首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alzheimer disease (AD) is a complex disorder that involves numerous cellular and subcellular alterations including impairments in mitochondrial homeostasis. To better understand the role of mitochondrial dysfunction in the pathogenesis of AD, we analyzed brains from clinically well-characterized human subjects and from the 3xTg-AD mouse model of AD. We find Aβ and critical components of the γ-secretase complex, presenilin-1, -2, and nicastrin, accumulate in the mitochondria. We used a proteomics approach to identify binding partners and show that heat shock protein 60 (HSP60), a molecular chaperone localized to mitochondria and the plasma membrane, specifically associates with APP. We next generated stable neural cell lines expressing human wild-type or Swedish APP, and provide corroborating in vitro evidence that HSP60 mediates translocation of APP to the mitochondria. Viral-mediated shRNA knockdown of HSP60 attenuates APP and Aβ mislocalization to the mitochondria. Our findings identify a novel interaction between APP and HSP60, which accounts for its translocation to the mitochondria.  相似文献   

2.
The amyloid precursor protein (APP) can be cleaved by α-secretases in neural cells to produce the soluble APP ectodomain (sAPPα), which is neuroprotective. We have shown previously that activation of the purinergic P2X7 receptor (P2X7R) triggers sAPPα shedding from neural cells. Here, we demonstrate that the activation of ezrin, radixin, and moesin (ERM) proteins is required for the P2X7R-dependent proteolytic processing of APP leading to sAPPα release. Indeed, the down-regulation of ERM by siRNA blocked the P2X7R-dependent shedding of sAPPα. We also show that P2X7R stimulation triggered the phosphorylation of ERM. Thus, ezrin translocates to the plasma membrane to interact with P2X7R. Using specific pharmacological inhibitors, we established the order in which several enzymes trigger the P2X7R-dependent release of sAPPα. Thus, a Rho kinase and the MAPK modules ERK1/2 and JNK act upstream of ERM, whereas a PI3K activity is triggered downstream. For the first time, this work identifies ERM as major partners in the regulated non-amyloidogenic processing of APP.  相似文献   

3.
Pathogenic mutations in the amyloid precursor protein (APP) gene have been described as causing early onset familial Alzheimer disease (AD). We recently identified a rare APP variant encoding an alanine-to-threonine substitution at residue 673 (A673T) that confers protection against development of AD (Jonsson, T., Atwal, J. K., Steinberg, S., Snaedal, J., Jonsson, P. V., Bjornsson, S., Stefansson, H., Sulem, P., Gudbjartsson, D., Maloney, J., Hoyte, K., Gustafson, A., Liu, Y., Lu, Y., Bhangale, T., Graham, R. R., Huttenlocher, J., Bjornsdottir, G., Andreassen, O. A., Jönsson, E. G., Palotie, A., Behrens, T. W., Magnusson, O. T., Kong, A., Thorsteinsdottir, U., Watts, R. J., and Stefansson, K. (2012) Nature 488, 96–99). The Ala-673 residue lies within the β-secretase recognition sequence and is part of the amyloid-β (Aβ) peptide cleavage product (position 2 of Aβ). We previously demonstrated that the A673T substitution makes APP a less favorable substrate for cleavage by BACE1. In follow-up studies, we confirm that A673T APP shows reduced cleavage by BACE1 in transfected mouse primary neurons and in isogenic human induced pluripotent stem cell-derived neurons. Using a biochemical approach, we show that the A673T substitution modulates the catalytic turnover rate (Vmax) of APP by the BACE1 enzyme, without affecting the affinity (Km) of the APP substrate for BACE1. We also show a reduced level of Aβ(1–42) aggregation with A2T Aβ peptides, an observation not conserved in Aβ(1–40) peptides. When combined in a ratio of 1:9 Aβ(1–42)/Aβ(1–40) to mimic physiologically relevant mixtures, A2T retains a trend toward slowed aggregation kinetics. Microglial uptake of the mutant Aβ(1–42) peptides correlated with their aggregation level. Cytotoxicity of the mutant Aβ peptides was not dramatically altered. Taken together, our findings demonstrate that A673T, a protective allele of APP, reproducibly reduces amyloidogenic processing of APP and also mildly decreases Aβ aggregation. These effects could together have an additive or even synergistic impact on the risk of developing AD.  相似文献   

4.
Abstract: Activation of protein kinase C (PKC) regulates the processing of Alzheimer amyloid precursor protein (APP) into its soluble form (sAPP) and amyloid β-peptide (Aβ). However, little is known about the intermediate steps between PKC activation and modulation of APP metabolism. Using a specific inhibitor of mitogen-activated protein (MAP) kinase kinase activation (PD 98059), as well as a dominant negative mutant of MAP kinase kinase, we show in various cell lines that stimulation of PKC by phorbol ester rapidly induces sAPP secretion through a mechanism involving activation of the MAP kinase cascade. In PC12-M1 cells, activation of MAP kinase by nerve growth factor was associated with stimulation of sAPP release. Conversely, M1 muscarinic receptor stimulation, which is known to act in part through a PKC-independent pathway, increased sAPP secretion mainly through a MAP kinase-independent pathway. Aβ secretion and its regulation by PKC were not affected by PD 98059, supporting the concept of distinct secretory pathways for Aβ and sAPP formation.  相似文献   

5.
Abnormal activation of calpain is implicated in synaptic dysfunction and participates in neuronal death in Alzheimer disease (AD) and other neurological disorders. Pharmacological inhibition of calpain has been shown to improve memory and synaptic transmission in the mouse model of AD. However, the role and mechanism of calpain in AD progression remain elusive. Here we demonstrate a role of calpain in the neuropathology in amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic mice, an established mouse model of AD. We found that overexpression of endogenous calpain inhibitor calpastatin (CAST) under the control of the calcium/calmodulin-dependent protein kinase II promoter in APP/PS1 mice caused a remarkable decrease of amyloid plaque burdens and prevented Tau phosphorylation and the loss of synapses. Furthermore, CAST overexpression prevented the decrease in the phosphorylation of the memory-related molecules CREB and ERK in the brain of APP/PS1 mice and improved spatial learning and memory. Interestingly, treatment of cultured primary neurons with amyloid-β (Aβ) peptides caused an increase in the level of β-site APP-cleaving enzyme 1 (BACE1), the key enzyme responsible for APP processing and Aβ production. This effect was inhibited by CAST overexpression. Consistently, overexpression of calpain in heterologous APP expressing cells up-regulated the level of BACE1 and increased Aβ production. Finally, CAST transgene prevented the increase of BACE1 in APP/PS1 mice. Thus, calpain activation plays an important role in APP processing and plaque formation, probably by regulating the expression of BACE1.  相似文献   

6.
Proteolytic processing of the amyloid precursor protein (APP) generates large soluble APP derivatives, β-amyloid (Aβ) peptides, and APP intracellular domain. Expression of the extracellular sequences of APP or its Caenorhabditis elegans counterpart has been shown to be sufficient in partially rescuing the CNS phenotypes of the APP-deficient mice and the lethality of the apl-1 null C. elegans, respectively, leaving open the question as what is the role of the highly conserved APP intracellular domain? To address this question, we created an APP knock-in allele in which the mouse Aβ sequence was replaced by the human Aβ. A frameshift mutation was introduced that replaced the last 39 residues of the APP sequence. We demonstrate that the C-terminal mutation does not overtly affect APP processing and amyloid pathology. In contrast, crossing the mutant allele with APP-like protein 2 (APLP2)-null mice results in similar neuromuscular synapse defects and early postnatal lethality as compared with mice doubly deficient in APP and APLP2, demonstrating an indispensable role of the APP C-terminal domain in these development activities. Our results establish an essential function of the conserved APP intracellular domain in developmental regulation, and this activity can be genetically uncoupled from APP processing and Aβ pathogenesis.  相似文献   

7.
8.
9.
The amyloid precursor protein (APP) is a ubiquitously expressed single-pass transmembrane protein that undergoes proteolytic processing by secretases to generate the pathogenic amyloid-β peptide, the major component in Alzheimer plaques. The traffic of APP through the cell determines its exposure to secretases and consequently the cleavages that generate the pathogenic or nonpathogenic peptide fragments. Despite the likely importance of APP traffic to Alzheimer disease, we still lack clear models for the routing and regulation of APP in cells. Like the traffic of most transmembrane proteins, the binding of adaptors to its cytoplasmic tail, which is 47 residues long and contains at least four distinct sorting motifs, regulates that of APP. We tested each of these for effects on the traffic of APP from the Golgi by mutating key residues within them and examining adaptor recruitment at the Golgi and traffic to post-Golgi site(s). We demonstrate strict specificity for recruitment of the Mint3 adaptor by APP at the Golgi, a critical role for Tyr-682 (within the YENPTY motif) in Mint3 recruitment and export of APP from the Golgi, and we identify LAMP1+ structures as the proximal destination of APP after leaving the Golgi. Together, these data provide a detailed view of the first sorting step in its route to the cell surface and processing by secretases and further highlight the critical role played by Mint3.  相似文献   

10.
Abstract: Mutations in the presenilin genes PS1 and PS2 cause the most common form of early-onset familial Alzheimer's disease. The influence of PS1 mutations on the generation of endogenous intracellular amyloid β-protein (Aβ) species was assessed using a highly sensitive immunoblotting technique with inducible mouse neuro-blastoma (Neuro 2a) cell lines expressing the human wild-type (wt) or mutated PS1 (M146L or Δexon 10). The induction of mutated PS1 increased the intracellular levels of two distinct Aβ species ending at residue 42 that were likely to be Aβ1–42 and its N-terminally truncated variant(s) Aβx-42. The induction of mutated PS1 resulted in a higher level of intracellular Aβ1–42 than of intracellular Aβx-42, whereas extracellular levels of Aβ1–42 and Aβx-42 were increased proportionally. In addition, the intracellular generation of these Aβ42 species in wt and mutated PS1 -induced cells was completely blocked by brefeldin A, whereas it exhibited differential sensitivities to monensin: the increased accumulation of intracellular Aβx-42 versus inhibition of intracellular Aβ1–42 generation. These data strongly suggest that Aβx-42 is generated in a proximal Golgi, whereas Aβ1–42 is generated in a distal Golgi and/or a post-Golgi compartment. Thus, it appears that PS1 mutations enhance the degree of 42-specific γ-secretase cleavage that occurs in the normal β-amyloid precursor protein processing pathway (a) in the endoplasmic reticulum or the early Golgi apparatus prior to β-secretase cleavage or (b) in the distinct sites where Aβx-42 and Aβ1–42 are generated.  相似文献   

11.
Signal peptide peptidase (SPP), its homologs, the SPP-like proteases SPPL2a/b/c and SPPL3, as well as presenilin, the catalytic subunit of the γ-secretase complex, are intramembrane-cleaving aspartyl proteases of the GxGD type. In this study, we identified the 18-kDa leader peptide (LP18) of the foamy virus envelope protein (FVenv) as a new substrate for intramembrane proteolysis by human SPPL3 and SPPL2a/b. In contrast to SPPL2a/b and γ-secretase, which require substrates with an ectodomain shorter than 60 amino acids for efficient intramembrane proteolysis, SPPL3 cleaves mutant FVenv lacking the proprotein convertase cleavage site necessary for the prior shedding. Moreover, the cleavage product of FVenv generated by SPPL3 serves as a new substrate for consecutive intramembrane cleavage by SPPL2a/b. Thus, human SPPL3 is the first GxGD-type aspartyl protease shown to be capable of acting like a sheddase, similar to members of the rhomboid family, which belong to the class of intramembrane-cleaving serine proteases.  相似文献   

12.
Emerging evidence indicates that amyloid β peptide (Aβ) initially induces subtle alterations in synaptic function in Alzheimer disease. We have recently shown that Aβ binds to β(2) adrenergic receptor (β(2)AR) and activates protein kinase A (PKA) signaling for glutamatergic regulation of synaptic activities. Here we show that in the cerebrums of mice expressing human familial mutant presenilin 1 and amyloid precursor protein genes, the levels of β(2)AR are drastically reduced. Moreover, Aβ induces internalization of transfected human β(2)AR in fibroblasts and endogenous β(2)AR in primary prefrontal cortical neurons. In fibroblasts, Aβ treatment also induces transportation of β(2)AR into lysosome, and prolonged Aβ treatment causes β(2)AR degradation. The Aβ-induced β(2)AR internalization requires the N terminus of the receptor containing the peptide binding sites and phosphorylation of β(2)AR by G protein-coupled receptor kinase, not by PKA. However, the G protein-coupled receptor kinase phosphorylation of β(2)AR and the receptor internalization are much slower than that induced by βAR agonist isoproterenol. The Aβ-induced β(2)AR internalization is also dependent on adaptor protein arrestin 3 and GTPase dynamin, but not arrestin 2. Functionally, pretreatment of primary prefrontal cortical neurons with Aβ induces desensitization of β(2)AR, which leads to attenuated response to subsequent stimulation with isoproterenol, including decreased cAMP levels, PKA activities, PKA phosphorylation of serine 845 on α-amino-2,3-dihydro-5-methyl-3-oxo-4-isoxazolepropanoic acid (AMPA) receptor subunit 1 (GluR1), and AMPA receptor-mediated miniature excitatory postsynaptic currents. This study indicates that Aβ induces β(2)AR internalization and degradation leading to impairment of adrenergic and glutamatergic activities.  相似文献   

13.
14.
P-glycoprotein (P-gp) is an ATP binding cassette transporter that effluxes a variety of structurally diverse compounds including anticancer drugs. Computational models of human P-gp in the apo- and nucleotide-bound conformation show that the adenine group of ATP forms hydrogen bonds with the conserved Asp-164 and Asp-805 in intracellular loops 1 and 3, respectively, which are located at the interface between the nucleotide binding domains and transmembrane domains. We investigated the role of Asp-164 and Asp-805 residues by substituting them with cysteine in a cysteine-less background. It was observed that the D164C/D805C mutant, when expressed in HeLa cells, led to misprocessing of P-gp, which thus failed to transport the drug substrates. The misfolded protein could be rescued to the cell surface by growing the cells at a lower temperature (27 °C) or by treatment with substrates (cyclosporine A, FK506), modulators (tariquidar), or small corrector molecules. We also show that short term (4–6 h) treatment with 15 μm cyclosporine A or FK506 rescues the pre-formed immature protein trapped in the endoplasmic reticulum in an immunophilin-independent pathway. The intracellularly trapped misprocessed protein associates more with chaperone Hsp70, and the treatment with cyclosporine A reduces the association of mutant P-gp, thus allowing it to be trafficked to the cell surface. The function of rescued cell surface mutant P-gp is similar to that of wild-type protein. These data demonstrate that the Asp-164 and Asp-805 residues are not important for ATP binding, as proposed earlier, but are critical for proper folding and maturation of a functional transporter.  相似文献   

15.
The structures of two crystal forms of the RNA 16-mer with the sequence GUGGUCUGAUGAGGCC, grown in the presence of a high concentration of sulphate ions, have been determined using synchrotron radiation at 1.4- and 2.0-Å resolution. RNA with this sequence is known as one of the two strands of the noncleavable form of the hammerhead ribozyme. In both crystal structures, two G(syn)–G(anti) noncanonical base pairs are observed in the middle of a 14 base-pair (bp) duplex having 5′-dangling GU residues. Both structures contain sulphate anions interacting with the G–G bp stabilizing G in its syn conformation and bridging the two RNA strands. In both cases the interactions take place in the major groove, although the anions are accommodated within different helix geometries, most pronounced in the changing width of the major groove. In one structure, where a single sulphate spans both G–G pairs, the major groove is closed around the anion, while in the other structure, where each of the two G–G pairs is associated with a separate sulphate, the groove is open. This work provides the first examples of a G–G pair in syn-anti conformation, which minimizes the purine–purine clash in the center of the duplex, while utilizing its residual hydrogen bonding potential in specific interactions with sulphate anions.  相似文献   

16.
Neurotrophins, activating the PI3K/Akt signaling pathway, control neuronal survival and plasticity. Alterations in NGF, BDNF, IGF-1, or insulin signaling are implicated in the pathogenesis of Alzheimer disease. We have previously characterized a bigenic PS1×APP transgenic mouse displaying early hippocampal Aβ deposition (3 to 4 months) but late (17 to 18 months) neurodegeneration of pyramidal cells, paralleled to the accumulation of soluble Aβ oligomers. We hypothesized that PI3K/Akt/GSK-3β signaling pathway could be involved in this apparent age-dependent neuroprotective/neurodegenerative status. In fact, our data demonstrated that, as compared with age-matched nontransgenic controls, the Ser-9 phosphorylation of GSK-3β was increased in the 6-month PS1×APP hippocampus, whereas in aged PS1×APP animals (18 months), GSK-3β phosphorylation levels displayed a marked decrease. Using N2a and primary neuronal cell cultures, we demonstrated that soluble amyloid precursor protein-α (sAPPα), the predominant APP-derived fragment in young PS1×APP mice, acting through IGF-1 and/or insulin receptors, activated the PI3K/Akt pathway, phosphorylated the GSK-3β activity, and in consequence, exerted a neuroprotective action. On the contrary, several oligomeric Aβ forms, present in the soluble fractions of aged PS1×APP mice, inhibited the induced phosphorylation of Akt/GSK-3β and decreased the neuronal survival. Furthermore, synthetic Aβ oligomers blocked the effect mediated by different neurotrophins (NGF, BDNF, insulin, and IGF-1) and sAPPα, displaying high selectivity for NGF. In conclusion, the age-dependent appearance of APP-derived soluble factors modulated the PI3K/Akt/GSK-3β signaling pathway through the major neurotrophin receptors. sAPPα stimulated and Aβ oligomers blocked the prosurvival signaling. Our data might provide insights into the selective vulnerability of specific neuronal groups in Alzheimer disease.  相似文献   

17.
Oxygen deprivation is accompanied by the coordinated expression of numerous hypoxia-responsive genes, many of which are controlled by hypoxia-inducible factor-1 (HIF-1). However, the cellular response to hypoxia is not likely to be mediated by HIF-1 alone, and little is known about HIF-1-independent hypoxia responses. To better establish the molecular mechanisms of HIF-1-independent hypoxia responses, we sought to characterize the molecular basis of the hypoxia response of the hsp-16.1 gene in the nematode Caenorhabditis elegans; this gene has been shown to be induced by hypoxia independently of hif-1. Using affinity purification followed by LC-MS/MS, we identified HMG-1.2 as a protein that binds to a specific promoter region under hypoxic conditions. By systematic prediction followed by validation of these interactions through RNAi, we identified the chromatin modifiers isw-1 and hda-1, histone H4, and NURF-1 chromatin-remodeling factors as new components of the hif-1-independent hypoxia response. These data suggest that the modulation of nucleosome positioning at the hsp-16.1 promoter may be important for the hypoxia response. In addition, we found that calcineurin acts independently of hif-1 to modulate the cellular response to hypoxia and that calcium ions are necessary for the induction of hsp-16.1 under hypoxic conditions.  相似文献   

18.
Phospholipase A2 (PLA2) associated with the membrane fraction of trophocytes from Periplaneta americana fat body increases by as much as 100% when the cells are incubated with hypertrehalosemic hormone (HTH-II). Activation with HTH-II is approximately halved by inclusion of the PKC inhibitor sphingosine in the incubation medium. Because activation of PLA2 by HTH-II is blocked by the GDP analogue GDP-β-S, and the unactivated enzyme is activated by the GTP analogue GTP-γ-S it is likely that a G protein is involved in activation of the enzyme. Activation of PLA2 was also achieved by treating the trophocytes with the synthetic diacylglycerol 1-oleoyl-2-acetylglycerol in the presence of thapsigargin. This supports the view that protein kinase C is also involved in the activation process.  相似文献   

19.
Studies on chronic inhibition of nitric oxide synthase (NOS) in the CNS suggest a plastic change in nitric oxide (NO) synthesis in areas related to motor control, which might protect the animal from the functional and behavioral consequences of NO deficiency. In the present study, the acute and chronic effect of the substrate analogue inhibitor N(G)-nitro-l-arginine (l-NNA) was examined on NO production, NO-sensitive cyclic guanosine monophosphate (cGMP) levels and the expression of NOS isoforms in the developing rat cerebellum. Acute intraperitoneal administration of the inhibitor (5-200mg/kg) to 21-day-old rats reduced NOS activity and NO concentration dose dependently by 70-90% and the tissue cGMP level by 60-80%. By contrast, chronic application of l-NNA between postnatal days 4-21 diminished the total NOS activity and NO concentration only by 30%, and the tissue cGMP level by 10-50%. Chronic treatment of 10mg/kg l-NNA induced neuronal (n)NOS expression in granule cells, as revealed by in situ hybridization, NADPH-diaphorase histochemistry and Western-blot, but it had no significant influence on tissue cGMP level or on layer formation of the cerebellum. However, a higher concentration (50mg/kg) of l-NNA decreased the intensity of the NADPH-diaphorase reaction in granule cells, significantly reduced cGMP production, and retarded layer formation and induced inducible (i)NOS expression & activity in glial cells. Treatments did not affect endothelial (e)NOS expression. The administration of the biologically inactive isomer D-NNA (50mg/kg) or saline was ineffective. The present findings suggest the existence of a concentration-dependent compensatory mechanism against experimentally-induced cronich inhibition of NOS, including nNOS or iNOS up-regulation, which might maintain a steady-state NO level in the developing cerebellum.  相似文献   

20.
Human LANCL2, also known as Testis-specific Adriamycin Sensitivity Protein (TASP), is a member of the highly conserved and widely distributed lanthionine synthetase component C-like (LANCL) protein family. Expression studies of tagged LANCL2 revealed the major localization to the plasma membrane, juxta-nuclear vesicles, and the nucleus, in contrast to the homologue LANCL1 that was mainly found in the cytosol and nucleus. We identified the unique N-terminus of LANCL2 to function as the membrane anchor and characterized the relevant N-terminal myristoylation and a basic phosphatidylinositol phosphate-binding site. Interestingly, the non-myristoylated protein was confined to the nucleus indicating that the myristoylation targets LANCL2 to the plasma membrane. Cholesterol depletion by methyl-β-cyclodextrin caused the partial dissociation of overexpressed LANCL2 from the plasma membrane in vitro, whereas in vivo we observed an enhanced cell detachment from the matrix. We found that overexpressed LANCL2 interacts with the cortical actin cytoskeleton and therefore may play a role in cytoskeleton reorganization and in consequence to cell detachment. Moreover, we confirmed previous data that LANCL2 overexpression enhances the cellular sensitivity to the anticancer drug adriamycin and found that this sensitivity is dependent on the myristoylation and membrane association of LANCL2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号