首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The population genetic structure of marine species lacking free-swimming larvae is expected to be strongly affected by random genetic drift among populations, resulting in genetic isolation by geographical distance. At the same time, ecological separation over microhabitats followed by direct selection on those parts of the genome that affect adaptation might also be strong. Here, we address the question of how the relative importance of stochastic vs. selective structuring forces varies at different geographical scales. We use microsatellite DNA and allozyme data from samples of the marine rocky shore snail Littorina saxatilis over distance scales ranging from metres to 1000 km, and we show that genetic drift is the most important structuring evolutionary force at distances > 1 km. On smaller geographical scales (< 1 km), divergent selection between contrasting habitats affects population genetic structure by impeding gene flow over microhabitat borders (microsatellite structure), or by directly favouring specific alleles of selected loci (allozyme structure). The results suggest that evolutionary drivers of population genetic structure cannot a priori be assumed to be equally important at different geographical scales. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 31–40.  相似文献   

2.
Local migration patterns may be crucial to gene flow in species of marine gastropods which do not broadcast pelagic larvae. In some species, dispersal over distances of a few metres may influence micro-scale population structures. We investigated the migration pattern in Galician populations of the snail Littorina saxatilis in which populations of contrasting morphologies occupy different tidal levels of the same rocky shore. Two distinct morphs, one at the upper and one at the lower shore, overlap in distribution in a small mid-shore region where hybrids are produced. We documented the distances and directions of migration of both parental morphs and hybrids 1 month after they had been marked and released at different shore levels. When placed at their native shore level, snails migrated less than about 2m and usually in independent directions. This supports the suggestion of a low local gene flow. At an alien shore level, however, the morphs often moved further and more directionally compared with native morphs. These differences may help to keep the two morphs separated at different shore levels. As fitness of an individual is highest in its native habitat, this seems to be an adaptive strategy.  相似文献   

3.
Shell polymorphisms are widespread among those intertidal gastropods that lack a pelagic spreading stage. These polymorphisms may indicate diversifying selection in a heterogeneous habitat, but to do this the variation must be at least pardy inherited. Galician populations of Littorina saxatilis (Olivi) living in exposed rocky shores are highly polymorphic in several shell traits, e.g. ornamentation, banding and size. Mature snails of the upper-shore ridged and banded (RB) morph is, for example, often twice as large as mature individuals of the lower-shore smooth and unbanded (SU) morph of the same shore.
We investigated the hypothesis that lower-shore snails grow more slowly and that differences in growth rate were at least partly inherited and could be explained by diversifying selection. We released snails of different origin (upper, mid- and lower shore) and morph (RB, SU and hybrids) at different shore levels and compared their shell increment after one month of growth. We found that despite considerable variation among individuals and among replicate samples (together about 53% of the total variation), average rates of growth differed between morphs. RB snails both from the upper and mid-shores grew at a high rate at all shore levels, SU snails grew considerably less, and hybrids grew at intermediate rates, at all levels. Inherited difference among morphs explained about 34% of the total variation while effects of shore levels and the interaction morph x shore level explained only 5 and 7%, respectively. Thus a large part of the difference in growth rate leading to different adult sizes of the two morphs has probably evolved due to spatially varying selection favouring large sizes in upper-shore and small sizes in lower-shore environments.  相似文献   

4.
Most marine benthic invertebrate species have planktonic larvae, and in species in which juveniles and adults have low vagility a larva is obviously an efficient way of active dispersal. A minority of benthic invertebrate species develop without any pelagic phase at all. A largely unsolved question is how and at what rate do these species disperse. We have addressed this question using the marine littoral snail Littorina saxatilis (Olivi) as an example of a species that completely lacks larval dispersal. In the Koster archipelago (north part of the Swedish west coast), L. saxatilis occupies rocky island habitats of different sizes, from large islands to small intertidal skerries (islets). In 1988 an extremely dense bloom of a toxin-producing flagellate killed more than 99% of this snail species in this area. Populations of larger islands were reduced, often to less than 1%, but were restored over 2–4 yr. In contrast, populations of small intertidal skerries were completely wiped out and thus could not increase by local recruitment. Four years later, however, four of 33 skerries (12%) were successfully recolonized with relatively dense populations, and another five had received a few founder individuals. These results indicate recruitment through founder individuals, and are rough estimates of dispersal rate in a snail species that lacks a pelagic developmental stage.  相似文献   

5.
Genetic drift and estimation of effective population size   总被引:3,自引:2,他引:1       下载免费PDF全文
Nei M  Tajima F 《Genetics》1981,98(3):625-640
The statistical properties of the standardized variance of gene frequency changes (a quantity equivalent to Wright's inbreeding coefficient) in a random mating population are studied, and new formulae for estimating the effective population size are developed. The accuracy of the formulae depends on the ratio of sample size to effective size, the number of generations involved (t), and the number of loci or alleles used. It is shown that the standardized variance approximately follows the chi(2) distribution unless t is very large, and the confidence interval of the estimate of effective size can be obtained by using this property. Application of the formulae to data from an isolated population of Dacus oleae has shown that the effective size of this population is about one tenth of the minimum census size, though there was a possibility that the procedure of sampling genes was improper.  相似文献   

6.
7.
8.

Background  

The role of phenotypic plasticity is increasingly being recognized in the field of evolutionary studies. In this paper we look at the role of genetic determination versus plastic response by comparing the protein expression profiles between two sympatric ecotypes adapted to different shore levels and habitats using two-dimensional protein maps.  相似文献   

9.
The Galician sympatric ecotypes of Littorina saxatilis have been proposed as a model system for studying parallel ecological speciation. Such a model system makes a clear prediction: candidate loci (for divergent adaptation) should present a higher level of geographical differentiation than noncandidate (neutral) loci. We used 2356 amplified fragment length polymorphisms (AFLPs) and four microsatellite loci to identify candidate loci for ecological adaptation using the F ST outlier method. Three per cent of the studied AFLP loci were identified as candidate loci associated with adaptation, after multitest adjustments, thus contributing to ecotype differentiation (candidate loci were not detected within ecotypes). Candidate and noncandidate loci were analysed separately at four different F ST partitions: differences between ecotypes (overall and local), differences between localities and micro-geographical differences within ecotypes. The magnitude of F ST differed between candidate and noncandidate loci for all partitions except in the case of microgeographical differentiation within ecotypes, and the microsatellites (putatively neutral) showed an identical pattern to noncandidate loci. Thus, variation in candidate loci is determined partially independent by divergent natural selection (in addition to stochastic forces) at each locality, while noncandidate loci are exclusively driven by stochastic forces. These results support the evolutionary history described for these particular populations, considered to be a clear example of incomplete sympatric ecological speciation.  相似文献   

10.
The null assumption of molecular variation is that most of it is neutral to natural selection. This is in contrast to variation in morphological traits that we generally assume is maintained by selection, and therefore often by selection coupled to environmental heterogeneity in time and space. Examples of molecular variation that vary over habitat-shifts, particularly in allozymes, show that the relative impact of non-neutral variation as compared to neutral variation might be substantial in some systems. To assess the importance of habitat-generated variation in relation to variation generated by random processes in nuclear DNA markers at small spatial scales, we compared the effects of island isolation and habitat heterogeneity on genetic substructuring in a rocky shore snail ( Littorina saxatilis ). This species has a restricted migration among islands owing to the lack of free-floating larvae. Earlier studies show that allozymes vary extensively as a consequence of isolation by water barriers among islands, but also as a consequence of divergent selection among different microhabitats within islands. In the DNA markers we observed genetic differentiation owing to island isolation at three of nine loci. In addition, variation at three loci correlated with habitat type, but the correlation for two of the loci was weak. Overall, isolation contributed slightly more to the genetic variation among populations than did habitat-related factors but the difference was small. It is concluded that both island isolation, which interrupts gene flow, and a heterogeneous habitat cause genetic substructuring at the DNA level in L. saxatilis in the studied area, and thus in this species we need to be somewhat concerned about habitat heterogeneity also at DNA loci.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 377–384.  相似文献   

11.
12.
Summary Estimates of survival, migration rates, and population size are developed for a triple catch marking experiment onn (n>-2) areas with migration among all areas and death in all areas occurring, but no recruitment (birth). This repressents the extension to three sampling times of the method ofChapman andJunge (1956) for estimates in a stratified population. The method is further extented to allow for ‘losses on capture’.  相似文献   

13.
P Beerli  J Felsenstein 《Genetics》1999,152(2):763-773
A new method for the estimation of migration rates and effective population sizes is described. It uses a maximum-likelihood framework based on coalescence theory. The parameters are estimated by Metropolis-Hastings importance sampling. In a two-population model this method estimates four parameters: the effective population size and the immigration rate for each population relative to the mutation rate. Summarizing over loci can be done by assuming either that the mutation rate is the same for all loci or that the mutation rates are gamma distributed among loci but the same for all sites of a locus. The estimates are as good as or better than those from an optimized FST-based measure. The program is available on the World Wide Web at http://evolution.genetics. washington.edu/lamarc.html/.  相似文献   

14.
The rough periwinkle, Littorina saxatilis, is a model system for studying parallel ecological speciation in microparapatry. Phenotypically parallel wave‐adapted and crab‐adapted ecotypes that hybridize within the middle shore are replicated along the northwestern coast of Spain and have likely arisen from two separate glacial refugia. We tested whether greater geographic separation corresponding to reduced opportunity for contemporary or historical gene flow between parallel ecotypes resulted in less parallel genomic divergence. We sequenced double‐digested restriction‐associated DNA (ddRAD) libraries from individual snails from upper, mid, and low intertidal levels of three separate sites colonized from two separate refugia. Outlier analysis of 4256 SNP markers identified 34.4% sharing of divergent loci between two geographically close sites; however, these sites each shared only 9.9%–15.1% of their divergent loci with a third more‐distant site. STRUCTURE analysis revealed that genotypes from only three of 166 phenotypically intermediate mid‐shore individuals appeared to result from recent hybridization, suggesting that hybrids cannot be reliably identified using shell traits. Hierarchical AMOVA indicated that the primary source of genomic differentiation was geographic separation, but also revealed greater similarity of the same ecotype across the two geographically close sites than previously estimated with dominant markers. These results from a model system for ecological speciation suggest that genomic parallelism is affected by the opportunity for historical or contemporary gene flow between populations.  相似文献   

15.
Skalski GT 《Genetics》2007,177(2):1043-1057
Using the island model of population demography, I report that the demographic parameters migration rate and effective population size can be jointly estimated with equilibrium probabilities of identity in state calculated using a sample of genotypes collected at a single point in time from a single generation. The method, which uses moment-type estimators, applies to dioecious populations in which females and males have identical demography and monoecious populations with no selfing and requires that offspring genotypes are sampled following reproduction and prior to migration. I illustrate the estimation procedure using the infinite-island model with no mutation and the finite-island model with three kinds of mutation models. In the infinite-island model with no mutation, the estimators can be expressed as simple functions of estimates of the F-statistic parameters F(IT) and F(ST). In the finite-island model with mutation among k alleles, mutation rate, migration rate, and effective population size can be simultaneously estimated. The estimates of migration rate and effective population size are somewhat robust to violations in assumptions that may arise in empirical applications such as different kinds of mutation models and deviations from temporal equilibrium.  相似文献   

16.
The North Atlantic intertidal gastropod, Littorina saxatilis (Olivi, 1792), exhibits extreme morphological variation between and within geographic regions and has become a model for studies of local adaptation; yet a comprehensive analysis of the species' phylogeography is lacking. Here, we examine phylogeographic patterns of the species' populations in the North Atlantic and one remote Mediterranean population using sequence variation in a fragment of the mitochondrial cytochrome b gene (607 bp). We found that, as opposed to many other rocky intertidal species, L. saxatilis has likely had a long and continuous history in the Northwest Atlantic, including survival during the last glacial maximum (LGM), possibly in two refugia. In the Northeast Atlantic, several areas likely harboured refugial populations that recolonized different parts of this region after glacial retreat, resulting in strong population structure. However, the outlying monomorphic Venetian population is likely a recent anthropogenic introduction from northern Europe and not a remnant of an earlier wider distribution in the Mediterranean Sea. Overall, our detailed phylogeography of L. saxatilis adds an important piece to the understanding of Pleistocene history in North Atlantic marine biota as well as being the first study to describe the species' evolutionary history in its natural range. The latter contribution is noteworthy because the snail has recently become an important model species for understanding evolutionary processes of speciation; thus our work provides integral information for such endeavours.  相似文献   

17.
The presence of shell bands is common in gastropods. Both the marine snails Littorina fabalis and Lttorina saxatilis are polymorphic for this trait. Such polymorphism would be expected to be lost by the action of genetic drift or directional selection, but it appears to be widespread at relatively constant frequencies. This suggests it is maintained by balancing selection on the trait or on a genetically linked trait. Using long time series of empirical data, we compared potential effects of genetic drift and negative frequency‐dependent selection (NFDS) in the two species. The contribution of genetic drift to changes in the frequency of bands in L. fabalis was estimated using the effective population size estimated from microsatellite data, while the effect of genetic drift in L. saxatilis was derived from previously published study. Frequency‐dependent selection was assessed by comparing the cross‐product estimator of fitness with the frequency of the polymorphism across years using a regression analysis. Both studied species showed patterns of NFDS. In addition, in L. fabalis, contributions from genetic drift could explain some of the changes in banding frequency. Overdominance and heterogeneous selection did not fit well to our data. The possible biological explanations resulting in the maintenance of the banding polymorphism are discussed.  相似文献   

18.
Wang J  Whitlock MC 《Genetics》2003,163(1):429-446
In the past, moment and likelihood methods have been developed to estimate the effective population size (N(e)) on the basis of the observed changes of marker allele frequencies over time, and these have been applied to a large variety of species and populations. Such methods invariably make the critical assumption of a single isolated population receiving no immigrants over the study interval. For most populations in the real world, however, migration is not negligible and can substantially bias estimates of N(e) if it is not accounted for. Here we extend previous moment and maximum-likelihood methods to allow the joint estimation of N(e) and migration rate (m) using genetic samples over space and time. It is shown that, compared to genetic drift acting alone, migration results in changes in allele frequency that are greater in the short term and smaller in the long term, leading to under- and overestimation of N(e), respectively, if it is ignored. Extensive simulations are run to evaluate the newly developed moment and likelihood methods, which yield generally satisfactory estimates of both N(e) and m for populations with widely different effective sizes and migration rates and patterns, given a reasonably large sample size and number of markers.  相似文献   

19.
The proteomic changes occurring during speciation are fundamental to understand this process, though they have been rarely addressed until present. Therefore, we compared the proteome of two ecotypes (RB and SU) of the marine snail Littorina saxatilis, a case of sympatric incomplete speciation, originated as a byproduct of adaptation to distinct habitats. Thus, the RB ecotype is able to resist stresses of desiccation and temperature on the upper shore, whereas the SU ecotype defies strong physical disturbances due to wave action. Qualitative analyses of 2-DE gels demonstrated 21 proteins differentially expressed (1.4% of the proteome, 1.2% after considering type-I errors), while quantitative changes accounted for differences in 22 spots (16% of the proteome, 11% after considering type-I errors). These results suggest that adaptative phenotypic plasticity, natural selection, or both maintain these ecotypes in sympatry. Among the proteins identified by MS, we found that fructose-bisphosphate aldolase and arginine kinase were up-regulated in the SU ecotype, suggesting an enhancement of the level of energy available as ATP, in order to withstand its wave-exposed habitat.  相似文献   

20.
Low dispersal marine intertidal species facing strong divergent selective pressures associated with steep environmental gradients have a great potential to inform us about local adaptation and reproductive isolation. Among these, gastropods of the genus Littorina offer a unique system to study parallel phenotypic divergence resulting from adaptation to different habitats related with wave exposure. In this study, we focused on two Littorina fabalis ecotypes from Northern European shores and compared patterns of habitat‐related phenotypic and genetic divergence across three different geographic levels (local, regional and global). Geometric morphometric analyses revealed that individuals from habitats moderately exposed to waves usually present a larger shell size with a wider aperture than those from sheltered habitats. The phenotypic clustering of L. fabalis by habitat across most locations (mainly in terms of shell size) support an important role of ecology in morphological divergence. A genome scan based on amplified fragment length polymorphisms (AFLPs) revealed a heterogeneous pattern of differentiation across the genome between populations from the two different habitats, suggesting ecotype divergence in the presence of gene flow. The contrasting patterns of genetic structure between nonoutlier and outlier loci, and the decreased sharing of outlier loci with geographic distance among locations are compatible with parallel evolution of phenotypic divergence, with an important contribution of gene flow and/or ancestral variation. In the future, model‐based inference studies based on sequence data across the entire genome will help unravelling these evolutionary hypotheses, improving our knowledge about adaptation and its influence on diversification within the marine realm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号