH. By using these procedures, it was possible to recover approximately 70% of the poliovirus added to 400 liters of estuarine water in 3 liters of filter eluate. Reconcentration of virus in the filter eluate in small volumes that are convenient for viral assays was more difficult. Reconcentration methods described previously for eluates from filters that process tap water or treated wastewater were inadequate when applied to eluates from filters used to process estuarine water containing large amounts of organic compounds. Two methods were found to permit efficient concentration of virus in filter eluates in small volumes. In both methods, virus in 3 liters of filter eluate was adsorbed to aluminum hydroxide flocs and then recovered in approximately 150 ml of buffered fetal calf serum. Additional reductions in volume were achieved by ultrafiltration or hydroextraction. By using these procedures 60 to 80% of the virus in 3 liters of filter eluate could be recovered in a final volume of 10 to 40 ml.  相似文献   

4.
Pleated cartridge filters readily adsorb viruses in estuarine water at low pH containing aluminum chloride. Adsorbed viruses are efficiently recovered by treating filters with glycine buffer at high pH. By using these procedures, it was possible to recover approximately 70% of the poliovirus added to 400 liters of estuarine water in 3 liters of filter eluate. Reconcentration of virus in the filter eluate in small volumes that are convenient for viral assays was more difficult. Reconcentration methods described previously for eluates from filters that process tap water or treated wastewater were inadequate when applied to eluates from filters used to process estuarine water containing large amounts of organic compounds. Two methods were found to permit efficient concentration of virus in filter eluates in small volumes. In both methods, virus in 3 liters of filter eluate was adsorbed to aluminum hydroxide flocs and then recovered in approximately 150 ml of buffered fetal calf serum. Additional reductions in volume were achieved by ultrafiltration or hydroextraction. By using these procedures 60 to 80% of the virus in 3 liters of filter eluate could be recovered in a final volume of 10 to 40 ml.  相似文献   

5.
Poliovirus concentration from tap water with electropositive adsorbent filters   总被引:10,自引:0,他引:10  
Simple, reliable, and efficient concentration of poliovirus from tap water was obtained with two types of electropositive filter media, one of which is available in the form of a pleated cartridge filter (Virozorb 1MDS). Virus adsorption from tap water between pH 3.5 and 7.5 was more efficient with electropositive filters than with Filterite filters. Elution of adsorbed viruses was more efficient with beef extract in glycine, pH 9.5, than with glycine-NaOH, pH 11.0. In paired comparative studies, electropositive filters, with adsorption at pH 7.5 and no added polyvalent cation salts, gave less variable virus concentration efficiencies than did Filterite filters with adsorption at pH 3.5 plus added MgCl2. Recovery of poliovirus from 1,000-liter tap water volumes was approximately 30% efficient with both Virozorb 1MDS and Filterite pleated cartridge filters, but the former were much simpler to use. The virus adsorption behavior of these filters appears to be related to their surface charge properties, with more electropositive filters giving more efficient virus adsorption from tap water at higher pH levels.  相似文献   

6.
Simple, reliable, and efficient concentration of poliovirus from tap water was obtained with two types of electropositive filter media, one of which is available in the form of a pleated cartridge filter (Virozorb 1MDS). Virus adsorption from tap water between pH 3.5 and 7.5 was more efficient with electropositive filters than with Filterite filters. Elution of adsorbed viruses was more efficient with beef extract in glycine, pH 9.5, than with glycine-NaOH, pH 11.0. In paired comparative studies, electropositive filters, with adsorption at pH 7.5 and no added polyvalent cation salts, gave less variable virus concentration efficiencies than did Filterite filters with adsorption at pH 3.5 plus added MgCl2. Recovery of poliovirus from 1,000-liter tap water volumes was approximately 30% efficient with both Virozorb 1MDS and Filterite pleated cartridge filters, but the former were much simpler to use. The virus adsorption behavior of these filters appears to be related to their surface charge properties, with more electropositive filters giving more efficient virus adsorption from tap water at higher pH levels.  相似文献   

7.
Enteroviruses added to 114 liters of dechlorinated tap water were recovered in a 16-ml sample by a two-stage concentration procedure in which different types of membrane filters were used in each concentration stage. Viruses in tap water at pH 3.5 were first adsorbed to 10-in. (ca. 25.4-cm) epoxy-fiber glass filters (Filterite). Viruses adsorbed to these filters were eluted with a solution of 0.2 M sodium trichloroacetate buffered at pH 9 with 0.2 M lysine. Viruses in this solution were adsorbed to 47-mm asbestos filters (Seitz) without pH adjustment or other modification of the solution. Viruses were recovered from the Seitz filters with 16 ml of either Casitone or fetal calf serum at pH 9. With these procedures ca. 45% of several types of enteroviruses added to 114 liters of tap water could be recovered in the final 16-ml sample.  相似文献   

8.
Enteroviruses added to 114 liters of dechlorinated tap water were recovered in a 16-ml sample by a two-stage concentration procedure in which different types of membrane filters were used in each concentration stage. Viruses in tap water at pH 3.5 were first adsorbed to 10-in. (ca. 25.4-cm) epoxy-fiber glass filters (Filterite). Viruses adsorbed to these filters were eluted with a solution of 0.2 M sodium trichloroacetate buffered at pH 9 with 0.2 M lysine. Viruses in this solution were adsorbed to 47-mm asbestos filters (Seitz) without pH adjustment or other modification of the solution. Viruses were recovered from the Seitz filters with 16 ml of either Casitone or fetal calf serum at pH 9. With these procedures ca. 45% of several types of enteroviruses added to 114 liters of tap water could be recovered in the final 16-ml sample.  相似文献   

9.
10.
A method is described for the efficient concentration of viruses from large volumes of tap water in relatively short time periods. Virus in acidified tap water in the presence of aluminum chloride is adsorbed to a 10-inch (ca. 25.4 cm) fiberglass depth cartridge and a 10-inch pleated epoxy-fiberglass filter in series at flow rates of up to 37.8 liters/min (10 gallons/min). This filter series is capable of efficiently adsorbing virus from greater than 19,000 liters (5,000 gallons) of treated tap water. Adsorbed viruses are eluted from the filters with glycine buffer (pH 10.5) and the eluate is reconcentrated using an aluminum flocculation process. Viruses are eluted from the aluminum floc with glycine buffer (pH 11.5). Using this procedure, viruses in 1,900 liters (500 gallons) of tap water can be concentrated 100,000-fold in 3 h with an average recovery of 40 to 50%.  相似文献   

11.
A method is described for the efficient concentration of viruses from large volumes of tap water in relatively short time periods. Virus in acidified tap water in the presence of aluminum chloride is adsorbed to a 10-inch (ca. 25.4 cm) fiberglass depth cartridge and a 10-inch pleated epoxy-fiberglass filter in series at flow rates of up to 37.8 liters/min (10 gallons/min). This filter series is capable of efficiently adsorbing virus from greater than 19,000 liters (5,000 gallons) of treated tap water. Adsorbed viruses are eluted from the filters with glycine buffer (pH 10.5) and the eluate is reconcentrated using an aluminum flocculation process. Viruses are eluted from the aluminum floc with glycine buffer (pH 11.5). Using this procedure, viruses in 1,900 liters (500 gallons) of tap water can be concentrated 100,000-fold in 3 h with an average recovery of 40 to 50%.  相似文献   

12.
J F Ma  J Naranjo    C P Gerba 《Applied microbiology》1994,60(6):1974-1977
The MK filter is an electropositively charged filter that can be used to concentrate enteroviruses from large volumes (400 to 1,000 liters) of water. This filter is less expensive than the commonly used 1MDS electropositive filter. In this study, we compared the recovery of poliovirus 1 (PV1) and that of coxsackievirus B3 (CB3) from 378 liters of tap water, using both the MK and the 1MDS filters. Viruses were eluted from the filters with 3% beef extract buffered with 0.05 M glycine (pH 9.5) and reconcentrated via organic flocculation. At high virus inputs (approximately 10(6) PFU), the overall recovery (after elution and reconcentration) of PV1 and CB3 from tap water with the MK filter was less than that achieved with the 1MDS filter (P < 0.05). The recoveries of PV1 from tap water with the MK and 1MDS filters were 73.2% +/- 26% (n = 5 trials) and 90.2% +/- 5.9% (n = 5 trials), respectively. The recoveries of CB3 from tap water with the MK and 1MDS filters were 32.8% +/- 34.5% (n = 4 trials) and 95.8% +/- 12.0% (n = 4 trials), respectively. This study indicated that the MK filter consistently provided lower recovery, with wider variability, of PV1 and CB3 from tap water than the 1MDS filter.  相似文献   

13.
Microporous filters that are more electropositive than the negatively charged filters currently used for virus concentrations from water by filter adsorption-elution methods were evaluated for poliovirus recovery from tap water. Zeta Plus filters composed of diatomaceous earth-cellulose-"charge-modified" resin mixtures and having a net positive charge of up to pH 5 to 6 efficiently adsorbed poliovirus from tap water at ambient pH levels 7.0 to 7.5 without added multivalent cation salts. The adsorbed virus were eluted with glycine-NaOH, pH 9.5 to 11.5. Electropositive asbestos-cellulose filters efficiently adsorbed poliovirus from tap water without added multivalent cation salts between pH 3.5 and 9.0, and the absorbed viruses could be eluted with 3% beef extract, pH 9, but not with pH 9.5 to 11.5 glycine-NaOH. Under water quality conditions in which poliovirus recoveries from large volumes of water were less than 5% with conventional negatively charged filters and standard methods, recoveries with Zeta Plus filters averaged 64 and 22.5% for one- and two-stage concentration procedures, respectively. Electropositive filters appear to offer distinct advantages over conventional negatively charged filters for concentrating enteric viruses from water, and their behavior tends to confirm the importance of electrostatic forces in virus recovery from water by microporous filter adsorption-elution methods.  相似文献   

14.
Microporous filters that are more electropositive than the negatively charged filters currently used for virus concentrations from water by filter adsorption-elution methods were evaluated for poliovirus recovery from tap water. Zeta Plus filters composed of diatomaceous earth-cellulose-"charge-modified" resin mixtures and having a net positive charge of up to pH 5 to 6 efficiently adsorbed poliovirus from tap water at ambient pH levels 7.0 to 7.5 without added multivalent cation salts. The adsorbed virus were eluted with glycine-NaOH, pH 9.5 to 11.5. Electropositive asbestos-cellulose filters efficiently adsorbed poliovirus from tap water without added multivalent cation salts between pH 3.5 and 9.0, and the absorbed viruses could be eluted with 3% beef extract, pH 9, but not with pH 9.5 to 11.5 glycine-NaOH. Under water quality conditions in which poliovirus recoveries from large volumes of water were less than 5% with conventional negatively charged filters and standard methods, recoveries with Zeta Plus filters averaged 64 and 22.5% for one- and two-stage concentration procedures, respectively. Electropositive filters appear to offer distinct advantages over conventional negatively charged filters for concentrating enteric viruses from water, and their behavior tends to confirm the importance of electrostatic forces in virus recovery from water by microporous filter adsorption-elution methods.  相似文献   

15.
Micro-fiber glass filters from Gelman, Filterite, Johns-Manville, and Whatman were compared with Millipore membrane filters on the basis of their virus adsorbancy, flow rate, clogging resistance, and virus concentration efficiency by using tap water at 2 nephelometric turbidity units. As virus adsorbants the Johns-Manville D39, Filterite 0.25-micron, Filterite 0.45-micron, and Millipore 0.45-micron filters were the most efficient, retaining more than 99% of the added virus in water at pH 3.5 and 0.0005 M aluminum chloride. The Johns-Manville D79 and D49 filters retained 92 and 96% of the virus, respectively, whereas the Whatman GF-D, Whatman GF-F, Gelman A-E, and Millipore AP-20 filters retained only 28, 78, 56, and 34% of the virus, respectively. The best flow rate and clogging resistance were obtained with the Johns-Manville D79 filter or with this filter acting as a prefilter to the Johns-Manville D49, Johns-Manville D39, or Filterite 0.45-micron filter. Finally, poliovirus experimentally seeded in 20 liters of tape water was recovered from Johns-Manville D79-Johns-Manville D39 or Johns-Manville D79-Filterite 0.45 micron 142-mm filter combinations was a efficiencies of 86 and 85%, respectively.  相似文献   

16.
Methods were developed for detecting and concentrating enteric viruses in municipal solid waste landfill leachates. Poliovirus added to a leachate was not readily detectable, possibly because the virus was adsorbed to the leachate particulates. The masking effects associated with suspended solids in the leachate were overcome by adding a final 0.1 M sodium (tetra)ethylenediaminetetraacetate concentration to the leachate. A sodium (tetra)ethylenediaminetetraacetate-treated leachate could be clarified by filtration at pH 8.0 without a loss of virus. The clarified and sodium (tetra)ethylenediaminetetraacetate-treated leachate contained interfering materials of an anionic nature which prevented virus adsorption to epoxy-fiber glass filters. This interfering effect was overcome by treating the leachate with an anion-exchange resin. Viruses in the resin-treated leachate were concentrated by adjusting the leachate to pH 3.5, adding AlCl(3) to a final 0.005 M concentration, adsorbing the viruses to an epoxy-fiber glass virus adsorbent, and eluting the adsorbed viruses in a small volume. When this method was used to concentrate poliovirus 100-fold in a variety of leachates, the average virus recovery efficiency was 37%. With the methods described in this study, it should be possible to efficiently monitor solid waste disposal site leachates for enteric viruses.  相似文献   

17.
Because naturally occurring organic matter is thought to interfere with virus adsorption to microporous filters, humic and fulvic acids isolated from a highly colored, soft surface water were used as model organics in studies on poliovirus adsorption to and recovery from electropositive Virosorb 1MDS and electronegative Filterite filters. Solutions of activated carbon-treated tap water containing 3, 10, and 30-mg/liter concentrations of humic or fulvic acid were seeded with known amounts of poliovirus and processed with Virosorb 1MDS filters at pH 7.5 or Filterite filters at pH 3.5 (with and without 5 mM MgCl2). Organic acids caused appreciable reductions in virus adsorption and recovery efficiencies with both types of filter. Fulvic acid caused greater reductions in poliovirus recovery with Virosorb 1MDS filters than with Filterite filters. Fulvic acid interference with poliovirus recovery by Filterite filters was overcome by the presence of 5 mM MgCl2. Although humic acid reduced poliovirus recoveries by both types of filter, its greatest effect was on virus elution and recovery from Filterite filters. Single-particle analyses demonstrated MgCl2 enhancement of poliovirus association with both organic acids at pH 3.5. The mechanisms by which each organic acid reduced virus adsorption and recovery appeared to be different for each type of filter.  相似文献   

18.
Because naturally occurring organic matter is thought to interfere with virus adsorption to microporous filters, humic and fulvic acids isolated from a highly colored, soft surface water were used as model organics in studies on poliovirus adsorption to and recovery from electropositive Virosorb 1MDS and electronegative Filterite filters. Solutions of activated carbon-treated tap water containing 3, 10, and 30-mg/liter concentrations of humic or fulvic acid were seeded with known amounts of poliovirus and processed with Virosorb 1MDS filters at pH 7.5 or Filterite filters at pH 3.5 (with and without 5 mM MgCl2). Organic acids caused appreciable reductions in virus adsorption and recovery efficiencies with both types of filter. Fulvic acid caused greater reductions in poliovirus recovery with Virosorb 1MDS filters than with Filterite filters. Fulvic acid interference with poliovirus recovery by Filterite filters was overcome by the presence of 5 mM MgCl2. Although humic acid reduced poliovirus recoveries by both types of filter, its greatest effect was on virus elution and recovery from Filterite filters. Single-particle analyses demonstrated MgCl2 enhancement of poliovirus association with both organic acids at pH 3.5. The mechanisms by which each organic acid reduced virus adsorption and recovery appeared to be different for each type of filter.  相似文献   

19.
Methods are described for the efficient concentration of an enterovirus from large volumes of tap water, sewage, and seawater. Virus in acidified water (pH 3.5) in the presence of aluminum chloride was adsorbed to a 10-inch (ca. 25.4 cm) fiberglass depth cartridge and a 10-inch pleated epoxy-fiberglass filter in a series at flow rates of up to 37.8 liters (10 gallons) per min. Adsorbed viruses were eluted from the filters with glycine buffer (pH 10.5 to 11.5), and the eluate was reconcentrated by using a combination of aluminum flocculation followed by hydroextraction. With this procedure, poliovirus in large volumes of tap water, seawater, and sewage could be concentrated with an average efficiency of 52, 53, and 50%, respectively. It was demonstrated that this method is capable of detecting surface solid-associated viruses originating from sewage treatment plants. No difference in virus recovery between laboratory batch studies and a set-up with acid-salt injection was found. This unified scheme for the concentration of viruses has many advantages over previously described systems. These include: high operating flow rates, low weight and small size, effectiveness with a variety of waters with widely varying qualities, and filters with a high resistance to clogging.  相似文献   

20.
Methods are described for the efficient concentration of an enterovirus from large volumes of tap water, sewage, and seawater. Virus in acidified water (pH 3.5) in the presence of aluminum chloride was adsorbed to a 10-inch (ca. 25.4 cm) fiberglass depth cartridge and a 10-inch pleated epoxy-fiberglass filter in a series at flow rates of up to 37.8 liters (10 gallons) per min. Adsorbed viruses were eluted from the filters with glycine buffer (pH 10.5 to 11.5), and the eluate was reconcentrated by using a combination of aluminum flocculation followed by hydroextraction. With this procedure, poliovirus in large volumes of tap water, seawater, and sewage could be concentrated with an average efficiency of 52, 53, and 50%, respectively. It was demonstrated that this method is capable of detecting surface solid-associated viruses originating from sewage treatment plants. No difference in virus recovery between laboratory batch studies and a set-up with acid-salt injection was found. This unified scheme for the concentration of viruses has many advantages over previously described systems. These include: high operating flow rates, low weight and small size, effectiveness with a variety of waters with widely varying qualities, and filters with a high resistance to clogging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号