首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
3.
4.
Increased levels of activated T cells are a hallmark of the chronic stage of human immunodeficiency virus (HIV) infection and are highly correlated with HIV disease progression. We evaluated chloroquine (CQ) as a potential therapy to reduce immune activation during HIV infection. We found that the frequency of CD38+ HLA-DR+ CD8 T cells, as well as Ki-67 expression in CD8 and CD4 T cells, was significantly reduced during CQ treatment. Our data indicate that treatment with CQ reduces systemic T-cell immune activation and, thus, that its use may be beneficial for certain groups of HIV-infected individuals.Chronic HIV infection is characterized by multifaceted systemic immune activation, including increased frequencies of activated T cells (9, 17) and increased turnover of T cells (5, 12, 18) that correlate directly with disease progression (8, 9). T-cell immune activation is also associated with lower gains in CD4 T-cell count in HIV-infected individuals even while they are on antiretroviral therapy (ART) that appears to suppress viral replication (10). Thus, therapies that reduce immune activation may be of benefit, particularly for such individuals. Three clinical studies have been conducted using hydroxychloroquine monotherapy for patients with HIV infection (6, 21, 22), and the studies showed that hydroxychloroquine-treated patients had decreased viral loads as well as decreased serum interleukin-6 (IL-6) levels, heightened levels of which are correlated with disease progression (13). However, these studies did not examine other parameters of immune activation. Chloroquine (CQ) is known to suppress immune activation by a number of mechanisms, including inhibition of intracellular toll-like receptor (TLR) signaling and inflammatory cytokine secretion (11, 19). In vitro, CQ has been shown to reduce HIV infection-induced T-cell immune activation (14). Here, we report results using samples from a clinical study of HIV-infected individuals treated with CQ monotherapy, where we examine multiple parameters of immune activation during the course of CQ treatment.  相似文献   

5.
There is an urgent need for human immunodeficiency virus (HIV) vaccines that induce robust mucosal immunity. Influenza A viruses (both H1N1 and H3N2) were engineered to express simian immunodeficiency virus (SIV) CD8 T-cell epitopes and evaluated following administration to the respiratory tracts of 11 pigtail macaques. Influenza virus was readily detected from respiratory tract secretions, although the infections were asymptomatic. Animals seroconverted to influenza virus and generated CD8 and CD4 T-cell responses to influenza virus proteins. SIV-specific CD8 T-cell responses bearing the mucosal homing marker β7 integrin were induced by vaccination of naïve animals. Further, SIV-specific CD8 T-cell responses could be boosted by recombinant influenza virus-SIV vaccination of animals with already-established SIV infection. Sequential vaccination with influenza virus-SIV recombinants of different subtypes (H1N1 followed by H3N2 or vice versa) produced only a limited boost in immunity, probably reflecting T-cell immunity to conserved internal proteins of influenza A virus. SIV challenge of macaques vaccinated with an influenza virus expressing a single SIV CD8 T cell resulted in a large anamnestic recall CD8 T-cell response, but immune escape rapidly ensued and there was no impact on chronic SIV viremia. Although our results suggest that influenza virus-HIV vaccines hold promise for the induction of mucosal immunity to HIV, broader antigen cover will be needed to limit cytotoxic T-lymphocyte escape.Developing a safe and effective human immunodeficiency virus (HIV) vaccine is one of the defining scientific challenges of our time. Induction of peripheral CD8 T-cell immunity to HIV did not protect against sexual exposure to HIV type 1 (HIV-1) in humans in a recent efficacy trial (11, 43). In simian immunodeficiency virus (SIV)-macaque studies, peripheral CD8 T-cell immunity can effectively control viremia (40) but is often observed to have a transient or limited role in delaying SIV disease in macaques (32). The gradual accumulation of immune escape at CD8 T-cell epitopes undermines the effectiveness of CD8 T-cell immunity to SIV (6, 22, 46). It is likely that inducing mucosal CD8 T-cell immunity to HIV will be more effective at limiting viral replication during the very early phases of acute infection, prior to massive viral dissemination and destruction of large numbers of CD4 T cells (50). The induction of multifunctional mucosal CD8 T cells by live attenuated SIV vaccination of macaques is thought to play a significant role in the success of this strategy (25, 26); however, it is unfortunately too dangerous for clinical trials at present.A series of mucosal viral and bacterial HIV vaccine vectors have been studied in recent years; however, none have yet proceeded to advanced clinical trials. Live attenuated poliovirus vectors have shown promise in SIV studies, but these viruses can in rare cases revert to virulence (14). Salmonella-based SIV vaccine vectors are able to induce CD8 T-cell responses which express the α4β7 integrin mucosal homing marker when administered orally (20, 24). However, there may be a much stronger link between concomitant genital tract immunity and immunity induced at respiratory mucosal sites compared to that induced at enteric sites (33, 38, 42). Vesicular stomatitis virus vectors that replicate in the nasal mucosa show promise in SIV-macaque trials but are potentially neurotoxic (55). Replication-competent adenovirus vectors have looked promising in some SHIV-macaque studies (49) but failed to provide significant protection in a recent SIV-macaque study (17) and could have similar issues of enhanced infection rates as seen in the recent efficacy trials of replication-incompetent adenovirus type 5 vectors.A mucosal vector system that has several advantages over existing models but that is relatively unexplored is recombinant attenuated influenza viruses. Such viruses (i) have an existing reverse genetics system to readily generate and manipulate recombinant viruses (31, 34), (ii) are effective as anti-influenza vaccines and licensed for human use (e.g., “Flumist” vaccine [9]) with ready production capability, (iii) have robust respiratory mucosal replication that should facilitate genital mucosal immunity, and (iv) can be generated with a variety of hemagglutinin (H) and neuraminidase (N) glycoproteins, potentially enabling these viruses to be administered sequentially in prime-boost combinations to limit the effect of antivector humoral immunity (34). Mouse-adapted recombinant influenza virus-HIV vectors have been studied in mice and demonstrated significant induction of cellular immunity at mucosal sites (8, 27, 28, 44, 48). However, although several native influenza viruses replicate efficiently in the respiratory tracts of Asian macaque species (10, 12, 52), no studies to date have examined the immunogenicity or efficacy of recombinant attenuated influenza virus-SIV vectors in macaques.  相似文献   

6.
7.
The massive depletion of gastrointestinal-tract CD4 T cells is a hallmark of the acute phase of HIV infection. In contrast, the depletion of the lower-respiratory-tract mucosal CD4 T cells as measured in bronchoalveolar lavage (BAL) fluid is more moderate and similar to the depletion of CD4 T cells observed in peripheral blood (PB). To understand better the dynamics of disease pathogenesis and the potential for the reconstitution of CD4 T cells in the lung and PB following the administration of effective antiretroviral therapy, we studied cell-associated viral loads, CD4 T-cell frequencies, and phenotypic and functional profiles of antigen-specific CD4 T cells from BAL fluid and blood before and after the initiation of highly active antiretroviral therapy (HAART). The major findings to emerge were the following: (i) BAL CD4 T cells are not massively depleted or preferentially infected by HIV compared to levels for PB; (ii) BAL CD4 T cells reconstitute after the initiation of HAART, and their infection frequencies decrease; (iii) BAL CD4 T-cell reconstitution appears to occur via the local proliferation of resident BAL CD4 T cells rather than redistribution; and (iv) BAL CD4 T cells are more polyfunctional than CD4 T cells in blood, and their functional profile is relatively unchanged after the initiation of HAART. Taken together, these data suggest mechanisms for mucosal CD4 T-cell depletion and interventions that might aid in the reconstitution of mucosal CD4 T cells.The assessment of the degree of memory CD4 T-cell depletion at mucosal sites during human immunodeficiency virus (HIV) infection is perhaps the most comprehensive way to estimate the impact of HIV on the T-cell pool. As such, the massive depletion of gastrointestinal CD4 T cells is a hallmark of HIV and simian immunodeficiency virus (SIV) infection (5, 12, 17, 19, 20, 30). This depletion occurs during the acute phase of infection and is maintained throughout the chronic phase. Mechanisms underlying this depletion have been shown to include the direct consequence of target cell infection (4, 19) and virus-induced Fas-mediated apoptosis (17). However, while it is clear that the substantial depletion of CD4 T cells occurs in the gastrointestinal (GI) tract and vaginal mucosa (31) of SIV-infected macaques and HIV-infected individuals (5, 12, 20, 30), similar depletion does not manifest at all mucosal sites, particularly the lung, in human studies (4).Highly active antiretroviral therapy (HAART) has significantly improved the prognosis of HIV-infected individuals (15, 16). Individuals who initiate HAART before their CD4 T-cell counts in peripheral blood (PB) fall below 350 cells/μl have significantly improved survival compared to that of individuals who initiate HAART with CD4 T-cell counts less than 350 cells/μl (15). Several studies also have shown that when HAART is initiated after CD4 T-cell counts fall below 350 cells/μl, the reconstitution of CD4 T cells in the GI tract is very poor, even after years of therapy (10, 12, 21). However, HIV-infected individuals treated with HAART during the early phase of infection may reconstitute CD4 T cells in the GI tract (18, 21). In contrast to the GI tract, little is known regarding CD4 T-cell reconstitution in the lung compartment during the course of HIV treatment. Nevertheless, the timing of HAART initiation after infection appears to be an important predictor of successful mucosal T-cell reconstitution.The massive depletion of CD4 T cells during the acute phase of infection does not occur at all mucosal sites, as CD4 T cells in bronchoalveolar lavage (BAL) are relatively spared and are slowly depleted during the chronic phase of infection (4). Despite this preservation of lung CD4 T cells, diminished BAL T-cell immune responses to certain pathogens have been reported in HIV-infected subjects (14). Given that many patients worldwide have access to and will receive antiretroviral therapy, the study of mucosal responses longitudinally during the course of treatment is likely to enhance our understanding of immune restoration. In addition, the early cellular events following HAART initiation are likely to skew the immune system toward both protective (i.e., immunosurveillance) and pathological (i.e., immune reconstitution inflammatory syndrome) responses. In this context, the study of the human pulmonary immune response remains an important aspect of HIV infection and treatment. To examine the dynamics of lung CD4 T-cell reconstitution, we studied the treatment of naïve HIV-infected individuals longitudinally during their course of HAART. We sampled peripheral blood and BAL T cells prior to, at 1 month, and after 1 year of HAART. From each subject and within each compartment, we examined the proliferative and functional capacity of stimulated CD4 and CD8 T cells.  相似文献   

8.
9.
10.
Human immunodeficiency virus (HIV) envelope (Env)-mediated bystander apoptosis is known to cause the progressive, severe, and irreversible loss of CD4+ T cells in HIV-1-infected patients. Env-induced bystander apoptosis has been shown to be gp41 dependent and related to the membrane hemifusion between envelope-expressing cells and target cells. Caveolin-1 (Cav-1), the scaffold protein of specific membrane lipid rafts called caveolae, has been reported to interact with gp41. However, the underlying pathological or physiological meaning of this robust interaction remains unclear. In this report, we examine the interaction of cellular Cav-1 and HIV gp41 within the lipid rafts and show that Cav-1 modulates Env-induced bystander apoptosis through interactions with gp41 in SupT1 cells and CD4+ T lymphocytes isolated from human peripheral blood. Cav-1 significantly suppressed Env-induced membrane hemifusion and caspase-3 activation and augmented Hsp70 upregulation. Moreover, a peptide containing the Cav-1 scaffold domain sequence markedly inhibited bystander apoptosis and apoptotic signal pathways. Our studies shed new light on the potential role of Cav-1 in limiting HIV pathogenesis and the development of a novel therapeutic strategy in treating HIV-1-infected patients.HIV infection causes a progressive, severe, and irreversible depletion of CD4+ T cells, which is responsible for the development of AIDS (9). The mechanism through which HIV infection induces cell death involves a variety of processes (58). Among these processes, apoptosis is most likely responsible for T-cell destruction in HIV-infected patients (33), because active antiretroviral therapy has been associated with low levels of CD4+ T-cell apoptosis (7), and AIDS progression was shown previously to correlate with the extent of immune cell apoptosis (34). Importantly, bystander apoptosis of uninfected cells was demonstrated to be one of the major processes involved in the destruction of immune cells (58), with the majority of apoptotic CD4+ T cells in the peripheral blood and lymph nodes being uninfected in HIV patients (22).Binding to uninfected cells or the entry of viral proteins released by infected cells is responsible for the virus-mediated killing of innocent-bystander CD4+ T cells (2-4, 9, 65). The HIV envelope glycoprotein complex, consisting of gp120 and gp41 subunits expressed on an HIV-infected cell membrane (73), is believed to induce bystander CD4+ T-cell apoptosis (58). Although there is a soluble form of gp120 in the blood, there is no conclusive agreement as to whether the concentration is sufficient to trigger apoptosis (57, 58). The initial step in HIV infection is mediated by the Env glycoprotein gp120 binding with high affinity to CD4, the primary receptor on the target cell surface, which is followed by interactions with the chemokine receptor CCR5 or CXCR4 (61). This interaction triggers a conformational change in gp41 and the insertion of its N-terminal fusion peptide into the target membrane (30). Next, a prehairpin structure containing leucine zipper-like motifs is formed by the two conserved coiled-coil domains, called the N-terminal and C-terminal heptad repeats (28, 66, 70). This structure quickly collapses into a highly stable six-helix bundle structure with an N-terminal heptad repeat inside and a hydrophobic C-terminal heptad repeat outside (28, 66, 70). The formation of the six-helix bundle leads to a juxtaposition and fusion with the target cell membrane (28, 66, 70). The fusogenic potential of HIV Env is proven to correlate with the pathogenesis of both CXCR4- and CCR5-tropic viruses by not only delivering the viral genome to uninfected cells but also mediating Env-induced bystander apoptosis (71). Initial infection is dominated by the CCR5-tropic strains, with the CXCR4-tropic viruses emerging in the later stages of disease (20). Studies have shown that CXCR4-tropic HIV-1 triggers more depletion of CD4+ T cells than CCR5-tropic strains (36).Glycolipid- and cholesterol-enriched membrane microdomains, termed lipid rafts, are spatially organized plasma membranes and are known to have many diverse functions (26, 53). These functions include membrane trafficking, endocytosis, the regulation of cholesterol and calcium homeostasis, and signal transduction in cellular growth and apoptosis. Lipid rafts have also been implicated in HIV cell entry and budding processes (19, 46, 48, 51). One such organelle is the caveola, which is a small, flask-shaped (50 to 100 nm in diameter) invagination in the plasma membrane (5, 62). The caveola structure, which is composed of proteins known as caveolins, plays a role in various functions by serving as a mobile platform for many receptors and signal proteins (5, 62). Caveolin-1 (Cav-1) is a 22- to 24-kDa major coat protein responsible for caveola assembly (25, 47). This scaffolding protein forms a hairpin-like structure and exists as an oligomeric complex of 14 to 16 monomers (21). Cav-1 has been shown to be expressed by a variety of cell types, mostly endothelial cells, type I pneumocytes, fibroblasts, and adipocytes (5, 62). In addition, Cav-1 expression is evident in immune cells such as macrophages and dendritic cells (38, 39). However, Cav-1 is not expressed in isolated thymocytes (49). Furthermore, Cav-1 and caveolar structures are absent in human or murine T-cell lines (27, 41, 68). Contrary to this, there has been one report showing evidence of Cav-1 expression in bovine primary cell subpopulations of CD4+, CD8+, CD21+, and IgM+ cells with Cav-1 localized predominantly in the perinuclear region (38). That report also demonstrated a membrane region staining with Cav-1-specific antibody of human CD21+ and CD26+ peripheral blood lymphocytes (PBLs). Recently, the expression of Cav-1 in activated murine B cells, with a potential role in the development of a thymus-independent immune response, was also reported (56). It remains to be determined whether Cav-1 expression is dependent on the activation state of lymphocytes. For macrophages, however, which are one of the main cell targets for HIV infection, Cav-1 expression has been clearly documented (38).The scaffolding domain of Cav-1, located in the juxtamembranous region of the N terminus, is responsible for its oligomerization and binding to various proteins (5, 62, 64). It recognizes a consensus binding motif, ΦXΦXXXXΦ, ΦXXXXΦXXΦ, or ΦXΦXXXXΦXXΦ, where Φ indicates an aromatic residue (F, W, or Y) and X indicates any residue (5, 62, 64). A Cav-1 binding motif (WNNMTWMQW) has been identified in the HIV-1 envelope protein gp41 (42, 43). Cav-1 has been shown to associate with gp41 by many different groups under various circumstances, including the immunoprecipitation of gp41 and Cav-1 in HIV-infected cells (42, 43, 52). However, the underlying pathological or physiological functions of this robust interaction between Cav-1 and gp41 remain unclear.Here, we report that the interaction between Cav-1 and gp41 leads to a modification of gp41 function, which subsequently regulates Env-induced T-cell bystander apoptosis. Moreover, we show that a peptide containing the Cav-1 scaffold domain sequence is capable of modulating Env-induced bystander apoptosis, which suggests a novel therapeutic application for HIV-1-infected patients.  相似文献   

11.
12.
13.
Cytotoxicity and proliferation capacity are key functions of antiviral CD8 T cells. In the present study, we investigated a series of markers to define these functions in virus-specific CD8 T cells. We provide evidence that there is a lack of coexpression of perforin and CD127 in human CD8 T cells. CD127 expression on virus-specific CD8 T cells correlated positively with proliferation capacity and negatively with perforin expression and cytotoxicity. Influenza virus-, cytomegalovirus-, and Epstein-Barr virus/human immunodeficiency virus type 1-specific CD8 T cells were predominantly composed of CD127+ perforin/CD127 perforin+, and CD127/perforin CD8 T cells, respectively. CD127/perforin and CD127/perforin+ cells expressed significantly more PD-1 and CD57, respectively. Consistently, intracellular cytokine (gamma interferon, tumor necrosis factor alpha, and interleukin-2 [IL-2]) responses combined to perforin detection confirmed that virus-specific CD8 T cells were mostly composed of either perforin+/IL-2 or perforin/IL-2+ cells. In addition, perforin expression and IL-2 secretion were negatively correlated in virus-specific CD8 T cells (P < 0.01). As previously shown for perforin, changes in antigen exposure modulated also CD127 expression. Based on the above results, proliferating (CD127+/IL-2-secreting) and cytotoxic (perforin+) CD8 T cells were contained within phenotypically distinct T-cell populations at different stages of activation or differentiation and showed different levels of exhaustion and senescence. Furthermore, the composition of proliferating and cytotoxic CD8 T cells for a given antiviral CD8 T-cell population appeared to be influenced by antigen exposure. These results advance our understanding of the relationship between cytotoxicity, proliferation capacity, the levels of senescence and exhaustion, and antigen exposure of antiviral memory CD8 T cells.Cytotoxic CD8 T cells are a fundamental component of the immune response against viral infections and mediate an important role in immunosurveillance (7, 10, 55), and the induction of vigorous CD8 T-cell responses after vaccination is thought to be a key component of protective immunity (37, 41, 49, 50, 58, 60, 69). Cytotoxic CD8 T cells exert their antiviral and antitumor activity primarily through the secretion of cytotoxic granules containing perforin (pore-forming protein) and several granule-associated proteases, including granzymes (Grms) (5, 15, 20, 44). Several studies have recently advanced the characterization of the mechanism of granule-dependent cytotoxic activity and performed a comprehensive investigation of the content of cytotoxic granules in human virus-specific CD8 T cells (2, 19, 29, 44, 53).Heterogeneous profiles of cytotoxic granules have been identified in different virus-specific memory CD8 T cells and associated with distinct differentiation stages of memory CD8 T cells (2, 19, 29, 44). Furthermore, we have observed a hierarchy among the cytotoxic granules in setting the efficiency of cytotoxic activity and demonstrated that perforin (and to a lesser extent GrmB) but not GrmA or GrmK were associated with cytotoxic activity (29). Recently, a novel mechanism of perforin-dependent granule-independent CTL cytotoxicity has also been demonstrated (45).Major advances in the characterization of antigen (Ag)-specific CD4 and CD8 T cells have been made recently and have aimed at identifying functional profiles that may correlate with protective CD8 T-cell responses (1, 3, 4, 12, 13, 24, 28, 36-38, 40, 41, 49, 50, 56-58, 60, 64, 68). In particular, the functional characterization of antigen-specific T cells was mainly performed on the basis of (i) the pattern of cytokines secreted (i.e., gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], interleukin-2 [IL-2], or macrophage inflammatory protein 1β [MIP-1β]), (ii) the proliferation capacity, and (iii) the cytotoxic capacity (13, 28, 59). Of note, degranulation activity (i.e., CD107a mobilization following specific stimulation) has been used as a surrogate marker of cytotoxic activity (11, 13).The term “polyfunctional” has been used to define T-cell immune responses that, in addition to typical effector functions such as secretion of IFN-γ, TNF-α, or MIP-1β and cytotoxic activity (measured by the degranulation capacity), comprise distinct T-cell populations able to secrete IL-2 and retain proliferation capacity (13, 28, 49, 50). Some evidence indicates that a hallmark of protective immune responses is the presence of polyfunctional T-cell responses (59). Furthermore, the ability to secrete IL-2 was shown to be linked to proliferation capacity, and both factors have been associated with protective antiviral immunity (13, 28, 49, 50). Although a lack of correlation between degranulation activity and GrmB expression was reported in mice (65), the relationship between degranulation activity and perforin expression has never been comprehensively investigated in mice and in humans.The private α chain of the IL-7 receptor (IL-7Rα, also called CD127) has been suggested to selectively identify CD8 T cells that will become long-lived memory cells (6, 34, 36). Moreover, it was shown in mice (34, 36) and humans (14, 48, 63) that the CD127high memory-precursor CD8 T cells produced IL-2 in contrast to CD127low effector CD8 T cells. Of interest, CD127 expression has also been shown to correlate with Ag-specific proliferation capacity in mice (34, 36). A similar correlation was observed in humans, although only for polyclonal stimulations (48). With the exception of studies performed in HIV-1 infection, where an association between CD127 expression and HIV-1 viremia has been shown (21, 22, 42, 48, 54), very limited information is available on the CD127 expression in human virus-specific CD8 T cells other that HIV-1.Although cytotoxic activity and proliferation capacity are key components of the antiviral cellular immune response, the relationship between these functions has been only investigated in nonprogressive HIV-1 infection (46), where these two functions were shown to be related. However, it still remains to be determined whether these functions are mediated by the same or by different T-cell populations.In the present study, we performed a comprehensive characterization of virus-specific CD8 T-cell responses against HIV-1, cytomegalovirus (CMV), Epstein Barr virus (EBV), and influenza virus (Flu) in order to (i) analyze the degree of concordance between degranulation activity and perforin/Grm expression; (ii) identify the relevance of CD127 in identifying virus-specific CD8 T cells endowed with proliferation capacity; (iii) delineate the relationship between proliferation capacity, cytotoxic activity, activation/differentiation stage, and level of exhaustion of CD8 T cells; and (iv) determine the influence of antigen exposure in shaping the functional composition of virus-specific CD8 T cells.Our data indicate that cytotoxic (as defined by perforin expression) and proliferating (as defined by CD127 expression or IL-2 secretion) virus-specific CD8 T cells are contained within distinct CD8 T-cell populations. Furthermore, the proportion of proliferating and cytotoxic T cells within a given virus-specific CD8 T-cell population appears to be influenced by antigen exposure. These results advance our understanding of the relationship between cytotoxicity, proliferative capacity, differentiation stage, and Ag exposure of memory CD8 T cells.  相似文献   

14.
15.
Effective HIV-specific T-cell immunity requires the ability to inhibit virus replication in the infected host, but the functional characteristics of cells able to mediate this effect are not well defined. Since Gag-specific CD8 T cells have repeatedly been associated with lower viremia, we examined the influence of Gag specificity on the ability of unstimulated CD8 T cells from chronically infected persons to inhibit virus replication in autologous CD4 T cells. Persons with broad (≥6; n = 13) or narrow (≤1; n = 13) Gag-specific responses, as assessed by gamma interferon enzyme-linked immunospot assay, were selected from 288 highly active antiretroviral therapy (HAART)-naive HIV-1 clade C-infected South Africans, matching groups for total magnitude of HIV-specific CD8 T-cell responses and CD4 T-cell counts. CD8 T cells from high Gag responders suppressed in vitro replication of a heterologous HIV strain in autologous CD4 cells more potently than did those from low Gag responders (P < 0.003) and were associated with lower viral loads in vivo (P < 0.002). As previously shown in subjects with low viremia, CD8 T cells from high Gag responders exhibited a more polyfunctional cytokine profile and a stronger ability to proliferate in response to HIV stimulation than did low Gag responders, which mainly exhibited monofunctional CD8 T-cell responses. Furthermore, increased polyfunctionality was significantly correlated with greater inhibition of viral replication in vitro. These data indicate that enhanced suppression of HIV replication is associated with broader targeting of Gag. We conclude that it is not the overall magnitude but rather the breadth, magnitude, and functional capacity of CD8 T-cell responses to certain conserved proteins, like Gag, which predict effective antiviral HIV-specific CD8 T-cell function.Studies aimed at correlating overall quantitative differences in breadth or magnitude of the gamma interferon (IFN-γ)-positive HIV-specific CD8 T-cell response and plasma HIV viral loads have failed to show an association with control of viremia (2, 18). However, multiple studies (10, 12-15, 18, 22, 29) have shown that broadly directed and/or dominant HIV-specific CD8 T-cell responses against the Gag protein, as measured by IFN-γ enzyme-linked immunospot (ELISPOT) assay, are associated with lower viremia in chronic HIV-1 infection. In contrast, non-Gag-specific T-cell responses, as shown in some studies, did not contribute to immune control. Indeed, more broadly directed CD8 T-cell responses directed to the Env protein have been associated with elevated viremia (15). The functional mechanism underlying enhanced viral control by Gag-specific CD8 T-cell responses has not been determined.One potential explanation for enhanced antiviral pressure by Gag-specific but not other virus-specific CD8 T-cell responses may be differences in the fitness cost associated with escape mutations within the highly conserved Gag protein compared to that of other viral proteins (5, 23, 27). Alternatively, the maturation phenotype and functional quality of HIV-specific CD8 T cells may be the more critical predictors of the effectiveness of a virus-specific response (1, 4, 7, 15, 20, 25). In addition to the secretion of IFN-γ, CD8 T cells exhibit a spectrum of additional antiviral functions, including cytolysis, cell proliferation, and production of cytokines and chemokines. The capacity of CD8 T cells to secrete multiple cytokines following stimulation with HIV peptides is also associated with long-term nonprogressive infection, although subsequent studies have argued that polyfunctionality may simply correlate with reduced antigen stimulation rather than being a direct mediator of viral control (4, 19, 28, 34). Increased expression of the negative immunoregulatory molecule PD-1 on HIV-specific CD8 T cells is associated with higher viral loads (8, 21, 30). Finally, high HIV-specific CD8 T-cell proliferative capacity is associated with lower HIV viral loads (9). However, a direct link between HIV-specific antiviral efficacy and any specific functional capacity has yet to be established.Following the resolution of acute HIV-1 infection, HIV-specific CD8 T-cell responses reduce viral replication to a set point, which varies dramatically among individuals but is a strong predictor of the rate of HIV disease progression (17). It is therefore plausible that more potent antiviral CD8 T-cell responses, at set point, that are able to contain viral replication more aggressively may provide enhanced control of disease progression. However, to date, the majority of studies aimed at defining differences in the viral suppressive properties of protective HIV-1-specific CD8 T-cell responses have focused narrowly either on single-peptide-specific cytotoxic T lymphocyte (CTL) clones or cell lines (7) or on specific subpopulations of study subjects such as “elite” controllers (25). Studies examining the relationship between in vitro inhibition of viral replication over a broad range of viral loads and antigen specificities have not been performed. Furthermore, little work has focused on defining the antiviral properties of HIV-specific CD8 T-cell responses in clade C infection (33).Thus, to address the potential role of antigen specificity in the antiviral properties of HIV-specific CD8 T-cell responses, we compared the phenotypic and functional characteristics of bulk CD8 T cells in a group of untreated chronically clade C-infected persons that broadly targeted Gag-specific responses (≥6 Gag-specific responses) to those of subjects that had very narrow or absent Gag-specific responses (≤1 Gag-specific response). Importantly, the two groups were selected such that total CD4 cell counts and total magnitude of HIV-specific CD8 T-cell responses by IFN-γ ELISPOT assay were matched. Our results confirm that, for the same level of CD4 cell count and overall magnitude of HIV-specific CD8 T-cell responses, subjects whose CD8 T-cell responses are dominantly and broadly directed against the Gag protein exhibit lower plasma viral loads than do subjects who target this protein less. Furthermore, we demonstrate that this enhanced viral control is associated with an enhanced ability of isolated CD8 T cells to inhibit replication of a heterologous HIV-1 strain in autologous CD4 cells in vitro, enhanced ability to proliferate in the presence of cognate antigen, and a more polyfunctional cytokine response, but not with a difference in the maturation status of HIV-specific CD8 T cells. These data indicate that the specificity of the CD8 T-cell response to HIV is important for viral control and that it is a distinct polyfunctional phenotype of CD8 T cells that is able to proliferate and secrete antiviral cytokines, which is indicative of effective antiviral CD8 T-cell function.  相似文献   

16.
During untreated human immunodeficiency virus type 1 (HIV-1) infection, virus-specific CD8+ T cells partially control HIV replication in peripheral lymphoid tissues, but host mechanisms of HIV control in the central nervous system (CNS) are incompletely understood. We characterized HIV-specific CD8+ T cells in cerebrospinal fluid (CSF) and peripheral blood among seven HIV-positive antiretroviral therapy-naïve subjects. All had grossly normal brain magnetic resonance imaging and spectroscopy and normal neuropsychometric testing. Frequencies of epitope-specific CD8+ T cells by direct tetramer staining were on average 2.4-fold higher in CSF than in blood (P = 0.0004), while HIV RNA concentrations were lower. Cells from CSF were readily expanded ex vivo and responded to a broader range of HIV-specific human leukocyte antigen class I restricted optimal peptides than did expanded cells from blood. HIV-specific CD8+ T cells, in contrast to total CD8+ T cells, in CSF and blood were at comparable maturation states, as assessed by CD45RO and CCR7 staining. The strong relationship between higher T-cell frequencies and lower levels of viral antigen in CSF could be the result of increased migration to and/or preferential expansion of HIV-specific T cells within the CNS. This suggests an important role for HIV-specific CD8+ T cells in control of intrathecal viral replication.Human immunodeficiency virus type 1 (HIV-1) invades the central nervous system (CNS) early during primary infection (21, 30, 35), and proviral DNA persists in the brain throughout the course of HIV-1 disease (7, 25, 29, 47, 77, 83). Limited data from human and nonhuman primate studies suggest that little or no viral replication occurs in the brain during chronic, asymptomatic infection, based on the absence of demonstrable viral RNA or proteins (8, 85). In contrast, cognitive impairment affects approximately 40% of patients who progress to advanced AIDS without highly active antiretroviral therapy (21, 30, 35, 65). During HIV-associated dementia, there is active HIV-1 replication in the brain (23, 52, 61, 81), and viral sequence differences between cerebrospinal fluid (CSF) and peripheral tissues suggest distinct anatomic compartments of replication (18, 19, 22, 53, 75, 76, 78). Host mechanisms that control viral replication in the CNS during chronic, asymptomatic HIV-1 infection are incompletely understood.Anti-HIV CD8+ T cells are present in blood and peripheral tissues throughout the course of chronic HIV-1 infection (2, 14). Multiple lines of evidence support a critical role for these cells in controlling HIV-1 replication. During acute HIV-1 infection, the appearance of CD8+ T-cell responses correlates temporally with a decline in viremia (11, 43), and a greater proliferative capacity of peripheral blood HIV-specific CD8+ T cells correlates with better control of viremia (36, 54). In addition, the presence of certain major histocompatibility complex class I human leukocyte antigen (HLA) alleles, notably HLA-B*57, predicts slower progression to AIDS and death during chronic, untreated HIV-1 infection (55, 62). Finally, in the simian immunodeficiency virus (SIV) model, macaques depleted of CD8+ T cells experience increased viremia and rapid disease progression (39, 51, 67).Little is known regarding the role of intrathecal anti-HIV CD8+ T cells in HIV neuropathogenesis. Nonhuman primate studies have identified SIV-specific CD8+ T cells in the CNS early after infection (16, 80). Increased infiltration of SIV antigen-specific CD8+ T cells and cytotoxic T lymphocytes has been detected only in CSF of slow progressors without neurological symptoms (72). In chronically infected macaques with little or no SIV replication in the brain, the frequency of HIV-specific T cells was higher in CSF than in peripheral blood but did not correlate with the level of plasma viremia or CD4+ T-cell counts (56). Although intrathecal anti-HIV CD8+ T cells may help control viral replication, a detrimental role in the neuropathogenesis of HIV-1 has also been postulated (38). Immune responses contribute to neuropathogenesis in models of other infectious diseases, and during other viral infections cytotoxic T lymphocytes can worsen disease through direct cytotoxicity or release of inflammatory cytokines such as gamma interferon (IFN-γ) (3, 17, 31, 37, 42, 44, 71).We tested the hypothesis that quantitative and/or qualitative differences in HIV-specific CD8+ T-cell responses are present in CSF compared to blood during chronic, untreated HIV-1 infection. We characterized HIV-specific CD8+ T-cell responses in CSF among seven antiretroviral therapy-naïve adults with chronic HIV-1 infection, relatively high peripheral blood CD4+ T-cell counts, and low plasma HIV-1 RNA concentrations. We show that among these HIV-positive individuals with no neurological symptoms and with little or no HIV-1 RNA in CSF, frequencies of HIV-specific T cells are significantly higher in CSF than in blood. These CSF cells are at a state of differentiation similar to that of T cells in blood and are functionally competent for expansion and IFN-γ production. The higher frequency of functional HIV-specific CD8+ T cells in CSF, in the context of low or undetectable virus in CSF, suggests that these cells play a role in the control of intrathecal viral replication.  相似文献   

17.
Identifying the functions of human immunodeficiency virus (HIV)-specific CD8+ T cells that are not merely modulated by the level of virus but clearly distinguish patients with immune control from those without such control is of paramount importance. Features of the HIV-specific CD8+ T-cell response in antiretroviral-treated patients (designated Rx <50) and untreated patients (long-term nonprogressors [LTNP]) matched for very low HIV RNA levels were comprehensively examined. The proliferative capacity of HIV-specific CD8+ T cells was not restored in Rx <50 to the level observed in LTNP, even though HIV-specific CD4+ T-cell proliferation in the two patient groups was comparable. This diminished HIV-specific CD8+ T-cell proliferation in Rx <50 was primarily due to a smaller fraction of antigen-specific cells recruited to divide and not to the numbers of divisions that proliferating cells had undergone. Exogenous interleukin-2 (IL-2) induced proliferating cells to divide further but did not rescue the majority of antigen-specific cells with defective proliferation. In addition, differences in HIV-specific CD8+ T-cell proliferation could not be attributed to differences in cellular subsets bearing a memory phenotype, IL-2 production, or PD-1 expression. Although polyfunctionality of HIV-specific CD8+ T cells in Rx <50 was not restored to the levels observed in LTNP despite prolonged suppression of HIV RNA levels, per-cell cytotoxic capacity was the functional feature that most clearly distinguished the cells of LTNP from those of Rx <50. Taken together, these data suggest that there are selective qualitative abnormalities within the HIV-specific CD8+ T-cell compartment that persist under conditions of low levels of antigen.Understanding the features of an effective immune response to human immunodeficiency virus (HIV) is among the most important goals for the design of HIV vaccines and immunotherapies. Most HIV-infected patients develop persistent viremia and CD4+ T-cell decline in the absence of antiviral therapy. However, evidence that immunologic control of HIV is possible can be drawn from a small group of rare patients who maintain normal CD4+ T-cell counts and restrict HIV replication to below 50 copies/ml plasma for up to 25 years without antiretroviral therapy (ART) (4, 22, 31, 40). Historically, these unique individuals were included within heterogeneous cohorts referred to as long-term survivors or long-term nonprogressors (LTNP), categorized solely based on their disease-free survival exceeding 7 to 10 years and their stable CD4+ T-cell counts (21). Over time, it became apparent that only a small subset of individuals within these cohorts had truly nonprogressive infection, maintaining good health with nondeclining CD4+ T-cell counts, and these true nonprogressors tended to have HIV type 1 (HIV-1) RNA levels below the lower detection limits of the newly available assays (23, 31). Some investigators have adopted other designations more recently, including elite controllers, elite suppressors, or HIV controllers. These designations vary by institution and, in some cases, rely only upon viral load measurements without a requirement for stable CD4+ T-cell counts (4, 22, 40). However, for our designation of true LTNP, we employ the inclusion criteria of stable health, nondeclining CD4+ T-cell counts, and maintenance of plasma viral RNA levels below 50 copies/ml without ART (29-31).Several lines of evidence strongly suggest that CD8+ T cells mediate this control of HIV in LTNP. HLA B*5701 is highly overrepresented in these patients, and in B*5701+ patients, the HIV-specific CD8+ T-cell response is largely focused on peptides restricted by the B57 protein (15, 31). In addition, similar control of simian immunodeficiency virus replication has been described in rhesus macaques carrying the Mamu B*08 or B*17 allele (25, 49). In these macaques, CD8+ T-cell depletion studies have strongly suggested that control of viral replication is mediated by CD8+ T cells (14). Although these results support the idea that CD8+ T cells are responsible for immunologic control, the mechanism remains incompletely understood.Several lines of evidence suggest that immunologic control in LTNP is not simply due to differences in autologous virus recognition by CD8+ T cells. The frequencies of CD8+ T cells specific for HIV or individual HIV-encoded gene products in the peripheral blood are not different in LTNP and untreated progressors (reviewed in reference 32). Putative “escape” mutations are found in viruses of both HLAB*57+ LTNP and HLA-matched progressors (4, 6, 28, 33, 34). In addition, comparable frequencies of CD8+ T cells of LTNP and progressors recognize autologous CD4+ T cells infected with the autologous virus (12, 28). Similar observations have recently been made in the rhesus macaque model (26). Collectively, these observations strongly suggest that features of the CD8+ T-cell response associated with immunologic control are not due to quantitative differences in the numbers of HIV-specific cells or to differential abilities of the autologous virus gene products to be recognized between patient groups.Several qualitative features in the HIV-specific CD8+ T-cell response have been associated with immunologic control in LTNP. LTNP have been found to have higher frequencies of “polyfunctional” CD8+ T cells, named for their ability to degranulate and produce multiple cytokines, including interleukin-2 (IL-2) (2, 5, 51). However, these cells comprise an extremely small proportion of the HIV-specific CD8+ T-cell response. In addition, there is considerable overlap between patient groups, and many LTNP have few or no such cells. Compared to those of progressors, HIV-specific CD8+ T cells of LTNP have a dramatically higher proliferative capacity, a greater ability to upregulate granzyme B (GrB) and perforin production, and a greater cytolytic capacity against autologous HIV-infected CD4+ T cells (3, 17, 24, 29, 30). Increased HIV-specific CD8+ T-cell proliferative capacity in LTNP compared to progressors has also been associated with lower PD-1 expression or IL-2 production by HIV-specific CD4+ or CD8+ T cells (11, 24, 48, 51).Considerable controversy exists over the cause-and-effect relationships between these qualitative differences in the CD8+ T-cell response and HIV viremia between patient groups. High levels of antigen can have potent effects on diverse cell types in humans and in animal models. For HIV, lowering the level of viremia through ART has been observed to increase the function of CD4+ and CD8+ T cells, NK cells, monocytes, and plasmacytoid dendritic cells (16, 18, 20, 37, 41, 45-47, 50). However, the vast majority of treated progressors will not control HIV replication when ART is interrupted (7, 9, 35), suggesting that many of the qualitative differences in the CD4+ or CD8+ T-cell response between LTNP and untreated progressors are not the cause of control over HIV but rather are likely an effect of viremia. In some but not all studies, ART was sufficient to restore the proliferative capacity, phenotype, and cytokine production by CD4+ T cells to levels similar to responses to other viruses or to the HIV-specific response of LTNP (13, 16, 18, 20, 37, 46, 50). Because better IL-2 production or function of HIV-specific CD4+ T cells has been associated with increased CD8+ T-cell proliferative capacity (24), it has also been suggested that diminished proliferative capacity of progressor CD8+ T cells may be an effect of viremia during the chronic phase of infection. In some studies, ART is sufficient to increase the frequency of polyfunctional HIV-specific CD8+ T cells or to decrease PD-1 expression (30, 41). However, the interpretations of the observations within these studies have relied on extrapolations between studies based upon cohorts with differing levels and durations of viral suppression or on examination of a limited number of functions or subsets in either CD4+ or CD8+ T cells.In the present study, we extended our earlier work and comprehensively examined a broad array of functions of HIV-specific T cells derived from two large patient groups, LTNP and progressors on ART, who possess comparable levels of HIV viremia as determined by a sensitive single-copy assay. In response to autologous HIV-infected CD4+ T cells, HIV-specific CD8+ T-cell proliferative capacity, IL-2 responsiveness, surface phenotype, PD-1 expression, polyfunctionality, and cytotoxic capacity were measured in considerable detail. We observe that although ART results in restoration of many of these functions, HIV-specific CD8+ T-cell polyfunctionality and proliferative and killing capacities are not restored to levels observed in LTNP.  相似文献   

18.
Previous studies have identified a central role for HLA-B alleles in influencing control of HIV infection. An alternative possibility is that a small number of HLA-B alleles may have a very strong impact on HIV disease outcome, dominating the contribution of other HLA alleles. Here, we find that even following the exclusion of subjects expressing any of the HLA-B class I alleles (B*57, B*58, and B*18) identified to have the strongest influence on control, the dominant impact of HLA-B alleles on virus set point and absolute CD4 count variation remains significant. However, we also find that the influence of HLA on HIV control in this C-clade-infected cohort from South Africa extends beyond HLA-B as HLA-Cw type remains a significant predictor of virus and CD4 count following exclusion of the strongest HLA-B associations. Furthermore, there is evidence of interdependent protective effects of the HLA-Cw*0401-B*8101, HLA-Cw*1203-B*3910, and HLA-A*7401-B*5703 haplotypes that cannot be explained solely by linkage to a protective HLA-B allele. Analysis of individuals expressing both protective and detrimental alleles shows that even the strongest HLA alleles appear to have an additive rather than dominant effect on HIV control at the individual level. Finally, weak but significant frequency-dependent effects in this cohort can be detected only by looking at an individual''s combined HLA allele frequencies. Taken together, these data suggest that although individual HLA alleles, particularly HLA-B, can have a strong impact, HIV control overall is likely to be influenced by the additive effect of some or all of the other HLA alleles present.HIV-specific CD8+ T cells play a central role in resolution of primary viremia and the long-term suppression of viral replication (13). Supporting this notion is the observed correlation between possession of particular human leukocyte antigen (HLA) class I alleles and control of HIV, measured both directly by time-to-AIDS (5, 6) and indirectly via clinical markers of disease progression (viral load [VL] and CD4 count) (15, 26, 28). Specific HLA class I alleles have been associated with relatively successful control of viral replication and slow disease progression, most notably, alleles HLA-B*57 and HLA-B*27 (1, 7, 12, 15, 21, 23), and also with relatively ineffective control of viral replication and rapid disease progression [B*35(Px), B*5802, and B*18] (5, 15, 17, 23). In addition, general trends suggesting an HLA class I heterozygote advantage (5) and rare allele advantage (28) and, most recently, a correlation between levels of surface expression linked to certain HLA-Cw alleles (11, 27) and HIV control has also been described.Among the different HLA class I loci, the HIV-specific CD8+ T-cell responses restricted by HLA-B alleles are thought to play the central role in determining disease outcome: the majority of detectable HIV-specific CD8+ T-cell responses are restricted by HLA-B alleles (3, 15, 16), HLA-B-restricted responses typically express a more effective “polyfunctional” phenotype (14), the strongest HLA-associations with either slow or rapid progression are with HLA-B alleles (5, 10, 11, 15), and HLA-B-restricted CD8+ T cells exert the strongest selection pressure on the virus (15, 19, 24). However, whether this apparent association between HIV immune control and HLA-B is a general and causal trend or, rather, is biased by the coincidence that the strongest HLA associations with either extreme of disease control happen, by chance, to involve HLA-B alleles remains uncertain.In order to further investigate the correlation between HLA type and HIV infection control, we here examine a cohort now comprising >1,200 chronically HIV C-clade-infected, treatment-naïve subjects from Durban, South Africa, in an extended analysis following from our previous studies of a smaller cohort (15). We first address the question of whether the dominant role of HLA-B in this population compared to the roles of HLA-A or HLA-C results from the influence of HLA-B alleles in general or is dependent on a few known strong associations, such as that between HLA-B*57 alleles and low viremia. Second, in light of recent data (11, 27), we assess the impact of HLA-C alleles on HIV disease outcome and examine the effect of HLA haplotypes on observed HLA associations with disease control. Third, we investigate the question of whether the impact of certain HLA-B alleles on HIV outcome dominates that of other HLA-B alleles to negate the contribution of the latter or whether the impact of individual HLA alleles can be additive. Finally, we compare the impact of individual HLA alleles on HIV on immune control to the impact of heterozygote and rare allele advantage in this cohort.  相似文献   

19.
20.
The control of human immunodeficiency virus type 1 (HIV-1) associated with particular HLA class I alleles suggests that some CD8+ T-cell responses may be more effective than others at containing HIV-1. Unfortunately, substantial diversities in the breadth, magnitude, and function of these responses have impaired our ability to identify responses most critical to this control. It has been proposed that CD8 responses targeting conserved regions of the virus may be particularly effective, since the development of cytotoxic T-lymphocyte (CTL) escape mutations in these regions may significantly impair viral replication. To address this hypothesis at the population level, we derived near-full-length viral genomes from 98 chronically infected individuals and identified a total of 76 HLA class I-associated mutations across the genome, reflective of CD8 responses capable of selecting for sequence evolution. The majority of HLA-associated mutations were found in p24 Gag, Pol, and Nef. Reversion of HLA-associated mutations in the absence of the selecting HLA allele was also commonly observed, suggesting an impact of most CTL escape mutations on viral replication. Although no correlations were observed between the number or location of HLA-associated mutations and protective HLA alleles, limiting the analysis to mutations selected by acute-phase immunodominant responses revealed a strong positive correlation between mutations at conserved residues and protective HLA alleles. These data suggest that control of HIV-1 may be associated with acute-phase CD8 responses capable of selecting for viral escape mutations in highly conserved regions of the virus, supporting the inclusion of these regions in the design of an effective vaccine.Despite substantial advances in antiretroviral therapies, development of an effective human immunodeficiency virus type 1 (HIV-1) vaccine remains a critical goal (6, 39, 82). Unfortunately, current vaccine efforts have failed to reduce infection rates in humans (9, 75) and have only achieved modest decreases in viral loads in the simian immunodeficiency virus (SIV)/SHIV macaque model (21, 44, 81). A majority of these vaccine approaches have focused on inducing T-cell responses, utilizing large regions of the virus in an attempt to induce a broad array of immune responses (6, 34, 44, 81). While it is well established that CD8+ T-cell responses play a critical role in the containment of HIV-1 (45, 49, 67), supported in part by the strong association of particular HLA class I alleles with control of HIV (20, 33, 42, 61), it remains unclear which particular CD8+ T-cell responses are best able to control the virus and thus should be preferentially targeted by a vaccine. Studies comparing the magnitude, breadth, and function of CD8+ T-cell responses in subjects exhibiting either enhanced or poor control of HIV-1 have yielded few clues as to the specific factors associated with an effective CD8+ T-cell response (2, 28, 64, 67). Various differences in the functional capacity of T-cell responses have been observed in long-term nonprogressors (1, 26, 64), although it is possible that these differences may be reflective of an intact immune response, as opposed to having had directly enhanced immune control. As such, efforts are needed to identify factors or phenotypes associated with protective CD8+ T-cell responses in order to enable vaccines to induce the most effective responses.Recent studies have begun to suggest that the specificity of the CD8+ T-cell response, or the targeting of specific regions of the virus, may be associated with control of HIV-1. Preferential targeting of Gag, a structurally conserved viral protein responsible for multiple functions, has been associated with lower viral loads (25, 43, 56, 60, 77, 85). Furthermore, Kiepiela et al. (43) recently illustrated in a large cohort of 578 clade C-infected subjects that Gag-specific responses were associated with lowered viremia, in contrast to Env-specific responses, which were associated with higher viremia. These data are in line with previous observations that many of the major histocompatibility complex (MHC) class I alleles most strongly associated with control of HIV-1 and SIV, namely, HLA-B57, HLA-B27, and Mamu-A*01, restrict immunodominant CD8+ T-cell responses against the Gag protein (8, 10, 24, 63, 68, 83). However, other alleles associated with slower disease progression, such as HLA-B51 in humans and Mamu-B08 and B-17 in the rhesus macaque, do not immunodominantly target Gag, suggesting that targeting of some other regions of the virus may also be capable of eliciting control (8, 52-54). In addition, recent studies investigating the pattern of HIV-1-specific CD8+ T-cell responses during acute infection reveal that only a small subset of CD8+ T-cell responses restricted by any given HLA allele arise during acute infection and that there exist clear immunodominance patterns to these responses (8, 77, 85). Since control of HIV-1 is likely to be established or lost during the first few weeks of infection, these data suggest that potentially only a few key CD8+ T-cell responses may be needed to adequately establish early control of HIV-1.One of the major factors limiting the effectiveness of CD8+ T-cell responses is the propensity for HIV-1 to evade these responses through sequence evolution or viral escape (3, 13, 66). Even single point mutations within a targeted CD8 epitope can effectively abrogate recognition by either the HLA allele or the T-cell receptor. However, recent studies have begun to highlight that many sequence polymorphisms will revert to more common consensus residues upon transmission of HIV-1 to a new host, including many cytotoxic T-lymphocyte (CTL) escape mutations (4, 30, 33, 48, 50). Notably, the more rapidly reverting mutations have been observed to preferentially occur at conserved residues, indicating that structurally conserved regions of the virus may be particularly refractory to sequence changes (50). In support of these data, many CTL escape mutations have now been observed to directly impair viral replication (15, 23, 55, 74), in particular those known to either revert or require the presence of secondary compensatory mutations (15, 23, 73, 74). Taken together, these data suggest that, whereas CTL escape mutations provide a benefit to the virus to enable the evasion of host immune pressures, some of these mutations may come at a substantial cost to viral replication. These data may also imply that the association between Gag-specific responses and control of HIV-1 may be due to the targeting of highly conserved regions of the virus that are difficult to evade through sequence evolution.The propensity by which HIV-1 escapes CD8+ T-cell responses, and the reproducibility by which mutations arise at precise residues in targeted CD8 epitopes (3, 48), also enables the utilization of sequence data to predict which responses may be most capable of exerting immune selection pressure on the virus. Studies in HIV-1, SIV, and hepatitis C virus (16, 58, 65, 78) are now rapidly identifying immune-driven CTL escape mutations across these highly variable pathogens at the population level by correlating sequence polymorphisms in these viruses with the expression of particular HLA alleles. We provide here an analysis of HLA-associated mutations across the entire HIV-1 genome using a set of sequences derived from clade B chronically infected individuals. Through full-length viral genome coverage, these data provide an unbiased analysis of the location of these mutations and suggest that the control of HIV-1 by particular HLA alleles correlates with their ability to preferentially restrict early CD8+ T-cell responses capable of selecting for viral escape mutations at highly conserved residues of the virus. These data provide support for the inclusion of specific highly conserved regions of HIV-1 into vaccine antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号