首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A survey of chromosomal variation in the ST239 clonal group of methicillin-resistant Staphylococcus aureus (MRSA) revealed a novel genetic element, ICE6013. The element is 13,354 bp in length, excluding a 6,551-bp Tn552 insertion. ICE6013 is flanked by 3-bp direct repeats and is demarcated by 8-bp imperfect inverted repeats. The element was present in 6 of 15 genome-sequenced S. aureus strains, and it was detected using genetic markers in 19 of 44 diverse MRSA and methicillin-susceptible strains and in all 111 ST239 strains tested. Low integration site specificity was discerned. Multiple chromosomal copies and the presence of extrachromosomal circular forms of ICE6013 were detected in various strains. The circular forms included 3-bp coupling sequences, located between the 8-bp ends of the element, that corresponded to the 3-bp direct repeats flanking the chromosomal forms. ICE6013 is predicted to encode 15 open reading frames, including an IS30-like DDE transposase in place of a Tyr/Ser recombinase and homologs of gram-positive bacterial conjugation components. Further sequence analyses indicated that ICE6013 is more closely related to ICEBs1 from Bacillus subtilis than to the only other potential integrative conjugative element known from S. aureus, Tn5801. Evidence of recombination between ICE6013 elements is also presented. In summary, ICE6013 is the first member of a new family of active, integrative genetic elements that are widely dispersed within S. aureus strains.ST239 is a globally distributed clonal group of methicillin-resistant Staphylococcus aureus (MRSA). Currently, ST239 is a major cause of MRSA infections in Asian hospitals (5, 18, 25, 37, 45, 64, 74). Pulsed-field gel electrophoresis has detected extensive chromosomal variation in local ST239 populations (3, 24, 52, 72). As ST239 has geographically spread and diversified, its variants have been given more than a dozen different names (20, 22, 24, 25, 49, 52, 61, 67, 68, 73), which reflects their clinical significance in various locales. The molecular basis for the ecological success of ST239 is unclear, but virulence-associated traits such as enhanced biofilm development and epidemiological characteristics such as a propensity to cause device-associated bacteremia and pulmonary infections have been highlighted (3, 19, 27, 54).Multilocus genetic investigations of the ST239 chromosome revealed that it is a hybrid with estimated parental contributions of approximately 20% and 80% from distantly related ST30- and ST8-like parents, respectively (58). Unusual for naturally isolated bacteria was the finding that these parental contributions were large chromosomal replacements rather than a patchwork of localized recombinations. It was postulated that conjugation might be responsible for the natural transfer of hundreds of kilobases of contiguous chromosomal DNA that resulted in ST239 (58). Recent genomic investigations have presented evidence that large chromosomal replacements also occur within Streptococcus agalactiae strains and that they can be mimicked with laboratory conjugation experiments (12). Importantly, conjugative transfer frequencies in S. agalactiae were found to be highest near three genomic islands (12), two of which were identified as being integrative conjugative elements (ICEs) (13).ICEs and conjugative transposons are synonyms and refer to genetic elements that are maintained by integration into a replicon and are transmitted by self-encoded conjugation functions (56). ICEs abound in the genomes of S. agalactiae (11), but only one potential ICE has been identified in staphylococci to date: Tn5801 was discovered through the genomic sequencing of S. aureus strain Mu50 (46). Tn5801 is most similar to a truncated genetic element, CW459tet(M), from Clostridium perfringens (57). Both Tn5801 and CW459tet(M) have Tyr recombinases, regulatory genes, and tetM modules that are similar to those of the prototypical gram-positive conjugative transposon, Tn916. Moreover, both Tn5801 and CW459tet(M) integrate into the same locus, guaA, at a nearly identical 11-bp sequence. Although the conjugative transfer module of CW459tet(M) is deleted (57), the conjugative transfer module of Tn5801 is similar to that of Tn916.We suspected that ST239 strains might carry novel accessory genes that contribute to their chromosomal variation and ecological success. To explore this possibility, we conducted a survey of chromosomal variation in ST239 using a PCR scanning approach. We report the discovery and partial characterization of a novel genetic element, ICE6013, that resulted from the survey.  相似文献   

2.
Transposon mutagenesis is a tool that is widely used for the identification of genes involved in the virulence of bacteria. Until now, transposon mutagenesis in Clostridium perfringens has been restricted to the use of Tn916-based methods with laboratory reference strains. This system yields primarily multiple transposon insertions in a single genome, thus compromising its use for the identification of virulence genes. The current study describes a new protocol for transposon mutagenesis in C. perfringens, which is based on the bacteriophage Mu transposition system. The protocol was successfully used to generate a single-insertion mutant library both for a laboratory strain and for a field isolate. Thus, it can be used as a tool in large-scale screening to identify virulence genes of C. perfringens.Clostridium perfringens is a gram-positive, anaerobic bacterium that forms heat-resistant spores. It is widespread in the soil and commonly found in the gastrointestinal tract of mammals. It has been implicated in several medical conditions in humans, ranging from mild food poisoning to necrotic enteritis and gas gangrene. C. perfringens strains also cause a variety of important diseases in domestic animals, including several enteric syndromes, such as enterotoxemia in cattle, sheep, and pigs, necrotic enteritis in poultry, and typhocolitis in equines (17, 40).Understanding the pathogenesis of these infections is of crucial importance for the development of new tools for the prevention and control of C. perfringens-related diseases. Genetic modification is a valuable approach to identify new virulence factors and to study their role in the pathogenesis of C. perfringens.Since the 1980s, several tools for manipulation of C. perfringens at the molecular level have been developed (1, 5, 28, 35, 38). Among these tools, transposon mutagenesis is a method that is widely used for identification of virulence genes. Until now, the only reproducible method for transposon mutagenesis in C. perfringens was based on Tn916, a tetracycline resistance-encoding conjugative transposon originally isolated from Enterococcus faecalis (10, 11, 13). Tn916 has been used extensively for transposon mutagenesis due to its broad host range and has been proven to be valuable for the identification of genes in C. perfringens (3, 7, 22). Nevertheless, this method has major disadvantages; multiple Tn916 insertion events occur with an incidence of 65% to 75%, severely complicating identification of genes responsible for phenotype changes (3, 7, 19). Furthermore, Tn916 is still active after insertion, resulting in unstable mutants (6, 39, 42). To our knowledge, generation of Tn916-derived transposon mutants in C. perfringens field strains has never been described.Although a variety of transposon mutagenesis methods are available for gram-positive bacteria (4, 37, 41, 43), the inherent species nonspecificity, as well as the lack of mobility of the integrated transposon, makes the bacteriophage Mu-based transposon delivery system a system of choice for a variety of species (16, 26, 46). The Mu transposition approach includes in vitro assembly of a complex between the transposon DNA and the transposase enzyme, the transpososome, followed by delivery of the transpososome into the recipient cells. Once inside a cell, the Mu transpososome becomes activated in the presence of divalent cations, resulting in genomic integration of the delivered transposon. The bacteriophage Mu transposition system is also functional in vitro (15, 32, 33), in contrast to the Tn916 mutagenesis strategy, which is restricted to transposon mobilization in vivo following conjugation or electroporation. Under the optimal in vitro conditions, the Mu transposition reaction requires only the MuA transposase, a mini-Mu transposon, and target DNA as macromolecular components (15).In this study, a novel protocol is described for transposon mutagenesis in C. perfringens that exploits the bacteriophage Mu transposition system. To our knowledge, this report is the first report describing a mutagenesis method generating single-insertion transposon mutants in laboratory and field isolates of C. perfringens. This method is important for the identification of C. perfringens virulence factors involved in the numerous diseases caused by this bacterium.  相似文献   

3.
In this study, we report on the transposition behavior of the mercury(II) resistance transposons Tn502 and Tn512, which are members of the Tn5053 family. These transposons exhibit targeted and oriented insertion in the par region of plasmid RP1, since par-encoded components, namely, the ParA resolvase and its cognate res region, are essential for such transposition. Tn502 and, under some circumstances, Tn512 can transpose when par is absent, providing evidence for an alternative, par-independent pathway of transposition. We show that the alternative pathway proceeds by a two-step replicative process involving random target selection and orientation of insertion, leading to the formation of cointegrates as the predominant product of the first stage of transposition. Cointegrates remain unresolved because the transposon-encoded (TniR) recombination system is relatively inefficient, as is the host-encoded (RecA) system. In the presence of the res-ParA recombination system, TniR-mediated (and RecA-mediated) cointegrate resolution is highly efficient, enabling resolution both of cointegrates involving functional transposons (Tn502 and Tn512) and of defective elements (In0 and In2). These findings implicate the target-encoded accessory functions in the second stage of transposition as well as in the first. We also show that the par-independent pathway enables the formation of deletions in the target molecule.It is widely recognized that mobile genetic elements contribute to genome plasticity and have been a driving force in the emergence and spread of resistance determinants within and between bacterial species; their impact is ongoing (10, 51). Significant among these elements are various classes of plasmids, transposons, and integrons which may lack resistance determinants or carry one or multiple determinants. Resistance determinants that have become globally dispersed in environmental and clinically significant bacteria include mercury(II) resistance (2, 17), evident even in ancient bacteria (27), and antibiotic resistance, which has increased in dominance since the advent of the antibiotic era (23, 40).This paper concerns the mercury resistance (mer) transposons Tn502 and Tn512, whose sequence organization and transpositional behavior show that they are new members of a family of elements exemplified by the mer transposon Tn5053 (22). These elements are closely related to those in the Tn402 family, which contain an integron (intI) recombination system (14, 36). Members of the two families differ in the positions of the mer or intI determinants (modules) near one end of the transposition (tni) module. The latter module contains four genes (tniABQR), and the entire transposon is bounded by 25-bp inverted-repeat termini (IRi and IRt). TniA, TniB, and TniQ are required to form the transpositional cointegrate, which is then resolved by the action of TniR (a serine resolvase) on a resolution (res) sequence located between tniR and tniQ (22). The transposon in its new location is flanked by 5-bp direct repeats (DRs) (20, 22). TniA, which contains a D,D(35)E transposase catalytic motif, is thought to function cooperatively with TniB, a putative nucleotide-binding protein, as the active TniAB transposase (21, 36). Studies of TniA conducted in vitro show binding to the IRs and to additional 19-bp repeat sequences that make up the complex termini of the transposon (21). The precise role of TniQ is unknown.An unexpected and unique feature of Tn5053 and Tn402 is that they depend on externally coded accessory functions for efficient transposition, namely, a res site served by a cognate resolvase (25). As a consequence, these transposons exhibit a strong transpositional bias for some target res sites (20, 25, 26) and have aptly been described as “res site hunters” (25). One such efficient interaction involves the res-ParA multimer resolution system of plasmid RP1 (IncPα); other plasmid- or transposon-encoded systems are less efficient or are refractory. Although the role of the external resolvase remains obscure, its capacity to bind to its cognate res is an essential requirement whereas its catalytic activity is not (20). For each interaction system, the target sites typically cluster in a single part of res but not necessarily within the same subregion and, on occasion, can lie in the vicinity of res. Typically, the transposon is in a single orientation with IRi closest to the resolvase gene. In one study, Tn402 clustered at two target sites, one within res and one nearby, and the orientations were different at the two sites (20).The experimentally observed target preference described above also occurs in natural associations of Tn5053/Tn402-like elements and became evident on sequencing class 1 integrons, which were often found positioned close to different res-resolvase gene regions (6, 20, 25). Most Tn402 family elements are comprised of an intI module that is flanked on the left by IRi and on the right by a 3′ conserved sequence (3′-CS) (13). In others, a remnant tni gene cluster may be present instead of the 3′-CS, and IRt occurs at the right flank. The structure of the latter category of integrons strongly indicated that they are defective transposons that were presumably capable of relocation provided that tni functions were supplied in trans (6, 32). The movement of In33 (Tn2521) from a chromosomal to a plasmid location appears to have been such an in trans event (30, 42), and others involving In0 and In2 are demonstrated in this study. In contrast, the integrons that lack the IRt end appear to be nonmobile remnants of Tn402-like transposons; they belong to several lineages, including those in which the incurred deletions are attributable to acquired insertion sequences (6). More recently, intact Tn5053/Tn402-like transposons and class 1 integrons have increasingly been detected in the res-parA region of IncP plasmids (39), which are arguably the most promiscuous of known plasmids (50). These various experimental and natural interactions provide insight into the dispersal pathways possible for Tn5053/Tn402-like elements.The res-hunting attribute is a striking feature that is experimentally supported by studies of four family members (namely, Tn5053 [22, 25], Tn402 [20, 26], and in this study, Tn502 [48] and Tn512). Another facet of the transposition of Tn502 is explored here. It concerns the observation that loss of the preferred par target region in RP1 does not abolish transposition of Tn502 (48), contrary to the finding with Tn5053 (25, 26) and, in this study, Tn512. The continued, low-frequency transposition of Tn502 involved at least three dispersed locations (48); however, nothing is known about the nature of these sites or about the features and requirements of the transposition process. Here we address these issues and uncover the existence of an alternative, par-independent pathway that is employed by Tn502 and is available to Tn512 under some circumstances. The study also provides information on the roles of the TniR and host (RecA) recombination systems in the resolution of transpositional cointegrates and on the ability of the par-independent transposition pathway to generate plasmid deletions.  相似文献   

4.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

5.
6.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

7.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

8.
9.
10.
11.
The cationic lytic peptide cecropin B (CB), isolated from the giant silk moth (Hyalophora cecropia), has been shown to effectively eliminate Gram-negative and some Gram-positive bacteria. In this study, the effects of chemically synthesized CB on plant pathogens were investigated. The S50s (the peptide concentrations causing 50% survival of a pathogenic bacterium) of CB against two major pathogens of the tomato, Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria, were 529.6 μg/ml and 0.29 μg/ml, respectively. The CB gene was then fused to the secretory signal peptide (sp) sequence from the barley α-amylase gene, and the new construct, pBI121-spCB, was used for the transformation of tomato plants. Integration of the CB gene into the tomato genome was confirmed by PCR, and its expression was confirmed by Western blot analyses. In vivo studies of the transgenic tomato plant demonstrated significant resistance to bacterial wilt and bacterial spot. The levels of CB expressed in transgenic tomato plants (∼0.05 μg in 50 mg of leaves) were far lower than the S50 determined in vitro. CB transgenic tomatoes could therefore be a new mode of bioprotection against these two plant diseases with significant agricultural applications.Bacterial plant diseases are a source of great losses in the annual yields of most crops (5). The agrochemical methods and conventional breeding commonly used to control these bacterially induced diseases have many drawbacks. Indiscriminate use of agrochemicals has a negative impact on human, as well as animal, health and contributes to environmental pollution. Conventional plant-breeding strategies have limited scope due to the paucity of genes with these traits in the usable gene pools and their time-consuming nature. Consequently, genetic engineering and transformation technology offer better tools to test the efficacies of genes for crop improvement and to provide a better understanding of their mechanisms. One advance is the possibility of creating transgenic plants that overexpress recombinant DNA or novel genes with resistance to pathogens (36). In particular, strengthening the biological defenses of a crop by the production of antibacterial proteins with other origins (not from plants) offers a novel strategy to increase the resistance of crops to diseases (35, 39, 41). These antimicrobial peptides (AMPs) include such peptides as cecropins (2, 15, 20, 23-24, 27, 31, 42, 50), magainins (1, 9, 14, 29, 47), sarcotoxin IA (35, 40), and tachyplesin I (3). The genes encoding these small AMPs in plants have been used in practice to enhance their resistance to bacterial and fungal pathogens (8, 22, 40). The expression of AMPs in vivo (mostly cecropins and a synthetic analog of cecropin and magainin) with either specific or broad-spectrum disease resistance in tobacco (14, 24, 27), potato (17, 42), rice (46), banana (9), and hybrid poplar (32) have been reported. The transgenic plants showed considerably greater resistance to certain pathogens than the wild types (4, 13, 24, 27, 42, 46, 50). However, detailed studies of transgenic tomatoes expressing natural cecropin have not yet been reported.The tomato (Solanum lycopersicum) is one of the most commonly consumed vegetables worldwide. The annual yield of tomatoes, however, is severely affected by two common bacterial diseases, bacterial wilt and bacterial spot, which are caused by infection with the Gram-negative bacteria Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria, respectively. Currently available pesticides are ineffective against R. solanacearum, and thus bacterial wilt is a serious problem.Cecropins, one of the natural lytic peptides found in the giant silk moth, Hyalophora cecropia (25), are synthesized in lipid bodies as proteins consisting of 31 to 39 amino acid residues. They adopt an α-helical structure on interaction with bacterial membranes, resulting in the formation of ion channels (12). At low concentrations (0.1 μM to 5 μM), cecropins exhibit lytic antibacterial activity against a number of Gram-negative and some Gram-positive bacteria, but not against eukaryotic cells (11, 26, 33), thus making them potentially powerful tools for engineering bacterial resistance in crops. Moreover, cecropin B (CB) shows the strongest activity against Gram-negative bacteria within the cecropin family and therefore has been considered an excellent candidate for transformation into plants to improve their resistance against bacterial diseases.The introduction of genes encoding cecropins and their analogs into tobacco has been reported to have contradictory results regarding resistance against pathogens (20). However, subsequent investigations of these tobacco plants showed that the expression of CB in the plants did not result in accumulation of detectable levels of CB, presumably due to degradation of the peptide by host peptidases (20, 34). Therefore, protection of CB from cellular degradation is considered to be vital for the exploitation of its antibacterial activity in transgenic plants. The secretory sequences of several genes are helpful, because they cooperate with the desired genes to enhance extracellular secretion (24, 40, 46). In the present study, a natural CB gene was successfully transferred into tomatoes. The transgenic plants showed significant resistance to the tomato diseases bacterial wilt and bacterial spot, as well as with a chemically synthesized CB peptide.  相似文献   

12.
13.
14.
Adhesive pili on the surface of the serotype M1 Streptococcus pyogenes strain SF370 are composed of a major backbone subunit (Spy0128) and two minor subunits (Spy0125 and Spy0130), joined covalently by a pilin polymerase (Spy0129). Previous studies using recombinant proteins showed that both minor subunits bind to human pharyngeal (Detroit) cells (A. G. Manetti et al., Mol. Microbiol. 64:968-983, 2007), suggesting both may act as pilus-presented adhesins. While confirming these binding properties, studies described here indicate that Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role as a wall linker. Pili were localized predominantly to cell wall fractions of the wild-type S. pyogenes parent strain and a spy0125 deletion mutant. In contrast, they were found almost exclusively in culture supernatants in both spy0130 and srtA deletion mutants, indicating that the housekeeping sortase (SrtA) attaches pili to the cell wall by using Spy0130 as a linker protein. Adhesion assays with antisera specific for individual subunits showed that only anti-rSpy0125 serum inhibited adhesion of wild-type S. pyogenes to human keratinocytes and tonsil epithelium to a significant extent. Spy0125 was localized to the tip of pili, based on a combination of mutant analysis and liquid chromatography-tandem mass spectrometry analysis of purified pili. Assays comparing parent and mutant strains confirmed its role as the adhesin. Unexpectedly, apparent spontaneous cleavage of a labile, proline-rich (8 of 14 residues) sequence separating the N-terminal ∼1/3 and C-terminal ∼2/3 of Spy0125 leads to loss of the N-terminal region, but analysis of internal spy0125 deletion mutants confirmed that this has no significant effect on adhesion.The group A Streptococcus (S. pyogenes) is an exclusively human pathogen that commonly colonizes either the pharynx or skin, where local spread can give rise to various inflammatory conditions such as pharyngitis, tonsillitis, sinusitis, or erysipelas. Although often mild and self-limiting, GAS infections are occasionally very severe and sometimes lead to life-threatening diseases, such as necrotizing fasciitis or streptococcal toxic shock syndrome. A wide variety of cell surface components and extracellular products have been shown or suggested to play important roles in S. pyogenes virulence, including cell surface pili (1, 6, 32). Pili expressed by the serotype M1 S. pyogenes strain SF370 mediate specific adhesion to intact human tonsil epithelia and to primary human keratinocytes, as well as cultured keratinocyte-derived HaCaT cells, but not to Hep-2 or A549 cells (1). They also contribute to adhesion to a human pharyngeal cell line (Detroit cells) and to biofilm formation (29).Over the past 5 years, pili have been discovered on an increasing number of important Gram-positive bacterial pathogens, including Bacillus cereus (4), Bacillus anthracis (4, 5), Corynebacterium diphtheriae (13, 14, 19, 26, 27, 44, 46, 47), Streptococcus agalactiae (7, 23, 38), and Streptococcus pneumoniae (2, 3, 24, 25, 34), as well as S. pyogenes (1, 29, 32). All these species produce pili that are composed of a single major subunit plus either one or two minor subunits. During assembly, the individual subunits are covalently linked to each other via intermolecular isopeptide bonds, catalyzed by specialized membrane-associated transpeptidases that may be described as pilin polymerases (4, 7, 25, 41, 44, 46). These are related to the classical housekeeping sortase (usually, but not always, designated SrtA) that is responsible for anchoring many proteins to Gram-positive bacterial cell walls (30, 31, 33). The C-terminal ends of sortase target proteins include a cell wall sorting (CWS) motif consisting, in most cases, of Leu-Pro-X-Thr-Gly (LPXTG, where X can be any amino acid) (11, 40). Sortases cleave this substrate between the Thr and Gly residues and produce an intermolecular isopeptide bond linking the Thr to a free amino group provided by a specific target. In attaching proteins to the cell wall, the target amino group is provided by the lipid II peptidoglycan precursor (30, 36, 40). In joining pilus subunits, the target is the ɛ-amino group in the side chain of a specific Lys residue in the second subunit (14, 18, 19). Current models of pilus biogenesis envisage repeated transpeptidation reactions adding additional subunits to the base of the growing pilus, until the terminal subunit is eventually linked covalently via an intermolecular isopeptide bond to the cell wall (28, 41, 45).The major subunit (sometimes called the backbone or shaft subunit) extends along the length of the pilus and appears to play a structural role, while minor subunits have been detected either at the tip, the base, and/or at occasional intervals along the shaft, depending on the species (4, 23, 24, 32, 47). In S. pneumoniae and S. agalactiae one of the minor subunits acts as an adhesin, while the second appears to act as a linker between the base of the assembled pilus and the cell wall (7, 15, 22, 34, 35). It was originally suggested that both minor subunits of C. diphtheriae pili could act as adhesins (27). However, recent data showed one of these has a wall linker role (26, 44) and may therefore not function as an adhesin.S. pyogenes strain SF370 pili are composed of a major (backbone) subunit, termed Spy0128, plus two minor subunits, called Spy0125 and Spy0130 (1, 32). All three are required for efficient adhesion to target cells (1). Studies employing purified recombinant proteins have shown that both of the minor subunits, but not the major subunit, bind to Detroit cells (29), suggesting both might act as pilus-presented adhesins. Here we report studies employing a combination of recombinant proteins, specific antisera, and allelic replacement mutants which show that only Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role in linking pili to the cell wall.  相似文献   

15.
16.
17.
18.
19.
Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding first to CD4 and then to a coreceptor (CoR), of which C-C chemokine receptor 5 (CCR5) is the most common (6, 53). CXCR4 is an additional CoR for up to 50% of subtype B and D HIV-1 isolates at very late stages of disease (4, 7, 28, 35). Many other seven-membrane-spanning G-protein-coupled receptors (GPCRs) have been identified as alternative CoRs when expressed on various target cell lines in vitro, including CCR1 (76, 79), CCR2b (24), CCR3 (3, 5, 17, 32, 60), CCR8 (18, 34, 38), GPR1 (27, 65), GPR15/BOB (22), CXCR5 (39), CXCR6/Bonzo/STRL33/TYMSTR (9, 22, 25, 45, 46), APJ (26), CMKLR1/ChemR23 (49, 62), FPLR1 (67, 68), RDC1 (66), and D6 (55). HIV-2 and simian immunodeficiency virus SIVmac isolates more frequently show expanded use of these alternative CoRs than HIV-1 isolates (12, 30, 51, 74), and evidence that alternative CoRs other than CXCR4 mediate infection of primary target cells by HIV-1 isolates is sparse (18, 30, 53, 81). Genetic deficiency in CCR5 expression is highly protective against HIV-1 transmission (21, 36), establishing CCR5 as the primary CoR. The importance of alternative CoRs other than CXCR4 has remained elusive despite many studies (1, 30, 70, 81). Expansion of CoR use from CCR5 to include CXCR4 is frequently associated with the ability to use additional alternative CoRs for viral entry (8, 16, 20, 63, 79) in most but not all studies (29, 33, 40, 77, 78). This finding suggests that the sequence changes in HIV-1 env required for use of CXCR4 as an additional or alternative CoR (14, 15, 31, 37, 41, 57) are likely to increase the potential to use other alternative CoRs.We have used the highly permissive NP-2/CD4 human glioma cell line developed by Soda et al. (69) to classify virus entry via the alternative CoRs CCR1, CCR3, CCR8, GPR1, CXCR6, APJ, CMKLR1/ChemR23, FPRL1, and CXCR4. Full-length molecular clones of 66 env genes from most prevalent HIV-1 subtypes were used to generate infectious virus pseudotypes expressing a luciferase reporter construct (19, 57). Two types of analysis were performed: the level of virus entry mediated by each alternative CoR and linear regression of entry mediated by CCR5 versus all other alternative CoRs. We thus were able to identify patterns of alternative CoR use that were subtype specific and to determine if use of any alternative CoR was correlated or independent of CCR5-mediated entry. The results obtained have implications for the evolution of env function, and the analyses revealed important differences between subtype B Env function and all other HIV-1 subtypes.  相似文献   

20.
Factors potentially contributing to the lower incidence of Lyme borreliosis (LB) in the far-western than in the northeastern United States include tick host-seeking behavior resulting in fewer human tick encounters, lower densities of Borrelia burgdorferi-infected vector ticks in peridomestic environments, and genetic variation among B. burgdorferi spirochetes to which humans are exposed. We determined the population structure of B. burgdorferi in over 200 infected nymphs of the primary bridging vector to humans, Ixodes pacificus, collected in Mendocino County, CA. This was accomplished by sequence typing the spirochete lipoprotein ospC and the 16S-23S rRNA intergenic spacer (IGS). Thirteen ospC alleles belonging to 12 genotypes were found in California, and the two most abundant, ospC genotypes H3 and E3, have not been detected in ticks in the Northeast. The most prevalent ospC and IGS biallelic profile in the population, found in about 22% of ticks, was a new B. burgdorferi strain defined by ospC genotype H3. Eight of the most common ospC genotypes in the northeastern United States, including genotypes I and K that are associated with disseminated human infections, were absent in Mendocino County nymphs. ospC H3 was associated with hardwood-dominated habitats where western gray squirrels, the reservoir host, are commonly infected with LB spirochetes. The differences in B. burgdorferi population structure in California ticks compared to the Northeast emphasize the need for a greater understanding of the genetic diversity of spirochetes infecting California LB patients.In the United States, Lyme borreliosis (LB) is the most commonly reported vector-borne illness and is caused by infection with the spirochete Borrelia burgdorferi (3, 9, 52). The signs and symptoms of LB can include a rash, erythema migrans, fever, fatigue, arthritis, carditis, and neurological manifestations (50, 51). The black-legged tick, Ixodes scapularis, and the western black-legged tick, Ixodes pacificus, are the primary vectors of B. burgdorferi to humans in the United States, with the former in the northeastern and north-central parts of the country and the latter in the Far West (9, 10). These ticks perpetuate enzootic transmission cycles together with a vertebrate reservoir host such as the white-footed mouse, Peromyscus leucopus, in the Northeast and Midwest (24, 35), or the western gray squirrel, Sciurus griseus, in California (31, 46).B. burgdorferi is a spirochete species with a largely clonal population structure (14, 16) comprising several different strains or lineages (8). The polymorphic ospC gene of B. burgdorferi encodes a surface lipoprotein that increases expression within the tick during blood feeding (47) and is required for initial infection of mammalian hosts (25, 55). To date, approximately 20 North American ospC genotypes have been described (40, 45, 49, 56). At least four, and possibly up to nine, of these genotypes are associated with B. burgdorferi invasiveness in humans (1, 15, 17, 49, 57). Restriction fragment length polymorphism (RFLP) and, subsequently, sequence analysis of the 16S-23S rRNA intergenic spacer (IGS) are used as molecular typing tools to investigate genotypic variation in B. burgdorferi (2, 36, 38, 44, 44, 57). The locus maintains a high level of variation between related species, and this variation reflects the heterogeneity found at the genomic level of the organism (37). The IGS and ospC loci appear to be linked (2, 8, 26, 45, 57), but the studies to date have not been representative of the full range of diversity of B. burgdorferi in North America.Previous studies in the northeastern and midwestern United States have utilized IGS and ospC genotyping to elucidate B. burgdorferi evolution, host strain specificity, vector-reservoir associations, and disease risk to humans. In California, only six ospC and five IGS genotypes have been described heretofore in samples from LB patients or I. pacificus ticks (40, 49, 56) compared to approximately 20 ospC and IGS genotypes identified in ticks, vertebrate hosts, or humans from the Northeast and Midwest (8, 40, 45, 49, 56). Here, we employ sequence analysis of both the ospC gene and IGS region to describe the population structure of B. burgdorferi in more than 200 infected I. pacificus nymphs from Mendocino County, CA, where the incidence of LB is among the highest in the state (11). Further, we compare the Mendocino County spirochete population to populations found in the Northeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号