首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Pelagibaca bermudensis HTCC2601T and Maritimibacter alkaliphilus HTCC2654T represent two marine genera in the globally significant Roseobacter clade of the Alphaproteobacteria. Here, we present the genome sequences of these organisms, isolated from the Sargasso Sea using dilution-to-extinction culturing, which offer insight into the genetic basis for the metabolic and ecological diversity of this important group.Organisms from the Roseobacter clade of the Alphaproteobacteria are numerically significant in the world''s oceans and have been found in a wide range of habitats (1, 3). Using previously described high-throughput dilution-to-extinction culturing (6, 13), the marine Roseobacter strains Pelagibaca bermudensis HTCC2601T and Maritimibacter alkaliphilus HTCC2654T were isolated in low-nutrient heterotrophic medium (LNHM) (4) from surface water collected at the Bermuda Atlantic Time-Series Study (BATS) site in the western Sargasso Sea (5, 9). As the type strains for two genera of this globally prolific Roseobacter group, P. bermudensis and M. alkaliphilus were selected for shotgun genome sequencing at the J. Craig Venter Institute through the Moore Foundation Microbial Genome Sequencing Project (http://www.moore.org/microgenome). Draft genomes of P. bermudensis and M. alkaliphilus, with 103 and 46 contigs, respectively, were annotated and analyzed through the Joint Genome Institute IMG/M website (http://img.jgi.doe.gov/cgi-bin/pub/main.cgi) (10).The draft genomes of P. bermudensis and M. alkaliphilus comprise 5,425,920 and 4,529,231 bases, 5,522 and 4,764 predicted open reading frames (ORFs), and 66.44% and 64.13% G+C content, respectively. The P. bermudensis genome is predicted to contain 56 tRNA genes, five 5S rRNA genes, four 16S rRNA genes, and five 23S rRNA genes, and that of M. alkaliphilus 49 tRNA genes and one each of the 5S, 16S, and 23S rRNA genes. Both genomes have putative genes for complete glycolysis and Entner-Doudoroff pathways, a complete tricarboxylic acid cycle, and predicted metabolic pathways for the oxidation of C1 compounds. Both have predicted genes for the synthesis of most essential amino acids and some vitamins and cofactors. Each has putative genes for the utilization of fructose, sucrose, and mannose, confirmed in physiological testing of P. bermudensis (5) but not for M. alkaliphilus (9). P. bermudensis contains a predicted complete RuBisCO complex, unique to the sequenced Roseobacter species (12, 15), a complete assimilatory nitrate reduction pathway, and several type VI secretion genes. M. alkaliphilus is predicted to have complete nitrate reduction pathways to both N2 and ammonia and most type IV secretion genes. Both are predicted to have complete sec pathways and large numbers of ABC transporters (362 in P. bermudensis and 224 in M. alkaliphilus), similar to other Roseobacter strains (15).M. alkaliphilus was named because of its alkaline growth optimum at pH 10. Na+/H+ antiporters have been shown to be involved in conferring alkaliphilic phenotypes for a variety of organisms by increasing internal cellular H+ concentrations in alkaline conditions where Na+ is present (2, 7, 8, 14, 16, 17). As expected, the genome of M. alkaliphilus contains two putative Na+/H+ antiporters, one homologous to nhaP, important for alkaliphily in several strains (2, 16, 17), and another located adjacent to predicted ABC transporter genes for capsular polysaccharide export.  相似文献   

2.
3.
4.
Information on the genome content of deeply branching phyla with very few cultured members is invaluable for expanding understanding of microbial evolution. Lentisphaera araneosa HTCC2155T was isolated from the Oregon coast using dilution-to-extinction culturing. It is a marine heterotroph found in surface and mesopelagic waters in both the Pacific and Atlantic oceans and has the unusual property of producing a net-like matrix of secreted exopolysaccharide. Here we present the genome sequence of L. araneosa HTCC2155T, importantly, one of only two sequenced members of the phylum Lentisphaerae.The phylum Lentisphaerae was designated in 2004 with five isolated organisms, of which two were characterized and served as the basis for the designation of two novel orders (2). The phylum is most closely related to Verrucomicrobia, Chlamydiae, Planctomycetes, and the candidate division OP3; these phyla make up a recently designated monophyletic superphylum, PVC (11, 15). Within the phylum Lentisphaerae, clone sequences have been obtained from a variety of environments (2 [and references therein], 16). Isolated from surface waters off the Oregon coast by dilution-to-extinction culturing (3, 13), two organisms with identical 16S rRNA gene sequences were named Lentisphaera araneosa and make up the order Lentisphaerales (2). Here we present the genome sequence of the type strain, L. araneosa HTCC2155T.L. araneosa HTCC2155T was isolated from seawater samples collected at 10 m using low-nutrient heterotrophic medium (2). The genome sequence was determined by shotgun sequencing at the J. Craig Venter Institute as part of the Moore Foundation Microbial Genome Sequencing Project (http://www.moore.org/microgenome). This draft unclosed genome, consisting of 81 contigs (ABCK01000001 to ABCK01000081), was analyzed with the GenDB program (7) at the Center for Genome Research and Biocomputing at Oregon State University, similarly to Previous analyses (9, 10) and through the Joint Genome Institute IMG/M website (http://img.jgi.doe.gov/cgi-bin/pub/main.cgi) (5). The draft genome comprises 5,173 open reading frames (ORFs), 6,023,180 bases, with a G+C content of 40.95%. Forty-nine percent of these ORFs have predicted functions. The genome is predicted to contain 55 tRNA genes, 5 5S rRNA genes, 3 16S rRNA genes, and 1 23S rRNA gene. There are putative genes for a complete tricarboxylic acid cycle, glycolysis, the pentose phosphate pathway, and amino acid synthesis.Notably, the L. araneosa genome contains 267 putative sulfatases. Since the primary described role of sulfatases is liberating sulfur from sulfate esters during sulfate deprivation (reference 14 and references therein), such a quantity of these genes in this organism is surprising, given the abundance of sulfate in marine environments. The genome of the marine planctomycete Pirellula sp. strain 1 contained 110 putative sulfatases which the authors hypothesized were involved in sulfur scavenging from marine snow (4).L. araneosa was so named because the exopolysaccharide (EPS) secreted during growth forms a web-like matrix between cells. The genome contains several putative genes connected with EPS production—22 predicted glycosyltransferases, several of which are located two genes downstream from putative UDP-N-acetylglucosamine 2-epimerases (epsC homologs) in eps gene cluster-like configurations (12, 14). EPS production has been connected to psychrotolerance in several strains (1, 6, 8) and with increased pressure (6). The highest relative abundances of L. araneosa were measured in upper mesopelagic waters off the Oregon coast and at the Bermuda Atlantic Time Series station (2). We hypothesize that predicted EPS production genes confer increased fitness on L. araneosa in mid-ocean environments by stimulating the formation of aggregates (“marine snow”) or by interfering with predation.  相似文献   

5.
Fulvimarina pelagi is a Mn(II)-oxidizing marine heterotrophic bacterium in the order Rhizobiales. Here we announce the draft genome sequence of F. pelagi HTCC2506T, which was isolated from the Sargasso Sea by using dilution-to-extinction culturing. The genome sequence contained a xanthorhodopsin gene as well as a photosynthetic gene cluster, which suggests the coexistence of two different phototrophic mechanisms in a single microorganism.Besides being mediated by the well-known process of aerobic oxygenic photosynthesis, utilization of light energy in the marine carbon and nutrient cycling processes is usually mediated by aerobic anoxygenic phototrophic bacteria (AAPB) or prokaryotes containing microbial rhodopsin family proteins (18). AAPB comprise about 10% of total microbial cells in the euphotic zone of diverse marine regimes, with alpha-, beta-, and gammaproteobacteria as major constituents (8, 10). Rhodopsin family proteins, including bacteriorhodopsin, proteorhodopsin, and xanthorhodopsin (XR), have been shown to exist in 7 to 70% of marine prokaryotes and contribute photoheterotrophy in diverse phylogenetic groups such as Flavobacteria, Proteobacteria, and Archaea (15, 19). However, no single microorganism has been reported to contain the genes for both aerobic anoxygenic phototrophy (AAnP) and rhodopsin family proteins.F. pelagi HTCC2506T was cultivated through a dilution-to-extinction approach (3) from the western Sargasso Sea and identified as a novel genus and species in the order Rhizobiales of the Alphaproteobacteria by polyphasic taxonomy (2). Later, three F. pelagi strains, including HTCC2506T, were shown to have Mn(II)-oxidizing activity (1). The draft genome sequence of HTCC2506T was determined by shotgun sequencing at the J. Craig Venter Institute as part of the Moore Foundation Microbial Genome Sequencing Project and analyzed by the GenDB annotation program (17) at the Center for Genome Research and Biocomputing at Oregon State University and the Joint Genome Institute IMG system (http://img.jgi.doe.gov) (14).The draft genome was 3,802,689 bp in length, distributed in 20 contigs with 61.2% G+C content, and contained 3,754 protein-coding genes, three copies of 16S-23S-5S rRNA genes, and 54 tRNA genes. Remarkably, HTCC2506T possessed XR and a complete gene set for AAnP together. A gene cluster encoding the AAnP apparatus was composed of bchIDO-crtCDF-bchCXYZ-pufBALMC-puhE-acsF-puhCBA-lhaA-bchMLHBNF-aerR-ppsR-ubiA-pucC-bchP-hemT. Mu-like prophage sequences were located closely adjacent to the AAnP gene cluster, which might imply the possibility of the lateral gene transfer of the AAnP gene cluster. The XR gene was followed by blh, a gene involved in retinal biosynthesis (16). To our knowledge, this is the first report of a microbe possessing both an AAnP apparatus and a rhodopsin family protein, although the two gene sets in HTCC2506T had been separately reported to be present (5, 13). The HTCC2506T genome also encoded a bacteriophytochrome (6, 7), a light-regulated signal transduction histidine kinase. Overall, the existence of a diverse repertoire of genes for sensing or harvesting of light energy implicates the importance of phototrophic metabolism for HTCC2506T.In addition to genes for phototrophy, the genome contained several genes with diverse metabolic potential. A lithotrophic mode of energy acquisition was predicted from the presence of the form II coxSLM genes, which encode aerobic-type carbon monoxide dehydrogenase (9). As expected from the Mn(II)-oxidizing activity of HTCC2506T, the genome also encoded a multicopper oxidase (MCO) enzyme, suggesting a potential lithotrophy. In terms of carbon assimilation, genes encoding RuBisCO and phosphoribulokinase of the Calvin-Benson-Bassham cycle (11) were predicted, suggesting the possibility of autotrophic CO2 fixation in HTCC2506T. Serine transhydroxymethylase for formaldehyde assimilation (12) was predicted. A gene encoding dimethylsulfoniopropionate (DMSP) lyase, which conveys the production of dimethylsulfide from DMSP (4), was also found in the genome.Although HTCC2506T was originally isolated as a chemoheterotroph (2), the genome sequence clearly shows the phototrophic potential of this bacterium. This finding, combined with the prediction of many genes related to lithotrophy, carbon fixation, C1 compound assimilation, and DMSP lysis, suggests that F. pelagi HTCC2506T may use a wide range of potential metabolic functions to survive in the marine euphotic environment.  相似文献   

6.
7.
8.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

9.
Phenoxyalkanoic acid (PAA) herbicides are widely used in agriculture. Biotic degradation of such herbicides occurs in soils and is initiated by α-ketoglutarate- and Fe2+-dependent dioxygenases encoded by tfdA-like genes (i.e., tfdA and tfdAα). Novel primers and quantitative kinetic PCR (qPCR) assays were developed to analyze the diversity and abundance of tfdA-like genes in soil. Five primer sets targeting tfdA-like genes were designed and evaluated. Primer sets 3 to 5 specifically amplified tfdA-like genes from soil, and a total of 437 sequences were retrieved. Coverages of gene libraries were 62 to 100%, up to 122 genotypes were detected, and up to 389 genotypes were predicted to occur in the gene libraries as indicated by the richness estimator Chao1. Phylogenetic analysis of in silico-translated tfdA-like genes indicated that soil tfdA-like genes were related to those of group 2 and 3 Bradyrhizobium spp., Sphingomonas spp., and uncultured soil bacteria. Soil-derived tfdA-like genes were assigned to 11 clusters, 4 of which were composed of novel sequences from this study, indicating that soil harbors novel and diverse tfdA-like genes. Correlation analysis of 16S rRNA and tfdA-like gene similarity indicated that any two bacteria with D > 20% of group 2 tfdA-like gene-derived protein sequences belong to different species. Thus, data indicate that the soil analyzed harbors at least 48 novel bacterial species containing group 2 tfdA-like genes. Novel qPCR assays were established to quantify such new tfdA-like genes. Copy numbers of tfdA-like genes were 1.0 × 106 to 65 × 106 per gram (dry weight) soil in four different soils, indicating that hitherto-unknown, diverse tfdA-like genes are abundant in soils.Phenoxyalkanoic acid (PAA) herbicides such as MCPA (4-chloro-2-methyl-phenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) are widely used to control broad-leaf weeds in agricultural as well as nonagricultural areas (19, 77). Degradation occurs primarily under oxic conditions in soil, and microorganisms play a key role in the degradation of such herbicides in soil (62, 64). Although relatively rapidly degraded in soil (32, 45), both MCPA and 2,4-D are potential groundwater contaminants (10, 56, 70), accentuating the importance of bacterial PAA herbicide-degrading bacteria in soils (e.g., references 3, 5, 6, 20, 41, 59, and 78).Degradation can occur cometabolically or be associated with energy conservation (15, 54). The first step in the degradation of 2,4-D and MCPA is initiated by the product of cadAB or tfdA-like genes (29, 30, 35, 67), which constitutes an α-ketoglutarate (α-KG)- and Fe2+-dependent dioxygenase. TfdA removes the acetate side chain of 2,4-D and MCPA to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, and glyoxylate while oxidizing α-ketoglutarate to CO2 and succinate (16, 17).Organisms capable of PAA herbicide degradation are phylogenetically diverse and belong to the Alpha-, Beta-, and Gammproteobacteria and the Bacteroidetes/Chlorobi group (e.g., references 2, 14, 29-34, 39, 60, 68, and 71). These bacteria harbor tfdA-like genes (i.e., tfdA or tfdAα) and are categorized into three groups on an evolutionary and physiological basis (34). The first group consists of beta- and gammaproteobacteria and can be further divided into three distinct classes based on their tfdA genes (30, 46). Class I tfdA genes are closely related to those of Cupriavidus necator JMP134 (formerly Ralstonia eutropha). Class II tfdA genes consist of those of Burkholderia sp. strain RASC and a few strains that are 76% identical to class I tfdA genes. Class III tfdA genes are 77% identical to class I and 80% identical to class II tfdA genes and linked to MCPA degradation in soil (3). The second group consists of alphaproteobacteria, which are closely related to Bradyrhizobium spp. with tfdAα genes having 60% identity to tfdA of group 1 (18, 29, 34). The third group also harbors the tfdAα genes and consists of Sphingomonas spp. within the alphaproteobacteria (30).Diverse PAA herbicide degraders of all three groups were identified in soil by cultivation-dependent studies (32, 34, 41, 78). Besides CadAB, TfdA and certain TfdAα proteins catalyze the conversion of PAA herbicides (29, 30, 35). All groups of tfdA-like genes are potentially linked to the degradation of PAA herbicides, although alternative primary functions of group 2 and 3 TfdAs have been proposed (30, 35). However, recent cultivation-independent studies focused on 16S rRNA genes or solely on group 1 tfdA sequences in soil (e.g., references 3-5, 13, and 41). Whether group 2 and 3 tfdA-like genes are also quantitatively linked to the degradation of PAA herbicides in soils is unknown. Thus, tools to target a broad range of tfdA-like genes are needed to resolve such an issue. Primers used to assess the diversity of tfdA-like sequences used in previous studies were based on the alignment of approximately 50% or less of available sequences to date (3, 20, 29, 32, 39, 47, 58, 73). Primers specifically targeting all major groups of tfdA-like genes to assess and quantify a broad diversity of potential PAA degraders in soil are unavailable. Thus, the objectives of this study were (i) to develop primers specific for all three groups of tfdA-like genes, (ii) to establish quantitative kinetic PCR (qPCR) assays based on such primers for different soil samples, and (iii) to assess the diversity and abundance of tfdA-like genes in soil.  相似文献   

10.
11.
12.
13.
Outbreaks of Vibrio vulnificus wound infections in Israel were previously attributed to tilapia aquaculture. In this study, V. vulnificus was frequently isolated from coastal but not freshwater aquaculture in Bangladesh. Phylogenetic analyses showed that strains from Bangladesh differed remarkably from isolates commonly recovered elsewhere from fish or oysters and were more closely related to strains of clinical origin.Vibrio vulnificus causes severe wound infections and life-threatening septicemia (mortality, >50%), primarily in patients with underlying chronic diseases (10, 19, 23) and primarily from raw oyster consumption (21). This Gram-negative halophile is readily recovered from oysters (27, 35, 43) and fish (14) and was initially classified into two biotypes (BTs) based on growth characteristics and serology (5, 18, 39). Most human isolates are BT1, while BT2 is usually associated with diseased eels (1, 39). An outbreak of wound infections from aquacultured tilapia in Israel (6) revealed a new biotype (BT3). Phenotypic assays do not consistently distinguish biotypes (33), but genetic analyses have helped resolve relationships (20). A 10-locus multilocus sequence typing (MLST) scheme (8, 9) and a similar analysis of 6 loci (13) segregated V. vulnificus strains into two clusters. BT1 strains were in both clusters, while BT2 segregated into a single cluster and BT3 was a genetic mosaic of the two lineages. Significant associations were observed between MLST clusters and strain origin: most clinical strains (BT1) were in one cluster, and the other cluster was comprised mostly of environmental strains (some BT1 and all BT2). Clinical isolates were also associated with a unique genomic island (13).The relationship between genetic lineages and virulence has not been determined, and confirmed virulence genes are universally present in V. vulnificus strains from both clinical and environmental origins (19, 23). However, segregation of several polymorphic alleles agreed with the MLST analysis and correlated genotype with either clinical or environmental strain origin. Alleles include 16S rRNA loci (15, 26, 42), a virulence-correlated gene (vcg) locus (31, 41, 42), and repetitive sequence in the CPS operon (12). DiversiLab repetitive extrageneic palindromic (rep-PCR) analysis also confirmed these genetic distinctions and showed greater diversity among clinical strains (12).Wound infections associated with tilapia in Israel implicated aquaculture as a potential source of V. vulnificus in human disease (6, 40). Tilapia aquaculture is increasing rapidly, as shown by a 2.8-fold increase in tons produced from 1998 to 2007 (Food and Agriculture Organization; http://www.fao.org/fishery/statistics/en). Therefore, presence of V. vulnificus in tilapia aquaculture was examined in Bangladesh, a region that supports both coastal and freshwater sources of industrial-scale aquaculture. V. vulnificus strains were recovered from market fish, netted fish, and water samples, and the phylogenetic relationship among strains was examined relative to clinical and environmental reference strains collected elsewhere.  相似文献   

14.
15.
Understanding the mechanisms underlying potential altered susceptibility to human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) individuals and the later clinical consequences of breakthrough infection can provide insight into strategies to control HIV-1 with an effective vaccine. From our Seattle ES cohort, we identified one individual (LSC63) who seroconverted after over 2 years of repeated unprotected sexual contact with his HIV-1-infected partner (P63) and other sexual partners of unknown HIV-1 serostatus. The HIV-1 variants infecting LSC63 were genetically unrelated to those sequenced from P63. This may not be surprising, since viral load measurements in P63 were repeatedly below 50 copies/ml, making him an unlikely transmitter. However, broad HIV-1-specific cytotoxic T-lymphocyte (CTL) responses were detected in LSC63 before seroconversion. Compared to those detected after seroconversion, these responses were of lower magnitude and half of them targeted different regions of the viral proteome. Strong HLA-B27-restricted CTLs, which have been associated with disease control, were detected in LSC63 after but not before seroconversion. Furthermore, for the majority of the protein-coding regions of the HIV-1 variants in LSC63 (except gp41, nef, and the 3′ half of pol), the genetic distances between the infecting viruses and the viruses to which he was exposed through P63 (termed the exposed virus) were comparable to the distances between random subtype B HIV-1 sequences and the exposed viruses. These results suggest that broad preinfection immune responses were not able to prevent the acquisition of HIV-1 infection in LSC63, even though the infecting viruses were not particularly distant from the viruses that may have elicited these responses.Understanding the mechanisms of altered susceptibility or control of human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) persons may provide invaluable information aiding the design of HIV-1 vaccines and therapy (9, 14, 15, 33, 45, 57, 58). In a cohort of female commercial sex workers in Nairobi, Kenya, a small proportion of individuals remained seronegative for over 3 years despite the continued practice of unprotected sex (12, 28, 55, 56). Similarly, resistance to HIV-1 infection has been reported in homosexual men who frequently practiced unprotected sex with infected partners (1, 15, 17, 21, 61). Multiple factors have been associated with the resistance to HIV-1 infection in ES individuals (32), including host genetic factors (8, 16, 20, 37-39, 44, 46, 47, 49, 59, 63), such as certain HLA class I and II alleles (41), as well as cellular (1, 15, 26, 55, 56), humoral (25, 29), and innate immune responses (22, 35).Seroconversion in previously HIV-resistant Nairobi female commercial sex workers, despite preexisting HIV-specific cytotoxic T-lymphocyte (CTL) responses, has been reported (27). Similarly, 13 of 125 ES enrollees in our Seattle ES cohort (1, 15, 17) have become late seroconverters (H. Zhu, T. Andrus, Y. Liu, and T. Zhu, unpublished observations). Here, we analyze the virology, genetics, and immune responses of HIV-1 infection in one of the later seroconverting subjects, LSC63, who had developed broad CTL responses before seroconversion.  相似文献   

16.
17.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

18.
Genome annotation of the chlorinated ethene-respiring “Dehalococcoides ethenogenes” strain 195 indicated the presence of a complete nitrogenase operon. Here, results from long-term growth experiments, gene expression, and 15N2-isotope measurements confirm that strain 195 is capable of fixing atmospheric dinitrogen when a defined fixed-nitrogen source such as ammonium is unavailable.“Dehalococcoides ethenogenes” strain 195 is the first isolated bacterium that is capable of reductively dechlorinating tetrachloroethene and trichloroethene (TCE) to vinyl chloride (VC) and ethene (22). Annotation of the 1.5-Mbp genome of strain 195 has identified 17 intact reductive dehalogenase (RDase) genes (25). The variety of RDases has essentially defined the metabolic capabilities of strain 195 and other Dehalococcoides strains for respiration of chlorinated ethenes (8, 9, 15, 23, 27) and other chlorinated compounds (1, 2, 6, 21), making them important participants in bioremediation processes (19). Expression of different putative RDase genes has been examined previously in pure culture (6) and in Dehalococcoides-containing enrichment cultures (3, 4, 13, 17, 24, 28).Genome annotation of strain 195 has revealed the presence of a nitrogenase-encoding operon (nif) (DET1151-58) typical of those found in anaerobes (25). According to the published genome annotations of four strains of Dehalococcoides, strain 195 is the only one that contains a nif operon (16, 25; Joint Genome Institute, 2009, Integrated Microbial Genomes system [www.jgi.doe.gov]). A nif operon closely related to that in strain 195 has also been identified in a mixed Dehalococcoides-containing community (29); thus, the nitrogen-fixing function might be present in other unsequenced strains of Dehalococcoides.Phylogenetically, the nitrogenase structural genes of strain 195 are clustered with diverse anaerobic Bacteria, including the molybdenum (Mo)-nitrogenase in Clostridium pasteurianum, as well as Archaea, including the Mo-nitrogenase in Methanosarcina barkeri (25, 30). In the genome of strain 195, the presence of an ABC transporter for molybdenum (DET1159-61) and a nifV gene (DET1614), which encodes homocitrate synthetase used in nitrogenase FeMo-cofactor biosynthesis, suggests that the nitrogenase is of the typical molybdenum-iron type (25). While strain 195 is the only sequenced Dehalococcoides isolate that contains a nif operon, Ju et al. (14) previously identified functional nifH genes in dechlorinating organisms from diverse genera such as Sulfurospirillum multivorans, Desulfovibrio dechloracetivorans, and Desulfomonile tiedjei.Aquifers containing groundwater contaminated with chlorinated ethenes can potentially be limited in nutrients. For example, at the Wurtsmith Air Force Base, the chlorinated ethene-contaminated groundwater was found to contain less than 0.09 mM of ammonia, prompting ammonium amendment (26). Little is currently known about the potential effects of nitrogen limitation on reductive dechlorination in the environment, and the demonstration of nitrogen fixation in strain 195 was previously hindered by the use of an undefined medium (21). Here, we present results demonstrating that strain 195 is capable of fixing atmospheric dinitrogen and the physiological implications of the stress caused by nitrogen limitation.  相似文献   

19.
Lactobacillus crispatus is a common member of the beneficial microbiota present in the vertebrate gastrointestinal and human genitourinary tracts. Here, we report the genome sequence of L. crispatus ST1, a chicken isolate displaying strong adherence to vaginal epithelial cells.Lactobacillus crispatus can persist in the vertebrate gastrointestinal tract and is among the most prevalent species of the Lactobacillus-dominated human vaginal microbiota (2, 9, 13, 14). It belongs to the so-called acidophilus group (3), which has attracted interest because some of its species are important factors in the production of fermented foods (12) and some can, at least transiently, colonize the human host (2, 9, 13, 14). Moreover, some specific strains, mainly L. acidophilus NCFM and L. johnsonii NCC 533, have received prominence as intestinal-health-promoting microbes (4). Although the genomes of seven members of the acidophilus complex have been sequenced to date (12), the genome sequences of L. crispatus and other predominant lactobacillar species in the urogenital flora have mostly remained obscure. Vaginal lactobacilli can have an important role in controlling the health of the host (2, 14). They can, for example, positively influence and stabilize the host''s vaginal microbiota via the production of compounds that are acidic or exert a direct inhibiting action toward pathogenic bacteria (2, 14). In addition to the antimicrobial compounds, the competitive exclusion of pathogens is another mechanism by which the host''s microbiota can be balanced (2). L. crispatus ST1 was originally isolated from the crop of a chicken, and PCR profiling of L. crispatus isolates has verified it to be an abundant colonizer of the chicken crop (6, 8). It also displays a strong protein-dependent adhesion to the epithelial cells of the human vagina and has been shown to inhibit the adhesion of avian pathogenic Escherichia coli (6, 7).The genome was sequenced (18× coverage) using a 454 pyrosequencer with GS FLX chemistry (Roche). The contig order was confirmed and gaps were filled by sequencing PCR fragments from the genomic DNA template using ABI 3730 and Big Dye chemistry (Applied Biosystems). Genomic data were processed using the Staden Package (11) and gsAssembler (Roche). Coding sequences (CDSs) were predicted using Glimmer3 (5) followed by manual curation of the start sites. The remaining intergenic regions were reanalyzed for missed CDSs by using BlastX (1). Annotation transfer was performed based on a BlastP search, followed by Blannotator analysis using default settings (http://ekhidna.biocenter.helsinki.fi/poxo/blannotator) and manual verification. Orthologous groups between the different lactobacillar proteomes were identified using OrthoMCL (10).The genome of L. crispatus ST1 consists of a single circular chromosome 2.04 Mbp in size, with an overall G+C content of 37%, without any plasmids. There are 64 tRNA genes, 4 rRNA operons, and 2 CRISPR loci. Out of the 2,024 predicted CDSs, a putative function was assigned to 77%, whereas 10% of the CDSs were annotated as conserved and 13% as novel. Based on the orthologous grouping, 302 (15%) of the CDSs encoded by ST1 have no detectable homologs in any of the Lactobacillus proteomes published to date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号