首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was recently established that fructose-1,6-bisphosphate (FBP) aldolase (FBA) and tagatose-1,6-bisphosphate (TBP) aldolase (TBA), two class II aldolases, are highly specific for the diastereoselective synthesis of FBP and TBP from glyceraldehyde-3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP), respectively. In this paper, we report on a FBA from the thermophile Thermus caldophilus GK24 (Tca) that produces both FBP and TBP from C(3) substrates. Moreover, the FBP:TBP ratio could be adjusted by manipulating the concentrations of G3P and DHAP. This is the first native FBA known to show dual diastereoselectivity among the FBAs and TBAs characterized thus far. To explain the behavior of this enzyme, the X-ray crystal structure of the Tca FBA in complex with DHAP was determined at 2.2A resolution. It appears that as a result of alteration of five G3P binding residues, the substrate binding cavity of Tca FBA has a greater volume than those in the Escherichia coli FBA-phosphoglycolohydroxamate (PGH) and TBA-PGH complexes. We suggest that this steric difference underlies the difference in the diastereoselectivities of these class II aldolases.  相似文献   

2.
Fructose-1,6-bisphosphate (FBP) aldolase, is a glycolytic enzyme that catalyzes the reversible condensation reaction of FBP to dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P). The aldolase gene from Aquifex aeolicus was subcloned, overexpressed in E. coli and purified to 95% homogeneity. The purified enzyme was activated by high concentrations of NH4+ and low concentrations of Co2+. The native molecular weight of the purified FBP aldolase was identified as 67 kDa (dimer) by gel filtration chromatography. The enzyme exhibits optimum pH at 6.5 and temperature at 90 °C. Based on the kinetic characterizations, the apparent Km was calculated to be 4.4 ± 0.07 mM, while Vmax was found to be 100 ± 0.02 μM min−1 mg protein−1. The recombinant protein showed extreme heat stability; no activity loss was observed even at 100 °C for 2 h. In addition, the thermophilic enzyme also showed higher stability against several organic solvents viz. acetonitrile, 1,4-dioxane, and methanol. With higher stability against both heat and organic solvents than any other class II aldolase, the A. aeolicus FBP aldolase is an attractive enzyme for use as a biocatalyst for industrial applications.  相似文献   

3.
The enzymatic reaction carried out by class I fructose-1,6-bisphosphate aldolase is known in great detail in terms of reaction intermediates, but the precise role of individual amino acids in the active site is poorly understood. Therefore, on the basis of the crystallographic structure of the complex between aldolase and dihydroxyacetone phosphate a molecular modelling study was undertaken to predict the Michaelis complex with fructose-1,6-bisphosphate and several covalent enzymatic reaction intermediates. This model reveals the unknown 6-phosphate binding site and assigns distinct roles to crucial residues. Asp33 is responsible for aligning the 2-keto function of the substrate correctly for nucleophilic attack by Lys229, and plays a role in carbinolamine formation. Lys146 assists in carbinolamine dehydration and is essential for stabilising the developing negative charge on O4 of fructose-1,6-bisphosphate during hydroxyl proton abstraction by Glu187. Subsequently, Glu187 is also responsible for protonating C1 of the dihydroxyacetone phosphate enamine. In addition, the absolute configuration of the fructose-1,6-bisphosphate carbinol intermediate is shown to be (2S), in agreement with the crystal structure, but opposite from the interpretation in the literature of the stereospecific reduction of the aldolase fructose-1,6-bisphosphate complex with sodium borohydride. It is demonstrated that the outcome of the latter type of experiment critically depends on conformational changes triggered by Schiff base formation. Electronic Supplementary Material available.  相似文献   

4.
The NAD-dependent glycerol-3-phosphate dehydrogenase (glycerol-3-phosphate:NAD+ oxidoreductase; EC 1.1.1.8; G3P DHG) was purified 178-fold to homogeneity from Saccharomyces cerevisiae strain H44-3D by affinity- and ion-exchange chromatography. SDS-PAGE indicated that the enzyme had a molecular mass of approximately 42,000 (+/- 1,000) whereas a molecular mass of 68,000 was observed using gel filtration, implying that the enzyme may exist as a dimer. The pH optimum for the reduction of dihydroxyacetone phosphate (DHAP) was 7.6 and the enzyme had a pI of 7.4. NADPH will not substitute for NADH as coenzyme in the reduction of DHAP. The oxidation of glycerol-3-phosphate (G3P) occurs at 3% of the rate of DHAP reduction at pH 7.0. Apparent Km values obtained were 0.023 and 0.54 mM for NADH and DHAP, respectively. NAD, fructose-1,6-bisphosphate (FBP), ATP and ADP inhibited G3P DHG activity. Ki values obtained for NAD with NADH as variable substrate and FBP with DHAP as variable substrate were 0.93 and 4.8 mM, respectively.  相似文献   

5.
The gene fba from the thermotolerant obligate methanotroph Methylococcus capsulatus Bath was cloned and expressed in Escherichia coli BL21(DE3). The fructose-1,6-bisphosphate aldolase (FBA) carrying six His on the C-end was purified by affinity metal chelating chromatography. The Mc. capsulatus FBA is a hexameric enzyme (240 kDa) that is activated by Co2+ and inhibited by EDTA. The enzyme displays low K m to fructose-1,6-bisphosphate (FBP) and higher K m to the substrates of aldol condensation, dihydroxyacetone phosphate and glyceraldehyde-3-phosphate. The FBA also catalyzes sedoheptulose-1,7-bisphosphate cleavage. The presence of Co2+ in the reaction mixture changes the kinetics of FBP hydrolysis and is accompanied by inhibition of the reaction by 2 mM FBP. Phylogenetically, the Mc. capsulatus enzyme belongs to the type B of class II FBAs showing high identity of translated amino acid sequence with FBAs from autotrophic bacteria. The role of the FBA in metabolism of Mc. capsulatus Bath, which realizes simultaneously three C1 assimilating pathways (the ribulose monophosphate, the ribulose bisphosphate, and the serine cycles), is discussed.  相似文献   

6.
Phosphoglucose isomerase negative mutant of mucoid Pseudomonas aeruginosa accumulated relatively higher concentration of fructose 1,6-bisphosphate (Fru-1,6-P2) when mannitol induced cells were incubated with this sugar alcohol. Also the toluene-treated cells of fructose 1,6-bisphosphate aldolase negative mutant of this organism produced Fru-1,6-P2 from fructose 6-phosphate in presence of ATP, but not from 6-phosphogluconate. The results together suggested the presence of an ATP-dependent fructose 6-phosphate kinase (EC 2.7.1.11) in mucoid P. aeruginosa.Abbreviations ALD Fru-1,6-P2 aldolse - DHAP dihydroxyacetone phosphate - F6P fructose 6-phosphate - G6P glucose 6-phosphate - Gly3P glyceraldehyde 3-phosphate - KDPG 2-keto 3-deoxy 6-phosphogluconate - PFK fructose 6-phosphate kinase - PGI phosphoglucose isomerase - 6PG 6-phosphogluconate  相似文献   

7.
Role of mono- and divalent metal cations in the catalysis by yeast aldolase   总被引:1,自引:0,他引:1  
The rate of deuterium exchange between [1-(S)-2H]dihydroxyacetone 3-phosphate and the solvent catalyzed by native and metal-substituted yeast aldolases has been measured. In the presence of 0.1 M potassium acetate at 15 degrees C, pH 7.3, the deuterium exchange reaction catalyzed by native yeast aldolase has a kcat of 95 s-1. In contrast to the 7-fold activity enhancement by 0.1 M potassium ion (relative to 0.1 M sodium ion) of the cleavage of D-fructose 1,6-bisphosphate catalyzed by native yeast aldolase, a negligible (1.1-fold) activation by 0.1 M potassium ion is observed in the rate of dedeuteration of [1(S)-2H]dihydroxyacetone 3-phosphate. The order of reactivity of the yeast metalloaldolases in the deuterium exchange roughly parallels that seen in the fructose bisphosphate cleavage reaction. These findings suggest that the carbonyl groups of enzyme-bound D-fructose 1,6-bisphosphate and dihydroxyacetone phosphate are both polarized by the active site divalent metal cation. A mechanistic formulation consistent with the results of this and the previous paper is presented.  相似文献   

8.
The chloroplastic and cytosolic forms of spinach (Spinacia oleracea cv Long Standing Bloomsdale) leaf NADH:dihydroxyacetone phosphate (DHAP) reductase were separated and partially purified. The chloroplastic form was stimulated by dithiothreitol, reduced thioredoxin, dihydrolipoic acid, 6-phosphogluconate, and phosphate; the cytosolic isozyme was stimulated by fructose 2,6-bisphosphate but not by reduced thioredoxin. End product components that severely inhibited both forms of the reductase included lipids and free fatty acids, membranes, and glycerol phosphate. In addition, two groups of inhibitory peptides were obtained from the fraction precipitated by 70 to 90% saturation with (NH4)2SO4. Chromatography of this fraction on Sephadex G-50 revealed a peptide peak of about 5 kilodaltons which inhibited the chloroplastic DHAP reductase and a second peak containing peptides of about 2 kilodaltons which inhibited the cytosolic form of the enzyme. Regulation of the reduction of dihydroxyacetone phosphate from the C3 photosynthetic carbon cycle or from glycolysis is a complex process involving activators such as thioredoxin or fructose 2,6-bisphosphate, peptide and lipid inhibitors, and intermediary metabolites. It is possible that fructose 2,6-bisphosphate increases lipid production by stimulating DHAP reductase for glycerol phosphate production as well as inhibiting fructose 1,6-bisphosphatase to stimulate glycolysis.  相似文献   

9.
10.
Summary A fructose 1,6-bisphosphate aldolase (E.C.4.1.2.13) from Staphylococcus carnosus DSM 20501 was purified for the first time. The enzymatic activity was insensitive to high levels of EDTA indicating that the enzyme is a class I aldolase. This enzyme exhibits good stability at high temperatures and extreme stability over a wide pH range. The K m for fructose 1,6-bisphosphate as substrate was 0.022 mm. The S. carnosus aldolase is a monomeric enzyme with a molecular mass of about 33 kDa. It exhibits a relatively broad pH optimum between pH 6.5 and 9.0. Furthermore, the aldolase accepts other aldehydes in place of its natural substrate, glyceraldehyde 3-phosphate, allowing the synthesis of various sugar phosphates. Offprint requests to: M. R. Kula  相似文献   

11.
Kinetics of fructose-1,6-disphosphate aldolase (EC 4.1.2.13) catalyzed conversion of fructose phosphates was analyzed by coupling the aldolase reactions to the metabolically sequential enzyme, glycerol-3-phosphate dehydrogenase (EC 1.1.1.8), which interacts with aldolase. At low enzyme concentration poly(ethylene glycol) was added to promote complex formation of aldolase and glycerol-phosphate dehydrogenase resulting in a 3-fold increase in KM of fructose-1,6-bisphosphate and no change in Vmax. Kinetic parameters for fructose-1-phosphate conversion changed inversely upon complex formation: Vmax increased while KM remained unchanged. Gel penetration and ion-exchange chromatographic experiments showed positive modulation of the interaction of aldolase and dehydrogenase by fructose-1,6-bisphosphate. The dissociation constant of the heterologous enzyme complex decreased 10-fold in the presence of this substrate. Fructose-1-phosphate or dihydroxyacetone phosphate had no effect on the dissociation constant of the aldolase-dehydrogenase complex. In addition, titration of fluorescein-labelled glycerol-phosphate dehydrogenase with aldolase indicated that both fructose-1,6-bisphosphate and fructose-2,6-biphosphate enhanced the affinity of aldolase to glycerol-phosphate dehydrogenase. The results of the kinetic and binding experiments suggest that binding of the C-6 phosphate group of fructose-1,6-bisphosphate to aldolase complexed with dehydrogenase is sterically impeded while saturation of the C-6 phosphate group site increases the affinity of aldolase for dehydrogenase. The possible molecular mechanism of the fructose-1,6-bisphosphate modulated interaction is discussed.  相似文献   

12.
Lee SJ  Kim HS  Kim do J  Yoon HJ  Kim KH  Yoon JY  Suh SW 《FEBS letters》2011,(2):307-312
Staphylococcus aureus LacD, a Class I tagatose-1,6-bisphosphate (TBP) aldolase, shows broadened substrate specificity by catalyzing the cleavage of 1,6-bisphosphate derivatives of d-tagatose, d-fructose, d-sorbose, and d-psicose. LacD.1 and LacD.2 are two closely-related Class I TBP aldolases in Streptococcus pyogenes. Here we have determined the crystal structures of S. aureus LacD and S. pyogenes LacD.1. Monomers of both enzymes are folded into a (β/α)8 barrel and two monomers associate tightly to form a dimer in the crystals. The structures suggest that the residues E189 and S300 of rabbit muscle Class I fructose-1,6-bisphosphate (FBP) aldolase are important for substrate specificity. When we mutated the corresponding residues of S. aureus LacD, the mutants (L165E, L275S, and L165E/L275S) showed enhanced substrate specificity toward FBP.

Structured summary

lacDbinds to lacD by X-ray crystallography(View interaction)lacD1binds to lacD1 by X-ray crystallography(View interaction)  相似文献   

13.
Class I fructose-1,6-bisphosphate aldolases catalyze the interconversion between the enamine and iminium covalent enzymatic intermediates by stereospecific exchange of the pro(S) proton of the dihydroxyacetone-phosphate C3 carbon, an obligatory reaction step during substrate cleavage. To investigate the mechanism of stereospecific proton exchange, high resolution crystal structures of native and a mutant Lys(146) --> Met aldolase were solved in complex with dihydroxyacetone phosphate. The structural analysis revealed trapping of the enamine intermediate at Lys(229) in native aldolase. Mutation of conserved active site residue Lys(146) to Met drastically decreased activity and enabled trapping of the putative iminium intermediate in the crystal structure showing active site attachment by C-terminal residues 360-363. Attachment positions the conserved C-terminal Tyr(363) hydroxyl within 2.9A of the C3 carbon in the iminium in an orientation consistent with incipient re face proton transfer. We propose a catalytic mechanism by which the mobile C-terminal Tyr(363) is activated by the iminium phosphate via a structurally conserved water molecule to yield a transient phenate, whose developing negative charge is stabilized by a Lys(146) positive charge, and which abstracts the C3 pro(S) proton forming the enamine. An identical C-terminal binding mode observed in the presence of phosphate in the native structure corroborates Tyr(363) interaction with Lys(146) and is consistent with transient C terminus binding in the enamine. The absence of charge stabilization and of a mobile C-terminal catalyst explains the extraordinary stability of enamine intermediates in transaldolases.  相似文献   

14.
S. Boag  A. R. Portis Jr. 《Planta》1985,165(3):416-423
The levels of stromal photosynthetic intermediates were measured in isolated intact spinach (Spinacia oleracea L.) chloroplasts exposed to reduced osmotic potentials. Stressed chloroplasts showed slower rates of metabolite accumulation upon illumination than controls. Relative to other metabolites sedoheptulose-1,7-bisphosphate (SBP) and fructose-1,6-bisphosphate (FBP) accumulated in the stroma in the stressed treatments. Under these conditions 3-phosphoglycerate (3-PGA) efflux to the medium was restricted. Chloroplasts previously incubated with [32P]KH2PO4 and [32P]dihydroxyacetone phosphate ([32P]DAP) in the dark were characterized by very high FBP and SBP levels prior to illumination. Metabolism of these pools upon illumination increased with increasing pH of the medium but was consistently inhibited in osmotically stressed chloroplasts. The responses of stromal FBP and SBP pools under hypertonic conditions are discussed in terms of both inhibited light activation of fructose-1,6-bisphosphatase (EC 3.1.3.11) and sedoheptulose-1,7-bisphosphatase (EC 3.1.3.37), and likely increases in stromal ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) active-site concentrations.Abbreviations and symbols DAP dihydroxyacetone phosphate - FBP fructose-1,6-bisphosphate - PGA 3-phosphoglycerate - RuBP ribulose-1,5-bisphosphate - SBP sedoheptulose-1,7-bisphosphate - s osmotic potential  相似文献   

15.
Eiji Gotoh 《FEBS letters》2010,584(14):3061-3064
The mechanism of post-illumination chlorophyll fluorescence transient (PIFT) was investigated in Arabidopsis. PIFT was detected in the wild type after illumination with low light. In the fba3-2 (fructose-1,6-bisphosphate aldolase) mutant, in which PIFT is enhanced, strong light also induced PIFT. PIFT was suppressed not only in the triose phosphate/phosphate translocator (tpt-2) mutant, but also in tpt-2 fba3-2, suggesting that triose phosphates, such as dihydroxyacetone phosphate (DHAP), are involved in the PIFT mechanism. We concluded that PIFT is associated with ribulose-1,5-bisphosphate (RuBP)-regeneration limitation of photosynthesis in low light.  相似文献   

16.
A cytosolic form of dihydroxyacetone phosphate (DHAP) reductase was purified 200,000-fold from spinach (Spinacia oleracea L.) leaves to apparent electrophoretic homogeneity. The purification procedure included anion-exchange chromatography, gel filtration, hydrophobic chromatography, and dye-ligand chromatography on Green-A and Red-A agaroses. The enzyme, prepared in an overall yield of 14%, had a final specific activity of about 500 μmol of DHAP reduced min−1 mg−1 protein, a subunit molecular mass of 38 kD, and a native molecular mass of 75 kD. A chloroplastic isoform of DHAP reductase was separated from the cytosolic form by anion-exchange chromatography and partially purified 56,000-fold to a specific activity of 135 μmol min−1 mg−1 protein. Antibodies generated in rabbits against the cytosolic form did not cross-react with the chloroplastic isoform. The two reductases were specific for NADH and DHAP. Although they exhibited some dissimilarities, both isoforms were severely inhibited by higher molecular weight fatty acyl coenzyme A esters and phosphohydroxypyruvate and moderately inhibited by nucleotides. In contrast to previous reports, the partially purified chloroplastic enzyme was not stimulated by dithiothreitol or thioredoxin, nor was the purified cytosolic enzyme stimulated by fructose 2,6-bisphosphate. A third DHAP reductase isoform was isolated from spinach leaf peroxisomes that had been prepared by isopycnic sucrose density gradient centrifugation. The peroxisomal DHAP reductase was sensitive to antibodies raised against the cytosolic enzyme and had a slightly smaller subunit molecular weight than the cytosolic isoform.  相似文献   

17.
18.
Fructose-1,6-bisphosphatase (FBPase), a key enzyme of gluconeogenesis and photosynthetic CO2 fixation, catalyzes the hydrolysis of fructose 1,6-bisphosphate (FBP) to produce fructose 6-phosphate, an important precursor in various biosynthetic pathways. All known FBPases are metal-dependent enzymes, which are classified into five different classes based on their amino acid sequences. Eukaryotes are known to contain only the type-I FBPases, whereas all five types exist in various combinations in prokaryotes. Here we demonstrate that the uncharacterized protein YK23 from Saccharomyces cerevisiae efficiently hydrolyzes FBP in a metal-independent reaction. YK23 is a member of the histidine phosphatase (phosphoglyceromutase) superfamily with homologues found in all organisms. The crystal structure of the YK23 apo-form was solved at 1.75-Å resolution and revealed the core domain with the α/β/α-fold covered by two small cap domains. Two liganded structures of this protein show the presence of two phosphate molecules (an inhibitor) or FBP (a substrate) bound to the active site. FBP is bound in its linear, open conformation with the cleavable C1-phosphate positioned deep in the active site. Alanine replacement mutagenesis of YK23 identified six conserved residues absolutely required for activity and suggested that His13 and Glu99 are the primary catalytic residues. Thus, YK23 represents the first family of metal-independent FBPases and a second FBPase family in eukaryotes.  相似文献   

19.
Inhibitors of the Giardia lamblia fructose 1,6-bisphosphate aldolase (GlFBPA), which transforms fructose 1,6-bisphosphate (FBP) to dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, were designed based on 3-hydroxy-2-pyridone and 1,2-dihydroxypyridine scaffolds that position two negatively charged tetrahedral groups for interaction with substrate phosphate binding residues, a hydrogen bond donor to the catalytic Asp83, and a Zn2+ binding group. The inhibition activities for the GlFBPA catalyzed reaction of FBP of the prepared alkyl phosphonate/phosphate substituted 3-hydroxy-2-pyridinones and a dihydroxypyridine were determined. The 3-hydroxy-2-pyridone inhibitor 8 was found to bind to GlFBPA with an affinity (Ki = 14 μM) that is comparable to that of FBP (Km = 2 μM) or its inert analog TBP (Ki = 1 μM). The X-ray structure of the GlFBPA-inhibitor 8 complex (2.3 Å) shows that 8 binds to the active site in the manner predicted by in silico docking with the exception of coordination with Zn2+. The observed distances and orientation of the pyridone ring O=C-C-OH relative to Zn2+ are not consistent with a strong interaction. To determine if Zn2+coordination occurs in the GlFBPA-inhibitor 8 complex in solution, EXAFS spectra were measured. A four coordinate geometry comprised of the three enzyme histidine ligands and an oxygen atom from the pyridone ring O=C-C-OH was indicated. Analysis of the Zn2+ coordination geometries in recently reported structures of class II FBPAs suggests that strong Zn2+ coordination is reserved for the enediolate-like transition state, accounting for minimal contribution of Zn2+ coordination to binding of 8 to GlFBPA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号