共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of endogenous interleukin-12 (IL-12) on the influenza virus immune response in BALB/c mice was evaluated. Following primary influenza virus infection, IL-12 mRNA and protein are detected in the lung, with live virus being required for cytokine induction. Endogenous IL-12 contributes to early NK cell-dependent gamma interferon (IFN-γ) production (days 3 and 5) but not late T-cell-dependent IFN-γ secretion (day 7). IL-12 contributes to the inhibition of early virus replication but is not required for virus clearance. IL-12 also modestly contributes to the activation of cytotoxic T lymphocytes. Thus, in this model of experimental influenza virus infection, endogenous IL-12 contributes primarily to the early development and activation of the innate immune response. 相似文献
2.
3.
炎性体是胞液中感受危险信号、启动介导下游免疫防御或细胞死亡(pyroptosis)的多分子复合物,是细胞内天然免疫的重要受承信号转导的中介体.炎性体识别流感病毒后诱导先天免疫反应甚至pyroptosis样细胞死亡.流感病毒高尔基体表达的M2蛋白和P2X7、ATP、ROS在炎性体的调节过程中发挥了重要作用,微生物也可以通过激活炎性体调节呼吸道粘膜免疫.炎性体的提出为最优疫苗的设计提供了新的思路. 相似文献
4.
5.
M Takenaka V Tiriveedhi V Subramanian K Hoshinaga AG Patterson T Mohanakumar 《PloS one》2012,7(8):e42370
Previous studies have shown that intrabronchial administration of antibodies (Abs) to MHC class I resulted in development of obliterative airway disease (OAD), a correlate of chronic human lung allograft rejection. Since development of Abs specific to mismatched donor HLA class II have also been associated with chronic human lung allograft rejection, we analyzed the role of Abs to MHC class II in inducing OAD. Administration of MHC class II Abs (M5/114) to C57BL/6 mice induced the classical features of OAD even though MHC class II expression is absent de novo on murine lung epithelial and endothelial cells. The induction of OAD was accompanied by enhanced cellular and humoral immune responses to self-antigens (Collagen V and K- α1Tubulin). Further, lung-infiltrating macrophages demonstrated a switch in their phenotype predominance from MΦ1 (F4/80+CD11c+) to MΦ2 (F4/80+CD206+) following administration of Abs and prior to development of OAD. Passive administration of macrophages harvested from animals with OAD but not from naïve animals induced OAD lesions. We conclude that MHC class II Abs induces a phenotype switch of lung infiltrating macrophages from MΦ1 (F4/80+CD11c+) to MΦ2 (F4/80+CD206+) resulting in the breakdown of self-tolerance along with an increase in autoimmune Th17 response leading to OAD. 相似文献
6.
Masahiro Sakamoto Fujio Suzuki Sumio Arai Tamotsu Takishima Nakao Ishida 《Microbiology and immunology》1981,25(2):173-181
A mouse model was established for the study of acute myocarditis that occurs during influenza infection. Challenge with more than 10 LD50 of mouse-adapted influenza A2 virus (H2N2) induced myocarditis macroscopically discernible as white, irregularly shaped lesions which were shown by histological examination to consist of necrotic myofibers surrounded by infiltrating mononuclear inflammatory cells. After challenge with 10 LD50 of the virus, macroscopic myocarditis was found to advance in a progressive manner up to the 7th day, while the virus titer in the heart reached its peak on the 2nd day and began to decrease on the 5th day of infection. However, development of myocarditis was significantly suppressed in mice which were irradiated with 400 R of X-rays before infection. In addition, myocarditis did not develop in congenitally athymic nude mice. These data indicate that myocarditis was not brought about by viral action directly, but that it was mediated by some function of the host against viral in-vasion, which was abolished by X-irradiation. The data also suggest that T cells played a key role in the development of myocarditis. 相似文献
7.
Crystal C. Walline Sarita Sehra Amanda J. Fisher Lynette M. Guindon Ian M. Kratzke Jessica B. Montgomery Kelsey P. Lipking Nicole L. Glosson Heather L. Benson George E. Sandusky David S. Wilkes Randy R. Brutkiewicz Mark H. Kaplan Janice S. Blum 《PloS one》2013,8(4)
Pulmonary viral infections can exacerbate or trigger the development of allergic airway diseases via multiple mechanisms depending upon the infectious agent. Respiratory vaccinia virus transmission is well established, yet the effects of allergic airway disease on the host response to intra-pulmonary vaccinia virus infection remain poorly defined. As shown here BALB/c mice with preexisting airway disease infected with vaccinia virus developed more severe pulmonary inflammation, higher lung virus titers and greater weight loss compared with mice inoculated with virus alone. This enhanced viremia was observed despite increased pulmonary recruitment of CD8+ T effectors, greater IFNγ production in the lung, and high serum levels of anti-viral antibodies. Notably, flow cytometric analyses of lung CD8+ T cells revealed a shift in the hierarchy of immunodominant viral epitopes in virus inoculated mice with allergic airway disease compared to mice treated with virus only. Pulmonary IL-10 production by T cells and antigen presenting cells was detected following virus inoculation of animals and increased dramatically in allergic mice exposed to virus. IL-10 modulation of host responses to this respiratory virus infection was greatly influenced by the localized pulmonary microenvironment. Thus, blocking IL-10 signaling in virus-infected mice with allergic airway disease enhanced pulmonary CD4+ T cell production of IFNγ and increased serum anti-viral IgG1 levels. In contrast, pulmonary IFNγ and virus-specific IgG1 levels were reduced in vaccinia virus-treated mice with IL-10 receptor blockade. These observations demonstrate that pre-existing allergic lung disease alters the quality and magnitude of immune responses to respiratory poxviruses through an IL-10-dependent mechanism. 相似文献
8.
Hua Hua Tong Garrett Lambert Yong Xing Li Joshua M. Thurman Gregory L. Stahl Kelsey Douthitt Caitlin Clancy Yujuan He Andrew S. Bowman 《PloS one》2014,9(4)
There is considerable evidence that influenza A virus (IAV) promotes adherence, colonization, and superinfection by S. pneumoniae (Spn) and contributes to the pathogenesis of otitis media (OM). The complement system is a critical innate immune defense against both pathogens. To assess the role of the complement system in the host defense and the pathogenesis of acute pneumococcal OM following IAV infection, we employed a well-established transtympanically-induced mouse model of acute pneumococcal OM. We found that antecedent IAV infection enhanced the severity of acute pneumococcal OM. Mice deficient in complement C1qa (C1qa−/−) or factor B (Bf −/−) exhibited delayed viral and bacterial clearance from the middle ear and developed significant mucosal damage in the eustachian tube and middle ear. This indicates that both the classical and alternative complement pathways are critical for the oto-immune defense against acute pneumococcal OM following influenza infection. We also found that Spn increased complement activation following IAV infection. This was characterized by sustained increased levels of anaphylatoxins C3a and C5a in serum and middle ear lavage samples. In contrast, mice deficient in the complement C5a receptor (C5aR) demonstrated enhanced bacterial clearance and reduced severity of OM. Our data support the concept that C5a-C5aR interactions play a significant role in the pathogenesis of acute pneumococcal OM following IAV infection. It is possible that targeting the C5a-C5aR axis might prove useful in attenuating acute pneumococcal OM in patients with influenza infection. 相似文献
9.
Four-week-old rats (WKA/Hkm strain) were infected intranasally with the Ann Arbor/1/50 strain of influenza C virus and examined for clinical symptoms, virus replication, and serum antibody response. Although the animals showed no definite signs of illness, the virus replicated in the nose, and the hemagglutination-inhibiting (HI) and neutralizing antibodies were produced in their sera. When the inoculum sizes of 106.2 and 103.2 PFU were used, virus was recovered from nasal homogenates between days 1 and 10, and serum HI antibody became detectable by 10 days after infection. The rats infected with 101.2 PFU of the virus continued to shed virus until as late as day 20 without producing serum HI antibody. The amount of virus recovered from the nose was not affected significantly by either sex. age, or strain of the rat except that a slower virus growth was seen in the LE strain. It was also observed that the rats, previously inoculated with 103.2 PFU of the virus, showed no virus shedding when reinfected 7 weeks later but produced virus though in low titers when reinfected 50 to 55 weeks later. Virus was also recovered from rats once inoculated with 101.2 PFU of the virus when challenged 7 weeks later. Thus repeated infections characteristic of human influenza C can be produced in rats under the restricted conditions. 相似文献
10.
11.
Natural killer (NK) cells are innate lymphocytes that play an important role in control of viral infections. We recently showed that intranasal infection of mice with influenza virus induced the accumulation of NK cells in the airways. NK cells however did not proliferate in the airways or in the draining lymph node, but in the bone marrow mainly. As also monocyte-precursors undergo vigorous proliferation in the bone marrow (BM) during infections and then egress CCR2-dependently, we decided to determine the role of CCR2 in NK cell migration during intranasal influenza virus infection. We show that a unique population of NK cells in the BM expressed CCR2 and that monocyte chemotactic protein-1 (MCP-1), one of the CCR2 ligands, was produced in the airways of influenza virus infected mice. Analysis of BM chimeric mice reconstituted with a mix of wild-type (wt) and CCR2-deficient BM cells showed that upon influenza virus infection, a significantly lower proportion of CCR2-deficient than wt NK cells was recovered from the bronchoalveolar lavage (BAL). Taken together, our data demonstrate that during influenza virus infection a proportion of NK cells migrate in a CCR2-dependent fashion. 相似文献
12.
The World Health Organization identifies influenza as a major public health problem. While the strains commonly circulating in humans usually do not cause severe pathogenicity in healthy adults, some strains that have infected humans, such as H5N1, can cause high morbidity and mortality. Based on the severity of the disease, influenza viruses are sometimes categorized as either being highly pathogenic (HP) or having low pathogenicity (LP). The reasons why some strains are LP and others HP are not fully understood. While there are likely multiple mechanisms of interaction between the virus and the immune response that determine LP versus HP outcomes, we focus here on one component, namely macrophages (MP). There is some evidence that MP may both help fight the infection and become productively infected with HP influenza viruses. We developed mathematical models for influenza infections which explicitly included the dynamics and action of MP. We fit these models to viral load and macrophage count data from experimental infections of mice with LP and HP strains. Our results suggest that MP may not only help fight an influenza infection but may contribute to virus production in infections with HP viruses. We also explored the impact of combination therapies with antivirals and anti-inflammatory drugs on HP infections. Our study suggests a possible mechanism of MP in determining HP versus LP outcomes, and how different interventions might affect infection dynamics. 相似文献
13.
Protective Effects of Specific Immunity to Viral Neuraminidase on Influenza Virus Infection of Mice 总被引:16,自引:5,他引:16
下载免费PDF全文

Antibody specific for viral neuraminidase can be demonstrated in mice following (i) pulmonary infection with influenza virus, (ii) immunization with ultraviolet-in-activated influenza virus, (iii) immunization with isolated neuraminidase of influenza A(2) virus, and (iv) passive immunization with sera of rabbits immunized with isolated A(2) neuraminidase. Neuraminidase antibody produced by any of these methods exerts a profound inhibiting effect on virus replication in the lungs of mice challenged with strains of virus having homologous neuraminidase protein, even in the absence of hemagglutinating inhibiting antibody to the challenge virus, and results in markedly decreased pulmonary virus titers and diminished lung lesions. These observations suggest that antineuraminidase immunity may play a significant role in the protection against influenza virus challenge observed in mice after infection or artificial immunization. 相似文献
14.
15.
近十年来犬和猫流感病毒感染报道迅速增多,不仅威胁到犬和猫的健康,也对公共卫生造成了影响。自2004年首次发生H3N8亚型流感病毒感染赛犬事件以来,犬流感一直在美国的赛犬和宠物犬中流行。在韩国和我国南方的犬群中出现了因H3N2亚型禽流感感染引起的肺炎病例。亚洲和欧洲均报道了猫H5N1亚型高致病性禽流感致死性感染病例,还通过实验研究发现H5N1亚型流感病毒可在猫与猫之间水平传播。这些现象预示着流感病毒进一步获得了感染哺乳动物的能力,其公共卫生意义需引起关注。为此,本文对犬和猫流感病毒感染的流行病学、临床症状、发病机制、诊断和防控措施进行了综述。 相似文献
16.
Christoph Schneider Samuel P. Nobs Alex K. Heer Michael Kurrer Glynis Klinke Nico van Rooijen Johannes Vogel Manfred Kopf 《PLoS pathogens》2014,10(4)
Alveolar macrophages (AM) are critical for defense against bacterial and fungal infections. However, a definitive role of AM in viral infections remains unclear. We here report that AM play a key role in survival to influenza and vaccinia virus infection by maintaining lung function and thereby protecting from asphyxiation. Absence of AM in GM-CSF-deficient (Csf2
−/−) mice or selective AM depletion in wild-type mice resulted in impaired gas exchange and fatal hypoxia associated with severe morbidity to influenza virus infection, while viral clearance was affected moderately. Virus-induced morbidity was far more severe in Csf2
−/− mice lacking AM, as compared to Batf3-deficient mice lacking CD8α+ and CD103+ DCs. Csf2
−/− mice showed intact anti-viral CD8+ T cell responses despite slightly impaired CD103+ DC development. Importantly, selective reconstitution of AM development in Csf2rb
−/− mice by neonatal transfer of wild-type AM progenitors prevented severe morbidity and mortality, demonstrating that absence of AM alone is responsible for disease severity in mice lacking GM-CSF or its receptor. In addition, CD11c-Cre/Pparg
fl/fl mice with a defect in AM but normal adaptive immunity showed increased morbidity and lung failure to influenza virus. Taken together, our results suggest a superior role of AM compared to CD103+ DCs in protection from acute influenza and vaccinia virus infection-induced morbidity and mortality. 相似文献
17.
After X-irradiated and nonirradiated mice (C3H/He) as well as athymic nude mice and haired littermates (BALB/c) were infected with influenza A virus (Kumamoto strain, H2N2), they were examined for survival period, the development of consolidation in the lungs and the characteristics of the cells infiltrating the lung tissues. In two different T-cell deficient groups, there was a definite delay in the development of consolidation compared with their respective controls and this was reflected in prolonged survival periods: 5 days longer for irradiated mice and 6 days longer for nude mice. In both T-cell deficient and normal groups, about 70% of the cells obtained from consolidated lung tissues after virus infection were found to be small lymphoid cells and there were no morphological differences between the T-cell deficient and normal groups. None of these small lymphoid cells from the peripheral blood or the spleens of T-cell deficient mice responded to concanavalin A. In the lungs of both X-irradiated mice and nude mice, however, a definite increase in cells having natural killer activity was found at the late stages of the influenza infection, suggesting their participation in the development of consolidation. 相似文献
18.
MR Starkey RY Kim EL Beckett HC Schilter D Shim AT Essilfie DH Nguyen KW Beagley J Mattes CR Mackay JC Horvat PM Hansbro 《PloS one》2012,7(8):e42588
Background
Viral and bacterial respiratory tract infections in early-life are linked to the development of allergic airway inflammation and asthma. However, the mechanisms involved are not well understood. We have previously shown that neonatal and infant, but not adult, chlamydial lung infections in mice permanently alter inflammatory phenotype and physiology to increase the severity of allergic airway disease by increasing lung interleukin (IL)-13 expression, mucus hyper-secretion and airway hyper-responsiveness. This occurred through different mechanisms with infection at different ages. Neonatal infection suppressed inflammatory responses but enhanced systemic dendritic cell:T-cell IL-13 release and induced permanent alterations in lung structure (i.e., increased the size of alveoli). Infant infection enhanced inflammatory responses but had no effect on lung structure. Here we investigated the role of hematopoietic cells in these processes using bone marrow chimera studies.Methodology/Principal Findings
Neonatal (<24-hours-old), infant (3-weeks-old) and adult (6-weeks-old) mice were infected with C. muridarum. Nine weeks after infection bone marrow was collected and transferred into recipient age-matched irradiated naïve mice. Allergic airway disease was induced (8 weeks after adoptive transfer) by sensitization and challenge with ovalbumin. Reconstitution of irradiated naïve mice with bone marrow from mice infected as neonates resulted in the suppression of the hallmark features of allergic airway disease including mucus hyper-secretion and airway hyper-responsiveness, which was associated with decreased IL-13 levels in the lung. In stark contrast, reconstitution with bone marrow from mice infected as infants increased the severity of allergic airway disease by increasing T helper type-2 cell cytokine release (IL-5 and IL-13), mucus hyper-secretion, airway hyper-responsiveness and IL-13 levels in the lung. Reconstitution with bone marrow from infected adult mice had no effects.Conclusions
These results suggest that an infant chlamydial lung infection results in long lasting alterations in hematopoietic cells that increases the severity of allergic airway disease in later-life. 相似文献19.
Lei Huang Lingqian Li Kim D. Klonowski S. Mark Tompkins Ralph A. Tripp Andrew L. Mellor 《PloS one》2013,8(6)
Influenza infection stimulates protective host immune responses but paradoxically enhances lung indoleamine 2,3 dioxygenase (IDO) activity, an enzyme that suppresses helper/effector T cells and activates Foxp3-lineage regulatory CD4 T cells (Tregs). Influenza A/PR/8/34 (PR8) infection stimulated rapid elevation of IDO activity in lungs and lung-draining mediastinal lymph nodes (msLNs). Mice lacking intact IDO1 genes (IDO1-KO mice) exhibited significantly lower morbidity after sub-lethal PR8 infection, and genetic or pharmacologic IDO ablation led to much faster recovery after virus clearance. More robust influenza-specific effector CD8 T cell responses manifested in lungs of PR8-infected IDO1-KO mice, though virus clearance rates were unaffected by IDO ablation. Similar outcomes manifested in mice infected with a less virulent influenza A strain (X31). IDO induction in X31-infected lungs was dependent on IFN type II (IFNγ) signaling and was restricted to non-hematopoietic cells, while redundant IFN type 1 or type II signaling induced IDO exclusively in hematopoietic cells from msLNs. Memory T cells generated in X31-primed IDO1-KO mice protected mice from subsequent challenge with lethal doses of PR8 (100×LD50). However recall T cell responses were less robust in lung interstitial tissues, and classic dominance of TCR Vβ8.3 chain usage amongst memory CD8+ T cells specific for influenza nucleoprotein (NP366) did not manifest in IDO1-KO mice. Thus, influenza induced IDO activity in lungs enhanced morbidity, slowed recovery, restrained effector T cell responses in lungs and shaped memory T cell repertoire generation, but did not attenuate virus clearance during primary influenza A infection. 相似文献
20.
Marcella Facchini Ida De Fino Camilla Riva Alessandra Bragonzi 《Journal of visualized experiments : JoVE》2014,(85)
A mouse model of chronic airway infection is a key asset in cystic fibrosis (CF) research, although there are a number of concerns regarding the model itself. Early phases of inflammation and infection have been widely studied by using the Pseudomonas aeruginosa agar-beads mouse model, while only few reports have focused on the long-term chronic infection in vivo. The main challenge for long term chronic infection remains the low bacterial burden by P. aeruginosa and the low percentage of infected mice weeks after challenge, indicating that bacterial cells are progressively cleared by the host.This paper presents a method for obtaining efficient long-term chronic infection in mice. This method is based on the embedding of the P. aeruginosa clinical strains in the agar-beads in vitro, followed by intratracheal instillation in C57Bl/6NCrl mice. Bilateral lung infection is associated with several measurable read-outs including weight loss, mortality, chronic infection, and inflammatory response. The P. aeruginosa RP73 clinical strain was preferred over the PAO1 reference laboratory strain since it resulted in a comparatively lower mortality, more severe lesions, and higher chronic infection. P. aeruginosa colonization may persist in the lung for over three months. Murine lung pathology resembles that of CF patients with advanced chronic pulmonary disease.This murine model most closely mimics the course of the human disease and can be used both for studies on the pathogenesis and for the evaluation of novel therapies. 相似文献