首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Specific ligands of the peripheral benzodiazepine receptor (PBR) have been shown to induce apoptosis in gastrointestinal cancers. The aim of this study was to characterize the signaling pathways of PBR ligand-induced apoptosis. FGIN-1-27 but not PK 11195-induced apoptosis was associated with a decrease of mitochondrial membrane potential and an increase of mitochondrial volume in HT29 colorectal cancer cells. However, PK 11195-elicited apoptosis was associated with a downregulation of Bcl-2, translocation of Bax to the mitochondria including subsequent oligomerization, and activation of caspase-9, indicating the involvement of mitochondria in PK 11195-induced apoptosis. Moreover, PK 11195-induced apoptosis was associated with the generation of reactive oxygen species. This study demonstrates a novel mechanism of PK 11195-induced mitochondrial apoptosis without alteration of the mitochondrial membrane potential. The characterization of signaling pathways associated with PBR ligand-induced apoptosis will build the base for a future use of these ligands in anti-neoplastic therapeutic approaches.  相似文献   

2.
Changes in phospholipid and fatty acid profile are hallmarks of cancer progression. Increase in peripheral benzodiazepine receptor expression has been implicated in breast cancer. The benzodiazepine, Ro5-4864, increases cell proliferation in some breast cancer cell lines. Biosynthesis of phosphatidylcholine (PC) has been identified as a marker for cells proliferating at high rates. Cholinephosphotransferase (CPT) is the terminal enzyme for the de novo biosynthesis of PC. We have addressed here whether Ro5-4864 facilitates some cancer causing mechanisms in breast cancer. We report that cell proliferation increases exponentially in aggressive breast cancer cell lines 11-9-1-4 and BT-549 when treated with nanomolar concentrations of Ro5-4864. This increase is seen within 24 h of treatment, consistent with the cell doubling time in these cells. Ro5-4864 also upregulates c-fos expression in breast cancer cell lines 11-9-1-4 and BT-549, while expression in non-tumorigenic cell line MCF-12A was either basal or slightly downregulated. We further examined the expression of the CPT gene in breast cancer (11-9-1-4, BT-549) and non-tumorigenic cell lines (MCF-12A, MCF-12F). We found that the CPT gene is overexpressed in breast cancer cell lines compared to the non-tumorigenic cell lines. Furthermore, the activity of CPT in forming PC is increased in the breast cancer cell lines cultured for 24 h. Additionally, we examined the CPT activity in the presence of nanomolar concentrations of Ro5-4864. Biosynthesis of PC was increased in breast cancer cell lines upon treatment. We therefore propose that Ro5-4864 facilitates PC formation, a process important in membrane biogenesis for proliferating cells.  相似文献   

3.
The effect of peripheral benzodiazepine receptor (PBR) ligands on free radical production was investigated in primary cultures of rat brain astrocytes and neurons as well as in BV-2 microglial cell lines using the fluorescent dye dichlorofluorescein-diacetate. Free radical production was measured at 2, 30, 60 and 120 min of treatment with the PBR ligands 1-(2-chlorophenyl-N-methylpropyl)-3-isoquinolinecarboxamide (PK11195), 7-chloro-5-(4-chlorophenyl)-1,3-dihydro-1-methyl-2H-1,4-benzodiazepin-2-one (Ro5-4864) and protoporphyrin IX (PpIX) (all at 10 nm). In astrocytes, all ligands showed a significant increase in free radical production at 2 min. The increase was short-lived with PK11195, whereas with Ro5-4864 it persisted for at least 2 h. PpIX caused an increase at 2 and 30 min, but not at 2 h. Similar results were observed in microglial cells. In neurons, PK11195 and PpIX showed an increase in free radical production only at 2 min; Ro5-4864 had no effect. The central-type benzodiazepine receptor ligand, clonazepam, was ineffective in eliciting free radical production in all cell types. As the PBR may be a component of the mitochondrial permeability transition (MPT) pore, and free radical production may occur following induction of the MPT, we further investigated whether cyclosporin A (CsA), an inhibitor of the MPT, could prevent free radical formation by PBR ligands. CsA (1 micro m) completely blocked free radical production following treatment with PK11195 and Ro5-4864 in all cell types. CsA was also effective in blocking free radical production in astrocytes following PpIX treatment, but it failed to do so in neurons and microglia. Our results indicate that exposure of neural cells to PBR ligands generates free radicals, and that the MPT may be involved in this process.  相似文献   

4.
Mouse paw oedema induced by carrageenan is used to determine if glucocorticoids are involved in the anti-inflammatory effects of peripheral benzodiazepine receptor ligands. The anti-inflammatory responses elicited by i.p. treatment with 1-(2-chlorophenyl)-N-methyl-N (1-methyl-propyl)-3-isoquinoline carboxamide (PK11195) and 7-chloro-5-(4-chlorophenyl)-1,3-dihydro-1-methyl-2-H-1, 4-benzodiazepin-2 (Ro5-4864) were reversed by aminoglutethimide, an inhibitor of steroidal synthesis. Intraplantar injection into the ipsilateral paw of Ro5-4864, but not PK11195, inhibited the formation of paw oedema and this effect was reversed by aminoglutethimide. These results suggest that glucocorticoids are involved in the systemic and local anti-inflammatory effects of Ro5-4864 and only in the systemic response to PK11195.  相似文献   

5.
BackgroundProtoporphyrin IX (PP IX), the immediate precursor to heme, combines with ferrous iron to make this product. The effects of exogenous PP IX on iron metabolism remain to be elucidated. Peripheral-type benzodiazepine receptor (PBR) is implicated in the transport of coproporphyrinogen into the mitochondria for conversion to PP IX. We have demonstrated that PBR-Associated Protein 7 (PAP7) bound to the Iron Responsive Element (IRE) isoform of divalent metal transporter 1 (DMT1). PP IX and PAP7 are ligands for PBR, thus, we hypothesized that PAP7 interact with PP IX via PBR.MethodsWe have examined in K562 cells, which can be induced to undergo erythroid differentiation by PP IX and hemin, the effects of PP IX on the expression of PAP7 and other proteins involved in cellular iron metabolism, transferrin receptor 1 (TfR1), DMT1, ferritin heavy chain (FTH), c-Myc and C/EBPα by western blot and quantitative real time PCR analyses.ResultsPP IX significantly decreased mRNA levels of DMT1 (IRE) and (non-IRE) from 4 h. PP IX markedly decreased protein levels of C/EBPα, PAP7 and DMT1. In contrast, hemin, which like PP IX also induces K562 cell differentiation, had no effect on PAP7 or DMT1 expression.ConclusionWe hypothesize that PP IX binds to PBR displacing PAP7 protein, which is then degraded, decreasing the interaction of PAP7 with DMT1 (IRE) and resulting in increased turnover of DMT1.General significanceThese results suggest that exogenous PP IX disrupts iron metabolism by decreasing the protein expression levels of PAP7, DMT1 and C/EBPα.  相似文献   

6.
To investigate the putative mediation of peripheral benzodiazepine receptor (PBR) in the cytotoxicity of flavonoids, in this study, modulatory effects of several flavonoids on the lipid peroxide (LPO) production and PBR mRNA expression of human neuroblastoma cells were observed. Elevated levels of peroxidated products in cancer cells may activate pro-apoptotic and anti-proliferative signaling pathways. Treatment of 10(-6) M 4'-chlorodiazepam and PK 11195 ligands of the PBR for 6 days enhanced the generation of LPO of the human neuroblastoma cells. Several flavonoids, well-known cytotoxic substances, potentiated the enhancement of LPO production by PBR ligands. Treatment of 10(-6) M flavonoids for 6 days elevated the expression of PBR mRNA in cells. These findings indicate that the potential of flavonoids to induce apoptosis in cancer cells is strongly associated with their PBR-inducing properties, thereby providing a new mechanism by which polyphenolic compounds may exert their cancer-preventive and anti-neoplastic effects.  相似文献   

7.
Expression of peripheral benzodiazepine receptors (PBR) has been found in every tissue examined; however, it is most abundant in steroid-producing tissues. Although the primary function of PBR is the regulation of steroidogenesis, its existence in nonsteroidogenic tissues as well as in other cellular compartments including the nucleus suggests that there may be other roles for PBR. Our laboratory reported earlier a significant increase of PBR density in the nucleus of DMBA-induced malignant submandibular glands of rats, suggesting a role of PBR in nuclear events of peripheral tissues. Since then numerous studies have demonstrated the abundance of PBR in tumors. Numerous studies implicate a role for cholesterol in the mechanisms underlying cell proliferation and cancer progression. Based on studies with a battery of human breast cancer cell lines and several human tissue biopsies, Hardwick et al. suggested that PBR expression, nuclear localization, and PBR-mediated cholesterol transport into the nucleus are involved in human breast cancer cell proliferation and aggressive phenotype expression. The purpose of the present study is to confirm this hypothesis by developing an animal breast cancer model and correlating the above events with the breast cancer. Weanling rats were maintained on a diet containing animal protein (casein) for 30 days and then a single dose of DMBA in sesame oil (80 mg/kg) was administered by gavage to the animals. Control animals received the vehicle only. After 122 days of DMBA administration, the animals were sacrificed. All tumors were detected by palpation. Bmax of PBRs was 52.6% and 128.4% higher in the non-aggressive and aggressive cancer tissues, respectively, than that in normal tissues. Cholesterol uptake into isolated nuclei was found to be higher in both non-aggressive and aggressive tumor breast tissue than that in control tissue. There was also corresponding increase in Bmax of PBRs in the nucleus of cancer tissues. Furthermore, the nuclear nucleoside triphosphatase (NTPase) activity was found to be higher in aggressive tumor tissues than that in non-aggressive tumor tissues. In conclusion, these data suggest that PBR ligand binding, and PBR-mediated cholesterol transport into the nucleus may be involved in the development of mammary gland adenocarcinoma, thus participating in the advancement of the disease.  相似文献   

8.
Midazolam, a benzodiazepine derivative, is widely used for sedation and surgery. However, previous studies have demonstrated that Midazolam is associated with increased risks of congenital malformations, such as dwarfism, when used during early pregnancy. Recent studies have also demonstrated that Midazolam suppresses osteogenesis of mesenchymal stem cells (MSCs). Given that hypertrophic chondrocytes can differentiate into osteoblast and osteocytes and contribute to endochondral bone formation, the effect of Midazolam on chondrogenesis remains unclear. In this study, we applied a human MSC line, the KP cell, to serve as an in vitro model to study the effect of Midazolam on chondrogenesis. We first successfully established an in vitro chondrogenic model in a micromass culture or a 2D high‐density culture performed with TGF‐β‐driven chondrogenic induction medium. Treatment of the Midazolam dose‐dependently inhibited chondrogenesis, examined using Alcian blue‐stained glycosaminoglycans and the expression of chondrogenic markers, such as SOX9 and type II collagen. Inhibition of Midazolam by peripheral benzodiazepine receptor (PBR) antagonist PK11195 or small interfering RNA rescued the inhibitory effects of Midazolam on chondrogenesis. In addition, Midazolam suppressed transforming growth factor‐β‐induced Smad3 phosphorylation, and this inhibitory effect could be rescued using PBR antagonist PK11195. This study provides a possible explanation for Midazolam‐induced congenital malformations of the musculoskeletal system through PBR.  相似文献   

9.
The function of Casein kinase 2 beta (CSNK2B) in human malignancies has drawn increasing attention in recent years. However, its role in colorectal cancer (CRC) remains unclear. In the present study, we aimed to explore the expression and biological functions of CSNK2B in CRC. Public gene expression microarray data from online database and immunohistochemistry analysis demonstrated that CSNK2B was highly expressed in CRC tissues than in normal tissues. In vitro and in vivo cellular functional experiments showed that increased CSNK2B expression promoted CRC cell viability and tumorigenesis of CRC. Further western blots and rescue experiments confirmed that CSNK2B promoted CRC cell proliferation mainly by activating the mTOR signaling pathway. These findings identified CSNK2B as a novel oncogene contributing to the development of CRC.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00619-1.  相似文献   

10.
Radiotherapy is one of the most common modalities for the treatment of a wide range of tumors, including colorectal cancer (CRC); however, radioresistance of cancer cells remains a major limitation for this treatment. Following radiotherapy, the activities of various cellular mechanisms and cell signaling pathways are altered, resulting in the development of radioresistance, which leads to therapeutic failure and poor prognosis in patients with cancer. Furthermore, even though several inhibitors have been developed to target tumor resistance, these molecules can induce side effects in nontumor cells due to low specificity and efficiency. However, the role of these mechanisms in CRC has not been extensively studied. This review discusses recent studies regarding the relationship between radioresistance and the alterations in a series of cellular mechanisms and cell signaling pathways that lead to therapeutic failure and tumor recurrence. Our review also presents recent advances in the in vitro/in vivo study models aimed at investigating the radioresistance mechanism in CRC. Furthermore, it provides a relevant biochemical basis in theory, which can be useful to improve radiotherapy sensitivity and prolong patient survival.  相似文献   

11.
Estrogen receptor signaling pathways in human non-small cell lung cancer   总被引:6,自引:0,他引:6  
Lung cancer is the most common cause of cancer mortality in male and female patients in the US. The etiology of non-small cell lung cancer (NSCLC) is not fully defined, but new data suggest that estrogens and growth factors promote tumor progression. In this work, we confirm that estrogen receptors (ER), both ERalpha and ERbeta, occur in significant proportions of archival NSCLC specimens from the clinic, with receptor expression in tumor cell nuclei and in extranuclear sites. Further, ERalpha in tumor nuclei was present in activated forms as assessed by detection of ER phosphorylation at serines-118 and -167, residues commonly modulated by growth factor receptor as well as steroid signaling. In experiments using small interfering RNA (siRNA) constructs, we find that suppressing expression of either ERalpha or ERbeta elicits a significant reduction in NSCLC cell proliferation in vitro. Estrogen signaling in NSCLC cells may also include steroid receptor coactivators (SRC), as SRC-3 and MNAR/PELP1 are both expressed in several lung cell lines, and both EGF and estradiol elicit serine phosphorylation of SRC-3 in vitro. EGFR and ER also cooperate in promoting early activation of p42/p44 MAP kinase in NSCLC cells. To assess new strategies to block NSCLC growth, we used Faslodex alone and with erlotinib, an EGFR kinase inhibitor. The drug tandem elicited enhanced blockade of the growth of NSCLC xenografts in vivo, and antitumor activity exceeded that of either agent given alone. The potential for use of antiestrogens alone and with growth factor receptor antagonists is now being pursued further in clinical trials.  相似文献   

12.
Colorectal cancer (CRC) is the second most common gastrointestinal cancer globally. Prevention of tumor cell proliferation and metastasis is vital for prolonging patient survival. Polyphenols provide a wide range of health benefits and prevention from cancer. In the gut, urolithins are the major metabolites of polyphenols. The objective of our study was to elucidate the molecular mechanism of the anticancer effect of urolithin A (UA) on colorectal cancer cells. UA was found to inhibit the cell proliferation of CRC cell lines in a dose-dependent and time-dependent manner in HT29, SW480, and SW620 cells. Exposure to UA resulted in cell cycle arrest in a dose-dependent manner along with alteration in the expression of cell cycle–related protein. Treatment of CRC cell lines with UA resulted in the induction of apoptosis. Treatment of HT29, SW480, and SW620 with UA resulted in increased expression of the pro-apoptotic proteins, p53 and p21. Similarly, UA treatment inhibited the anti-apoptotic protein expression of Bcl-2. Moreover, exposure of UA induced cytochrome c release and caspase activation. Furthermore, UA was found to generate reactive oxygen species (ROS) production in CRC cells. These findings indicate that UA possesses anticancer potential and may be used therapeutically for the treatment of CRC.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-020-01189-8.  相似文献   

13.
MUC1 is a type I transmembrane glycoprotein aberrantly overexpressed in various cancer cells. High expression of MUC1 is closely associated with cancer progression and metastasis, leading to poor prognosis. We previously reported that MUC1 is internalized by the binding of the anti-MUC1 antibody, from the cell surface to the intracellular region via the macropinocytotic pathway. Since MUC1 is closely associated with ErbBs, such as EGF receptor (EGFR) in cancer cells, we examined the effect of the anti-MUC1 antibody on EGFR trafficking. Our results show that: (1) anti-MUC1 antibody GP1.4, but not another anti-MUC1 antibody C595, triggered the internalization of EGFR in pancreatic cancer cells; (2) internalization of EGFR by GP1.4 resulted in the inhibition of ERK phosphorylation by EGF stimulation, in a MUC1 dependent manner; (3) inhibition of ERK phosphorylation by GP1.4 resulted in the suppression of proliferation and migration of pancreatic cancer cells. We conclude that the internalization of EGFR by anti-MUC1 antibody GP1.4 inhibits the progression of cancer cells via the inhibition of EGFR signaling.  相似文献   

14.
15.
雌激素受体信号通路在调控乳腺细胞增殖和凋亡等生理机能中发挥重要功能,该通路出现调控异常时可导致乳腺癌发生。雌激素受体在乳腺癌发生中的作用机制包括核受体介导的基因组信号通路和膜受体介导的非基因组信号通路以及二者的相互作用。基于雌激素受体信号通路及其关键信号分子的靶向治疗是开展乳腺癌治疗的重要策略与有效途径。对雌激素受体结构以及雌激素受体信号通路在乳腺癌发生和治疗中的作用作一综述。  相似文献   

16.
Interferon gamma (IFNγ) plays a context-dependent dual tumor-suppressor and pro-tumorigenic roles in cancer. IFNγ induces morphological changes in breast cancer (BC) cells with or without estrogen receptor alpha (ERα) expression. However, IFNγ-regulated genes in BC cells remain unexplored. Here, we performed a cDNA microarray analysis of MCF-7 (ERα+) and MDA-MB-231 (HER2-/PR-/ERα-) cells with and without IFNγ treatment. We identified specific IFNγ?modulated genes in each cell type, and a small group of genes regulated by IFNγ common in both cell types. IFNγ treatment for an extended time mainly repressed gene expression shared by both cell types. Nonetheless, some of these IFNγ-repressed genes were seemingly deregulated in human mammary tumor samples, along with decreased IFNGR1 (an IFNγ receptor) expression. Thus, IFNγ signaling-elicited anti-tumor activities may be mediated by the downregulation of main IFNγ target genes in BC; however, it may be deregulated by the tumor microenvironment in a tumor stage-dependent manner.  相似文献   

17.
18.
Activated microglia are an important feature of many neurological diseases and can be imaged in vivo using 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK11195), a ligand that binds the peripheral benzodiazepine receptor (PBR). N-(2,5-dimethoxybenzyl)-N-(5-fluoro-2-phenoxyphenyl) acetamide (DAA1106) is a new PBR-specific ligand that has been reported to bind to PBR with higher affinity compared with PK11195. We hypothesized that this high-affinity binding of DAA1106 to PBR will enable better delineation of microglia in vivo using positron emission tomography. [(3)H]DAA1106 showed higher binding affinity compared with [(3)H](R)-PK11195 in brain tissue derived from normal rats and the rats injected intrastriatally with 6-hydroxydopamine or lipopolysaccharide at the site of the lesion. Immunohistochemistry combined with autoradiography in brain tissues as well as correlation analyses showed that increased [(3)H]DAA1106 binding corresponded mainly to activated microglia. Finally, ex vivo autoradiography and positron emission tomography imaging in vivo showed greater retention of [(11)C]DAA1106 compared with [(11)C](R)-PK11195 in animals injected with either lipopolysaccaride or 6-hydroxydopamine at the site of lesion. These results indicate that DAA1106 binds with higher affinity to microglia in rat models of neuroinflammation when compared with PK11195, suggesting that [(11)C]DAA1106 may represent a significant improvement over [(11)C](R)-PK11195 for in vivo imaging of activated microglia in human neuroinflammatory disorders.  相似文献   

19.
Epithelial-mesenchymal transition (EMT) is associated with cancer malignancies such as invasion, metastasis, and drug resistance. In this study, HCT116 human colorectal cancer cells were transduced with SLUG or SNAIL retroviruses, and EMT cells with mesenchymal morphology were established. The EMT cells showed a high invasive activity and resistance to several anticancer agents such as methotrexate, SN-38, and cisplatin. Furthermore, they contained about 1–10% side population (SP) cells that were not stained by Hoechst 33342. This SP phenotype was not stable; the isolated SP cells generated both SP and non-SP cells, suggesting a potential for differentiation. Gene expression analysis of SP cells suggested the alteration of genes that are involved in epigenetic changes. Therefore, we examined the effect of 74 epigenetic inhibitors, and found that two inhibitors, namely I-BET151 and bromosporine, targeting the bromodomain and extra-terminal motif (BET) proteins, decreased the ratio of SP cells to <50% compared with the control, without affecting the immediate efflux of Hoechst 33342 by transporters. In addition, compared with the parental cells, the EMT cells showed a higher sensitivity to I-BET151 and bromosporine. This study suggests that EMT development and SP phenotype can be independent events but both are regulated by BET inhibitors in SLUG- or SNAIL-transducted HCT116 cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号