首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Information on the genome content of deeply branching phyla with very few cultured members is invaluable for expanding understanding of microbial evolution. Lentisphaera araneosa HTCC2155T was isolated from the Oregon coast using dilution-to-extinction culturing. It is a marine heterotroph found in surface and mesopelagic waters in both the Pacific and Atlantic oceans and has the unusual property of producing a net-like matrix of secreted exopolysaccharide. Here we present the genome sequence of L. araneosa HTCC2155T, importantly, one of only two sequenced members of the phylum Lentisphaerae.The phylum Lentisphaerae was designated in 2004 with five isolated organisms, of which two were characterized and served as the basis for the designation of two novel orders (2). The phylum is most closely related to Verrucomicrobia, Chlamydiae, Planctomycetes, and the candidate division OP3; these phyla make up a recently designated monophyletic superphylum, PVC (11, 15). Within the phylum Lentisphaerae, clone sequences have been obtained from a variety of environments (2 [and references therein], 16). Isolated from surface waters off the Oregon coast by dilution-to-extinction culturing (3, 13), two organisms with identical 16S rRNA gene sequences were named Lentisphaera araneosa and make up the order Lentisphaerales (2). Here we present the genome sequence of the type strain, L. araneosa HTCC2155T.L. araneosa HTCC2155T was isolated from seawater samples collected at 10 m using low-nutrient heterotrophic medium (2). The genome sequence was determined by shotgun sequencing at the J. Craig Venter Institute as part of the Moore Foundation Microbial Genome Sequencing Project (http://www.moore.org/microgenome). This draft unclosed genome, consisting of 81 contigs (ABCK01000001 to ABCK01000081), was analyzed with the GenDB program (7) at the Center for Genome Research and Biocomputing at Oregon State University, similarly to Previous analyses (9, 10) and through the Joint Genome Institute IMG/M website (http://img.jgi.doe.gov/cgi-bin/pub/main.cgi) (5). The draft genome comprises 5,173 open reading frames (ORFs), 6,023,180 bases, with a G+C content of 40.95%. Forty-nine percent of these ORFs have predicted functions. The genome is predicted to contain 55 tRNA genes, 5 5S rRNA genes, 3 16S rRNA genes, and 1 23S rRNA gene. There are putative genes for a complete tricarboxylic acid cycle, glycolysis, the pentose phosphate pathway, and amino acid synthesis.Notably, the L. araneosa genome contains 267 putative sulfatases. Since the primary described role of sulfatases is liberating sulfur from sulfate esters during sulfate deprivation (reference 14 and references therein), such a quantity of these genes in this organism is surprising, given the abundance of sulfate in marine environments. The genome of the marine planctomycete Pirellula sp. strain 1 contained 110 putative sulfatases which the authors hypothesized were involved in sulfur scavenging from marine snow (4).L. araneosa was so named because the exopolysaccharide (EPS) secreted during growth forms a web-like matrix between cells. The genome contains several putative genes connected with EPS production—22 predicted glycosyltransferases, several of which are located two genes downstream from putative UDP-N-acetylglucosamine 2-epimerases (epsC homologs) in eps gene cluster-like configurations (12, 14). EPS production has been connected to psychrotolerance in several strains (1, 6, 8) and with increased pressure (6). The highest relative abundances of L. araneosa were measured in upper mesopelagic waters off the Oregon coast and at the Bermuda Atlantic Time Series station (2). We hypothesize that predicted EPS production genes confer increased fitness on L. araneosa in mid-ocean environments by stimulating the formation of aggregates (“marine snow”) or by interfering with predation.  相似文献   

2.
Strain HTCC2143 was isolated from Oregon Coast surface waters using dilution-to-extinction culturing. Here we present the genome of strain HTCC2143 from the BD1-7 clade of the oligotrophic marine Gammaproteobacteria group. The genome of HTCC2143 contains genes for carotenoid biosynthesis and proteorhodopsin and for proteins that have potential biotechnological significance: epoxide hydrolases, Baeyer-Villiger monooxygenases, and polyketide synthases.Strain HTCC2143 was sampled and isolated from surface waters (depth, 10 m) off the Coastal Pacific Ocean, Newport, OR (44°36′0"N, 124°6′0"W). In the course of dilution-to-extinction culture studies on coastal microbial communities, strain HTCC2143 was isolated in a pristine seawater-based medium (2). Phylogenetic analysis of 16S rRNA gene sequences placed strain HTCC2143 in the BD1-7 clade of the oligotrophic marine Gammaproteobacteria (OMG) group (2) and indicated that it is related to Dasania marina, isolated from Arctic marine sediment (3, 8). The HTCC2143 16S rRNA gene sequence is 95.3% similar to that of D. marina (AY771747) and is 96.6% similar to that of environmental gene clone 20m-45 (GU061297), taken from intertidal beach seawater of the Yellow Sea, South Korea. Other closer relatives of HTCC2143 included uncultured gammaproteobacterial clones from seafloor lava (clone P0X3b5B06 from Hawaii South Point X3, EU491383; 96.3%) (9), deep-sea sediment (Ucp1554 from the South Atlantic Ocean, Cape Basin, AM997645; 95.9%) (10), Yellow Sea sediment (95.8%; D8S-33, EU652559), and Arctic sediment (from Kings Bay, Svalbard, Norway; clone SS1_B_07_55, EU050825; 95.7%).Genomic DNA was prepared at Oregon State University and sequenced by the J. Craig Venter Institute. The finished contigs were automatically annotated with a system based on the program GenDB (5) and manually annotated as described in previous reports (7, 12). The annotation is available at http://bioinfo.cgrb.oregonstate.edu/microbes/. The draft genome of strain HTCC2143 comprises 3,925,629 bases and 3,662 predicted coding sequences with a G+C content of 47.0%. The genome of HTCC2143 was predicted to contain 40 tRNAs, 1 16S rRNA, 2 5S rRNAs, and 2 23S rRNA genes. Four genes for selenocysteine metabolism were found, including a selenophosphate-dependent tRNA 2-selenouridine synthase and an l-seryl-tRNA(Sec) selenium transferase (EC 2.9.1.1).Strain HTCC2143 had genes for a complete tricarboxylic acid cycle, glycolysis, a pentose phosphate pathway, and an Entner-Doudoroff pathway. Genes were present for a high-affinity phosphate transporter and a pho regulon for sensing of environmental inorganic phosphate availability, as well as genes from the NUDIX (nucleoside diphosphate linked to some other moiety X) hydrolase domain family (1) that reflects the metabolic complexity of prokaryotes (4). Genes for ammonium transporters, nitrate reductase, and sulfate reductase were also present in the HTCC2143 genome.Carotenoid and proteorhodopsin genes were also found in the genome, as well as genes for polyketide synthase modules and related proteins. Carotenoid and proteorhodopsin genes were reported previously from another member of the OMG group, strain HTCC2207, a SAR92 clade isolate (11). HTCC2143 also encoded two epoxide hydrolases, two cyclohexanone monooxygenases (CHMOs) and a cyclododecanone monooxygenase (CDMO). CDMOs and CHMOs are members of the Baeyer-Villiger monooxygenase (BVMO) family. BVMOs are “green” alternatives to the chemically mediated Baeyer-Villiger reactions that allow the conversion of ketones into esters or of cyclic ketones into lactones (6).This genome provides further evidence that dilution-to-extinction culturing methods that make use of low-nutrient media that are similar to the conditions of the natural environment can result in the isolation of novel, environmentally significant organisms with potential biotechnological value (13).  相似文献   

3.
4.
5.
Pelagibaca bermudensis HTCC2601T and Maritimibacter alkaliphilus HTCC2654T represent two marine genera in the globally significant Roseobacter clade of the Alphaproteobacteria. Here, we present the genome sequences of these organisms, isolated from the Sargasso Sea using dilution-to-extinction culturing, which offer insight into the genetic basis for the metabolic and ecological diversity of this important group.Organisms from the Roseobacter clade of the Alphaproteobacteria are numerically significant in the world''s oceans and have been found in a wide range of habitats (1, 3). Using previously described high-throughput dilution-to-extinction culturing (6, 13), the marine Roseobacter strains Pelagibaca bermudensis HTCC2601T and Maritimibacter alkaliphilus HTCC2654T were isolated in low-nutrient heterotrophic medium (LNHM) (4) from surface water collected at the Bermuda Atlantic Time-Series Study (BATS) site in the western Sargasso Sea (5, 9). As the type strains for two genera of this globally prolific Roseobacter group, P. bermudensis and M. alkaliphilus were selected for shotgun genome sequencing at the J. Craig Venter Institute through the Moore Foundation Microbial Genome Sequencing Project (http://www.moore.org/microgenome). Draft genomes of P. bermudensis and M. alkaliphilus, with 103 and 46 contigs, respectively, were annotated and analyzed through the Joint Genome Institute IMG/M website (http://img.jgi.doe.gov/cgi-bin/pub/main.cgi) (10).The draft genomes of P. bermudensis and M. alkaliphilus comprise 5,425,920 and 4,529,231 bases, 5,522 and 4,764 predicted open reading frames (ORFs), and 66.44% and 64.13% G+C content, respectively. The P. bermudensis genome is predicted to contain 56 tRNA genes, five 5S rRNA genes, four 16S rRNA genes, and five 23S rRNA genes, and that of M. alkaliphilus 49 tRNA genes and one each of the 5S, 16S, and 23S rRNA genes. Both genomes have putative genes for complete glycolysis and Entner-Doudoroff pathways, a complete tricarboxylic acid cycle, and predicted metabolic pathways for the oxidation of C1 compounds. Both have predicted genes for the synthesis of most essential amino acids and some vitamins and cofactors. Each has putative genes for the utilization of fructose, sucrose, and mannose, confirmed in physiological testing of P. bermudensis (5) but not for M. alkaliphilus (9). P. bermudensis contains a predicted complete RuBisCO complex, unique to the sequenced Roseobacter species (12, 15), a complete assimilatory nitrate reduction pathway, and several type VI secretion genes. M. alkaliphilus is predicted to have complete nitrate reduction pathways to both N2 and ammonia and most type IV secretion genes. Both are predicted to have complete sec pathways and large numbers of ABC transporters (362 in P. bermudensis and 224 in M. alkaliphilus), similar to other Roseobacter strains (15).M. alkaliphilus was named because of its alkaline growth optimum at pH 10. Na+/H+ antiporters have been shown to be involved in conferring alkaliphilic phenotypes for a variety of organisms by increasing internal cellular H+ concentrations in alkaline conditions where Na+ is present (2, 7, 8, 14, 16, 17). As expected, the genome of M. alkaliphilus contains two putative Na+/H+ antiporters, one homologous to nhaP, important for alkaliphily in several strains (2, 16, 17), and another located adjacent to predicted ABC transporter genes for capsular polysaccharide export.  相似文献   

6.
Fulvimarina pelagi is a Mn(II)-oxidizing marine heterotrophic bacterium in the order Rhizobiales. Here we announce the draft genome sequence of F. pelagi HTCC2506T, which was isolated from the Sargasso Sea by using dilution-to-extinction culturing. The genome sequence contained a xanthorhodopsin gene as well as a photosynthetic gene cluster, which suggests the coexistence of two different phototrophic mechanisms in a single microorganism.Besides being mediated by the well-known process of aerobic oxygenic photosynthesis, utilization of light energy in the marine carbon and nutrient cycling processes is usually mediated by aerobic anoxygenic phototrophic bacteria (AAPB) or prokaryotes containing microbial rhodopsin family proteins (18). AAPB comprise about 10% of total microbial cells in the euphotic zone of diverse marine regimes, with alpha-, beta-, and gammaproteobacteria as major constituents (8, 10). Rhodopsin family proteins, including bacteriorhodopsin, proteorhodopsin, and xanthorhodopsin (XR), have been shown to exist in 7 to 70% of marine prokaryotes and contribute photoheterotrophy in diverse phylogenetic groups such as Flavobacteria, Proteobacteria, and Archaea (15, 19). However, no single microorganism has been reported to contain the genes for both aerobic anoxygenic phototrophy (AAnP) and rhodopsin family proteins.F. pelagi HTCC2506T was cultivated through a dilution-to-extinction approach (3) from the western Sargasso Sea and identified as a novel genus and species in the order Rhizobiales of the Alphaproteobacteria by polyphasic taxonomy (2). Later, three F. pelagi strains, including HTCC2506T, were shown to have Mn(II)-oxidizing activity (1). The draft genome sequence of HTCC2506T was determined by shotgun sequencing at the J. Craig Venter Institute as part of the Moore Foundation Microbial Genome Sequencing Project and analyzed by the GenDB annotation program (17) at the Center for Genome Research and Biocomputing at Oregon State University and the Joint Genome Institute IMG system (http://img.jgi.doe.gov) (14).The draft genome was 3,802,689 bp in length, distributed in 20 contigs with 61.2% G+C content, and contained 3,754 protein-coding genes, three copies of 16S-23S-5S rRNA genes, and 54 tRNA genes. Remarkably, HTCC2506T possessed XR and a complete gene set for AAnP together. A gene cluster encoding the AAnP apparatus was composed of bchIDO-crtCDF-bchCXYZ-pufBALMC-puhE-acsF-puhCBA-lhaA-bchMLHBNF-aerR-ppsR-ubiA-pucC-bchP-hemT. Mu-like prophage sequences were located closely adjacent to the AAnP gene cluster, which might imply the possibility of the lateral gene transfer of the AAnP gene cluster. The XR gene was followed by blh, a gene involved in retinal biosynthesis (16). To our knowledge, this is the first report of a microbe possessing both an AAnP apparatus and a rhodopsin family protein, although the two gene sets in HTCC2506T had been separately reported to be present (5, 13). The HTCC2506T genome also encoded a bacteriophytochrome (6, 7), a light-regulated signal transduction histidine kinase. Overall, the existence of a diverse repertoire of genes for sensing or harvesting of light energy implicates the importance of phototrophic metabolism for HTCC2506T.In addition to genes for phototrophy, the genome contained several genes with diverse metabolic potential. A lithotrophic mode of energy acquisition was predicted from the presence of the form II coxSLM genes, which encode aerobic-type carbon monoxide dehydrogenase (9). As expected from the Mn(II)-oxidizing activity of HTCC2506T, the genome also encoded a multicopper oxidase (MCO) enzyme, suggesting a potential lithotrophy. In terms of carbon assimilation, genes encoding RuBisCO and phosphoribulokinase of the Calvin-Benson-Bassham cycle (11) were predicted, suggesting the possibility of autotrophic CO2 fixation in HTCC2506T. Serine transhydroxymethylase for formaldehyde assimilation (12) was predicted. A gene encoding dimethylsulfoniopropionate (DMSP) lyase, which conveys the production of dimethylsulfide from DMSP (4), was also found in the genome.Although HTCC2506T was originally isolated as a chemoheterotroph (2), the genome sequence clearly shows the phototrophic potential of this bacterium. This finding, combined with the prediction of many genes related to lithotrophy, carbon fixation, C1 compound assimilation, and DMSP lysis, suggests that F. pelagi HTCC2506T may use a wide range of potential metabolic functions to survive in the marine euphotic environment.  相似文献   

7.
Genome sequences from the prolific Roseobacter clade in the Alphaproteobacteria are beginning to reveal the genetic basis for the diverse lifestyles of these organisms. Here we present the genome sequences of Oceanicola granulosus HTCC2516T and Oceanicola batsensis HTCC2597T, two marine Roseobacter species isolated from the Sargasso Sea using dilution-to-extinction culturing, whose genomes encode for significant differences in metabolic potential.Members of the Roseobacter clade are ecologically and physiologically diverse, occupying a wide variety of lifestyles (1, 2, 7). Oceanicola granulosus HTCC2516T and Oceanicola batsensis HTCC2597T were isolated by dilution-to-extinction culturing in low-nutrient heterotrophic media (LNHM) (4) from water collected at the Bermuda Atlantic Time-Series Study (BATS) station in the Sargasso Sea (3, 5). The genomes were shotgun sequenced by the J. Craig Venter Institute as part of the Moore Foundation Microbial Genome Sequencing Project (http://www.moore.org/microgenome). Draft genomes of O. granulosus and O. batsensis containing 85 and 23 contigs, respectively, were annotated analyzed through the Joint Genome Institute IMG/M website (http://img.jgi.doe.gov/cgi-bin/pub/main.cgi) (6). The draft genomes of O. granulosus and O. batsensis comprised 4,039,111 and 4,437,668 bases, 3,855 and 4,261 predicted open reading frames (ORFs), and 70.41% and 66.10% G+C contents, respectively. The O. granulosus genome is predicted to contain 55 tRNA genes, two 5S rRNA genes, four 16S rRNA genes, and two 23S rRNA genes; that of O. batsensis is predicted to contain 45 tRNA genes, one each of the 5S and 16S rRNA genes, and two 23S rRNA genes.The sequencing of these and other Roseobacter genomes has directly affected the Oceanicola phylogeny. Recent phylogenetic studies of the Alphaproteobacteria and the Roseobacter clade specifically have established that the Oceanicola genus is not monophyletic (1, 7, 11). Not surprisingly, the two genomes reveal different potential capabilities for these two organisms. O. granulosus is predicted to possess several genes necessary for the Calvin cycle, including the large (but not the small) RuBisCo (ribulose-1,5-bisphosphate carboxylase) subunit. Both strains tested negative for fructose utilization (3) but contain putative genes necessary for this metabolism. Consistent with physiological tests showing glucose utilization, O. granulosus is predicted to have complete glycolysis, pentose-phosphate, and Entner-Doudoroff (ED) pathways. O. batsensis has only a putative ED pathway, but did not utilize glucose (3). Both strains were characterized as nonmotile (3), and O. batsensis has no che gene homologs, but O. granulosas is predicted to have most flagellar and che gene homologs. O. granulosus has putative genes for an aa3-type cytochrome c oxidase, and O. batsensis is predicted to have both aa3- and cbb3-type cytochrome c oxidases, the latter potentially conferring an adaptive advantage over a greater range of oxygen concentrations (8, 9).Both organisms are predicted to have most Sec pathway genes. O. batsensis contains several putative type IV secretion genes and 6 putative TonB receptors. Each has many predicted ABC transporter genes: 239 in O. granulosus and 193 in O. batsenesis. Both organisms were observed to form polyhydroxybutyrate (PHB) in culture (3), and both organisms contain putative genes necessary for PHB synthesis (see reference 10 and references therein), including predicted copies of PHB or polyhydroxyalkanoate (PHA) polymerases and several acetyl coenzyme A (acetyl-CoA) acetyltransferases, and O. batsensis has a predicted acetoacetyl-CoA reductase.  相似文献   

8.
Water channels formed by aquaporins (AQPs) play an important role in the control of water homeostasis in individual cells and in multicellular organisms. Plasma membrane intrinsic proteins (PIPs) constitute a subclass of plant AQPs. TgPIP2;1 and TgPIP2;2 from tulip petals are members of the PIP family. In this study, we overexpressed TgPIP2;1 and TgPIP2;2 in Pichia pastoris and monitored their water channel activity (WCA) either by an in vivo spheroplast-bursting assay performed after hypo-osmotic shock or by growth assay. Osmolarity, pH, and inhibitors of AQPs, protein kinases (PKs), and protein phosphatases (PPs) affect the WCA of heterologous AQPs in this expression system. The WCA of TgPIP2;2-expressing spheroplasts was affected by inhibitors of PKs and PPs, which indicates that the water channel of this homologue is regulated by phosphorylation in P. pastoris. From the results reported herein, we suggest that P. pastoris can be employed as a heterologous expression system to assay the WCA of PIPs and to monitor the AQP-mediated channel gating mechanism, and it can be developed to screen inhibitors/effectors of PIPs.The movement of water across cell membranes has long been thought to occur by free diffusion through the lipid bilayer. However, the discovery of the membrane protein CHIP28 in red blood cells has suggested the involvement of protein channels (29), and it is now well established that transmembrane water permeability is facilitated by aquaporins (AQPs), water channel proteins that are found in bacteria, fungi, plants, and animals (1, 7, 13, 24). AQPs contain six transmembrane α-helices and five connecting loops, and both the N and C termini are located in the cytosol. The monomers assemble into tetrameric complexes, with each monomer forming an individual water channel (11, 14, 24, 33). Apart from the exceptions of AQP11 and AQP12 from mice, as described by K. Ishibashi (15), AQPs have two signature Asn-Pro-Ala motifs, which are located in the second intracellular and the fifth extracellular loops, B and E.While 13 different AQPs have been identified in mammals (16), more than 33 AQP homologues have been discovered in plants (6, 17, 30). Plant AQPs fall into four subclasses: (i) the plasma membrane (PM) intrinsic proteins (PIPs), which are localized in the PM; (ii) the tonoplast intrinsic proteins (TIPs), which are localized in the vacuolar membranes; (iii) the nodulin-26-like intrinsic proteins; and (iv) the small basic intrinsic proteins (24). In Arabidopsis and maize, there are 13 PIPs, which can be divided further into two subfamilies, PIP1 and PIP2 (6, 17).The functions and mechanisms of regulation of plant AQPs have been extensively investigated (7, 13, 18, 24). There have been several reports on the water channel activity (WCA) of specific AQPs and their regulation by protein phosphorylation (3, 4, 8, 12, 18, 25, 32, 33). It has been shown that the WCA of the PIP2 member SoPIP2;1 from spinach is regulated by phosphorylation at two Ser residues (19, 33).The physiologically interesting temperature-dependent opening and closing of tulip (Tulipa gesneriana) petals occur concomitantly with water transport and are regulated by reversible phosphorylation of an undefined PIP (4, 5). Recently, four PIP homologues were isolated from tulip petals, and their WCAs have been analyzed by heterologous expression in Xenopus laevis oocytes (3). It has been shown that the tulip PIP TgPIP2;2 (DDBJ/EMBL/GenBank accession no. AB305617) is ubiquitously expressed in all organs of the tulip and that TgPIP2;2 is the most likely of the TgPIP homologues to be modulated by the reversible phosphorylation that regulates transcellular water transport and mediates petal opening and closing (3, 4). However, while the members of the PIP2 subfamily are characterized as water channels (6), TgPIP2;1 (DDBJ/EMBL/GenBank accession no. AB305616) shows no significant WCA in the oocyte expression system (3). There is growing interest in research on AQPs due to their crucial roles in the physiology of plants and animals (1, 16, 21-24, 26-28, 36). The assay of AQP channel activity is usually performed using either a X. laevis oocyte expression system (29) or a stopped-flow light-scattering spectrophotometer (35), both of which are not widely available. Furthermore, the complexity of these methods and requirement of expertise limit their high-throughput applications. In contrast, a Pichia pastoris expression system is simple to use, inexpensive, and feasible and can be used in high-throughput applications. Although a P. pastoris expression system has been shown to assay the WCA of a TIP (9), extensive research is necessary with other AQPs such as PIPs or AQPs present in intragranular membranes to establish whether this assay system can be used to characterize a water channel and study its regulation mechanisms. With this in view, in the study reported herein, TgPIP2;1 and TgPIP2;2 have been heterologously expressed in P. pastoris, and their WCAs have been assayed. The effects of several factors, such as osmolarity, pH, and inhibitors of protein kinases (PKs) and protein phosphatases (PPs), on the WCA of the recombinant P. pastoris have been investigated. Based on the results, we demonstrate that the P. pastoris heterologous expression system can be used to rapidly characterize PIP channels, to monitor the effects of mutations, and to score the effects of inhibitors and abiotic factors.  相似文献   

9.
10.
11.
Zymomonas mobilis is an ethanol-producing alphaproteobacterium currently considered a major candidate organism for bioethanol production. Here we report the finished and annotated genome sequence of Z. mobilis subsp. mobilis strain NCIMB 11163, a British ale-infecting isolate. This is the first Z. mobilis strain whose genome, chromosomal and plasmid, is presented in its entirety.Zymomonas mobilis is a bacterium vigorously studied as a platform organism for bioethanol production in North America and other parts of the world. Z. mobilis converts sugars such as glucose or sucrose into ethanol and carbon dioxide to almost theoretical yields and to rates higher than those of yeasts (17). Genetically engineered strains that ferment pentoses in addition to naturally utilized hexoses also hold great promise for use in lignocellulosic biomass degradations (5, 22). Besides ethanol, Z. mobilis can produce other high-value chemicals such as sorbitol, levan, or phenylacetylcarbinol and has attracted interest for its unusual membrane steroid content (11). Lastly, Zymomonas is regarded as a safe organism and is even used for medicinal purposes (12, 20), which further facilitates its employment in large-scale biotechnological endeavors.The chromosomal sequence of the Z. mobilis subsp. mobilis industrial strain ATCC 31821 (ZM4) was recently published (19). Here we announce the first entire genome sequence of a Z. mobilis subsp. mobilis strain, that of the United Kingdom-originating strain NCIMB 11163 (B70) (20). Total DNA from NCIMB 11163 (16) was used for whole-genome shotgun sequencing at the U.S. DOE Joint Genome Institute. For this, an 8.7-kb DNA library and 454 and Solexa reads were used (http://www.jgi.doe.gov). Draft assemblies were based on 8,551 Sanger reads and 454 pyrosequencing to 20× coverage, whereas the Phred/Phrap/Consed software package was used for sequence assembly and quality assessment (6, 7, 9; http://www.phrap.com). After the shotgun stage, reads were assembled with parallel Phrap (High Performance Software, LLC), and misassemblies were corrected with Dupfinisher (10) or transposon bombing of bridging clones (Epicentre Biotechnologies, Madison, WI). A total of 144 primer walk reactions, five transposon bomb libraries, 53 PCR end reads, and two PCR shatter libraries were necessary to close gaps, resolve repetitive regions, and raise the quality of the finished sequence. The completed genome sequence of NCIMB 11163 was based on 11,048 reads, with an error rate of less than 6 bp out of 100,000 bp.Open reading frame prediction and annotation were performed using Prodigal (http://compbio.ornl.gov/prodigal/) and BLAST (1); tRNAscan-SE and RNAmmer (14, 15) were used for tRNA and rRNA recognition, respectively. Functional assignment of genes was performed by searching translated open reading frames against sequences in the SPTR (TrEMBL) (2), Pfam (8), TIGRFAMs (18), COG (21), and KEGG (13) databases.Z. mobilis NCIMB 11163 contains a single, circular chromosome of 2,124,771 bp and three plasmids, p11163_1, p11163_2, and p11163_3 of 53,380 bp, 40,818 bp, and 4,551 bp, respectively. The overall GC content of the chromosome is 46.83%, whereas those of the plasmids are 42.32%, 43.80%, and 36.37%, respectively. The entire genome of NCIMB 11163 contains 1,884 protein-encoding genes and 51 tRNA and nine rRNA genes, which are chromosomally located.The chromosome of NCIMB 11163 is 68,355 bp larger than that of ZM4 (GenBank accession number NC_006526) (19) and colinear at its largest part with that of ZM4 (genome structure comparisons were performed using ACT) (3). It bears several unique regions, among which are two genomic islands of ca. 25 and 79 kb, with no detectable nucleotide homology to same-species sequences and high regional similarity to chromosomal stretches of Paracoccus denitrificans PD1222 (GenBank accession number CP000489.1), Xanthobacter autotrophicus Py2 (GenBank accession number CP000781.1), and Gluconacetobacter diazotrophicus PAl 5 (GenBank accession number CP001189.1). Genome plasticity in NCIMB 11163 is further indicated by the presence of a type IV secretion system on the 79-kb island, syntenous to the Agrobacterium tumefaciens Ti (IncRh1) conjugal trb system (4), and also by multiple transposase and phage-related genes.In plasmids, housekeeping genes implicated in replication, active partitioning, and plasmid addiction are recognized, as well as genes involved in metabolism, transport, regulation, transposition, and DNA modification. Most notably, p11163_1 bears an arsenical resistance operon inserted in a type II secretion locus, whereas p11163_2, otherwise homologous to the 41-kb ZM4 plasmid (GenBank accession number AY057845), harbors a unique ca. 12-kb CRISPR insertion that interrupts nucleotide colinearity with the aforementioned replicon.  相似文献   

12.
The nuclear magnetic resonance (NMR) structure of a globular domain of residues 1071 to 1178 within the previously annotated nucleic acid-binding region (NAB) of severe acute respiratory syndrome coronavirus nonstructural protein 3 (nsp3) has been determined, and N- and C-terminally adjoining polypeptide segments of 37 and 25 residues, respectively, have been shown to form flexibly extended linkers to the preceding globular domain and to the following, as yet uncharacterized domain. This extension of the structural coverage of nsp3 was obtained from NMR studies with an nsp3 construct comprising residues 1066 to 1181 [nsp3(1066-1181)] and the constructs nsp3(1066-1203) and nsp3(1035-1181). A search of the protein structure database indicates that the globular domain of the NAB represents a new fold, with a parallel four-strand β-sheet holding two α-helices of three and four turns that are oriented antiparallel to the β-strands. Two antiparallel two-strand β-sheets and two 310-helices are anchored against the surface of this barrel-like molecular core. Chemical shift changes upon the addition of single-stranded RNAs (ssRNAs) identified a group of residues that form a positively charged patch on the protein surface as the binding site responsible for the previously reported affinity for nucleic acids. This binding site is similar to the ssRNA-binding site of the sterile alpha motif domain of the Saccharomyces cerevisiae Vts1p protein, although the two proteins do not share a common globular fold.The coronavirus replication cycle begins with the translation of the 29-kb positive-strand genomic RNA to produce two large polyprotein species (pp1a and pp1ab), which are subsequently cleaved to produce 15 or possibly 16 nonstructural proteins (nsp''s) (11). Among these, nsp3 is the largest nsp and also the largest coronavirus protein. nsp3 is a glycosylated (16, 22), multidomain (36, 51), integral membrane protein (38). All known coronaviruses encode a homologue of severe acute respiratory syndrome coronavirus (SARS-CoV) nsp3, and sequence analysis suggests that at least some functions of nsp3 may be found in all members of the order Nidovirales (11). Hallmarks of the coronavirus nsp3 proteins include one or two papain-like proteinase domains (3, 12, 16, 31, 56, 62), one to three histone H2A-like macrodomains which may bind RNA or RNA-like substrates (5, 9, 48, 54, 55), and a carboxyl-terminal Y domain of unknown function (13). An extensive bioinformatics analysis of the coronavirus replicase proteins by Snijder et al. (51) provided detailed annotations of the then-recently sequenced SARS-CoV genome (35, 47), including the identification of a domain unique to SARS-CoV and the prediction of the ADP-ribose-1″-phosphatase (ADRP) activity of the X domain (since shown to be one of the macrodomains).Only limited information is so far available regarding the ways in which the functions of nsp3 are involved in the coronavirus replication cycle. Some functions of nsp3 appear to be directed toward protein; e.g., the nsp3 proteinase domain cleaves the amino-terminal two or three nsp''s from the polyprotein and has deubiquitinating activity (4, 6, 14, 30, 53, 60). Most homologues of the most conserved macrodomain of nsp3 appear to possess ADRP activity (9, 34, 41-43, 48, 59) and may act on protein-conjugated poly(ADP-ribose); however, this function appears to be dispensable for replication (10, 42) and may not be conserved in all coronaviruses (41). The potential involvement of nsp3 in RNA replication is suggested by the presence of several RNA-binding domains (5, 36, 49, 54, 55). nsp3 has been identified in convoluted membrane structures that are also associated with other replicase proteins and that have been shown to be involved in viral RNA synthesis (16, 24, 52), and nsp3 papain-like proteinase activity is essential for replication (14, 62). Other conserved structural features of nsp3 include two ubiquitin-like domains (UB1 and UB2) (45, 49). We have also recently reported that nsp3 is a structural protein, since it was identified as a minor component of purified SARS-CoV preparations, although it is not known whether nsp3 is directly involved in virogenesis or is incidentally incorporated due to protein-protein or protein-RNA interactions (36).A nucleic acid-binding region (NAB) is located within the polypeptide segment of residues 1035 to 1203 of nsp3. The NAB is expected to be located in the cytoplasm, along with the papain-like protease, ADRP, a region unique to SARS-CoV (the SARS-CoV unique domain [SUD]), and nsp3a, since both the N and C termini of nsp3 were shown previously to be cytoplasmic (38). Two hydrophobic segments are membrane spanning (38), and the NAB is located roughly 200 residues in the N-terminal direction from the first membrane-spanning segment. This paper presents the next step in the structural coverage of nsp3, with the determination of the NAB structure. The structural studies included nuclear magnetic resonance (NMR) characterization of two constructs, an nsp3 construct comprising residues 1035 to 1181 [nsp3(1035-1181)] and nsp3(1066-1203), and complete NMR structure determination for the construct nsp3(1066-1181) (see Fig. Fig.8).8). The structural data were then used as a platform from which to investigate the nature of the previously reported single-stranded RNA (ssRNA)-binding activity of the NAB (36). Since no three-dimensional (3D) structures for the corresponding domains in other group II coronaviruses are known and since the SARS-CoV NAB has only very-low-level sequence identity to other proteins, such data could not readily be derived from comparisons with structurally and functionally characterized homologues.Open in a separate windowFIG. 8.Sequence alignment of the polypeptide segment nsp3(1066-1181) that forms the globular domain of the SARS-CoV NAB with homologues from other group II coronaviruses. Protein multiple-sequence alignment was performed using ClustalW2 and included sequences from SARS-CoV Tor2 (accession no. AAP41036) and representatives of three protein clusters corresponding to three group II coronavirus lineages identified by a BLAST search: bat coronavirus HKU5-5 (BtCoV-HKU5-5; accession no. ABN10901), BtCoV-HKU9-1 (accession no. P0C6T6), and human coronavirus HKU1-N16 (HCoV-HKU1-N16; accession no. ABD75496). Above the sequences, the positions in full-length SARS-CoV nsp3, the locations of the regular secondary structures in the presently solved NMR structure of the SARS-CoV NAB globular domain, and the residue numbering in this domain are indicated. Amino acids are colored according to conservation and biochemical properties, following ClustalW conventions. Residues implicated in interactions with ssRNA are marked with inverted black triangles. In the present context, the key features are that there is only one position with conservation of K or R (red) and that there are extended sequences with conservation of hydrophobic residues (blue) (see the text).  相似文献   

13.
14.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

15.
Development of broadly cross-reactive neutralizing antibodies (NAbs) remains a major goal of HIV-1 vaccine development, but most candidate envelope immunogens have had limited ability to cross-neutralize heterologous strains. To evaluate the immunogenicity of subtype A variants of HIV-1, rabbits were immunized with pairs of closely related subtype A envelopes from the same individual. In each immunogen pair, one variant was readily neutralized by a variety of monoclonal antibodies and plasma antibodies, while the other was neutralization resistant, suggesting differences in the exposures of key epitopes. The breadth of the antibody response was evaluated against subtype A, B, C, and D variants of HIV-1. The specificity of the immunogen-derived neutralizing antibody response was also compared to that of the infected individuals from whom these variants were cloned. None of the immunogens produced broad neutralizing antibodies in immunized animals, and most of the neutralizing antibodies were directed to the variable loops, particularly the V3 loop. No detectable antibodies to either of the potentially exposed conserved epitopes, the membrane proximal external region, or the CD4 binding site were found with immunized rabbits. In contrast, relatively little of the neutralizing activity within the plasma samples of the infected individuals was directed to linear epitopes within the variable loops. These data indicate that immunogens designed to expose conserved regions did not enhance generation of broadly neutralizing antibodies in comparison with the immunogens that failed to expose those regions using this immunization approach.The ability to elicit broadly cross-reactive neutralizing antibodies (NAbs) is likely to be an important component of an effective vaccine to human immunodeficiency virus type 1 (HIV-1). Unfortunately, the HIV-1 envelope (Env)-based vaccines developed to date do not elicit such antibodies. Initial vaccines based on soluble, monomeric gp120 generated antibodies capable of only weakly neutralizing the homologous virus, with a very narrow breadth of cross-reactivity (13, 30, 53). Subsequent modifications to the Env immunogens, including variable loop deletions (15, 20, 31, 34, 35, 61, 64-66), alterations in the glycosylation pattern (4, 10, 11, 14, 30, 43, 55, 56), epitope repositioning (39, 46), the use of consensus Envs (22, 36, 37, 47), and the use of soluble trimeric gp140 molecules as immunogens (1-3, 5, 14, 16, 20, 21, 24, 25) have led to only modest enhancements in NAb breadth or potency. These modified Env immunogens have failed to redirect NAbs from the variable loops to more conserved regions of Env (reviewed in reference 33).Differences in Env structure between HIV-1 subtypes may further hinder efforts to elicit broadly cross-reactive antibodies capable of protecting against transmitted strains worldwide. Most immunogens tested to date have been derived from subtype B Envs. However, there are clear antigenic differences between subtype B strains and the subtype A and C strains that account for most infections worldwide (6, 8, 27, 28, 40, 42). For instance, most transmitted subtype A Envs are resistant to the monoclonal antibodies 2G12, b12, 2F5, and 4E10, either because of alterations in the epitopes for these monoclonal antibodies (MAbs) or because the epitopes are shielded in these Envs (6, 8). It is therefore possible that even NAbs specific for a conserved region of subtype B Envs, such as the CD4 binding site, would not be able to access and neutralize a similar epitope on a subtype A Env.In order to evaluate the immunogenicity of subtype A Envs, which account for ∼25% of global HIV-1 infections (12), we previously investigated the types of antibody responses elicited following gp160 priming and gp140 boosting with immunogens derived from four subtype A Envs in comparison to the subtype B Env SF162 (38). These experiments were also designed to explore whether deriving immunogens from HIV-1 Envs isolated from early in infection would better target NAbs to transmitted strains. Although all of the subtype A-based immunogens and the SF162 immunogen elicited anti-V3 NAbs capable of neutralizing the easy-to-neutralize SF162 pseudovirus, only one of the four immunogens generated homologous NAbs (38). Even immunogens with shorter variable loops or fewer potential N-linked glycosylation sites (PNGS) did not lead to enhanced breadth of neutralization against heterologous subtype A or B Envs (38). However, the four subtype A Envs used in these immunizations were generally neutralization resistant to both plasma samples from HIV-1-infected individuals and to monoclonal antibodies (6), raising the possibility that the poor breadth observed could be related to the shielding of conserved epitopes within these Envs.In order to determine whether using subtype A Env immunogens that do not shield conserved epitopes could improve neutralization breadth, here we performed immunizations with pairs of Env immunogens derived from two individuals acutely infected with subtype A HIV-1. The Envs in each pair were very similar in their amino acid sequences yet differed dramatically in their neutralization phenotype (6, 9) (Fig. (Fig.1A).1A). The pair from subject Q461 had a neutralization-resistant Env, Q461e2 (termed Q461e2R to indicate neutralization resistance), and a neutralization-sensitive Env, Q461d1 (termed Q461d1S to indicate neutralization sensitivity), which was sensitive to neutralization by plasma, 2F5, 4E10, b12, and soluble CD4 (sCD4). We previously demonstrated that the neutralization sensitivity of the Q461d1S Env is mediated entirely by two amino acid substitutions in gp41, one in the first heptad repeat and one in the membrane proximal external region (MPER) (9). These mutations led to enhanced exposure of both the CD4 binding site and the MPER (9). From subject Q168, the Env Q168b23S was sensitive to autologous and heterologous plasma and to the MPER antibodies 2F5 and 4E10 but resistant to b12 and sCD4, while Q168a2R was weakly neutralized by the MPER antibodies, less sensitive to neutralization by autologous plasma, and resistant to heterologous plasma (6). The Q168a2R and Q168b23S Envs contain identical sequences in the MPER region yet have >500-fold differences in neutralization sensitivity to 2F5 and 4E10, indicating that the exposure of the MPER region, rather than the sequence, likely accounts for the enhanced neutralization of the Q168b23S Env.Open in a separate windowFIG. 1.Analysis of Q461d1S gp140 used for immunizations. (A) SDS-PAGE analysis of final preparation of Q461d1S gp140 from the GNA capture and DEAE and CHAP columns. Lane 1 contains molecular weight standards, lane 2 the concentrated DEAE flowthrough, and lane 3 the final concentrated protein. The purified Q461d1S gp140 protein is indicated by an arrow. The sizes of the molecular weight markers (in thousands) are indicated on the left. (B) Binding of purified gp140 subtype A to CD4 as determined by a high-pressure liquid chromatography (HPLC)-based assay. The bottom line represents the protein obtained after the GNA column, and the top line represents purified protein after all three steps. The trimer and monomer peaks are marked. (C) Summary of neutralization characteristics of all four HIV-1 subtype A Env variants used in the immunizations, adapted from reference 6. The pseudovirus is shown in the far left column. IC50 values for plasma sample (left) and monoclonal antibodies (right) are displayed. The autologous plasma samples were taken 3.7 ypi for subject Q461 and 2.6 ypi for subject Q168. The Kenya pool was derived by pooling plasma from 30 HIV-1-infected individuals in Kenya and has been described previously (6).Thus, to directly test whether using Env immunogens that expose conserved epitopes could enhance neutralization breadth immunization, here we immunized with these pairs of related Envs, in which one variant exposes conserved regions, while the other does not. We also compared the specificity of the NAb responses following immunization with these Envs with the specificities of the NAbs that developed during natural infection in the individuals from whom these variants were cloned.  相似文献   

16.
17.
HIV-1 possesses an exquisite ability to infect cells independently from their cycling status by undergoing an active phase of nuclear import through the nuclear pore. This property has been ascribed to the presence of karyophilic elements present in viral nucleoprotein complexes, such as the matrix protein (MA); Vpr; the integrase (IN); and a cis-acting structure present in the newly synthesized DNA, the DNA flap. However, their role in nuclear import remains controversial at best. In the present study, we carried out a comprehensive analysis of the role of these elements in nuclear import in a comparison between several primary cell types, including stimulated lymphocytes, macrophages, and dendritic cells. We show that despite the fact that none of these elements is absolutely required for nuclear import, disruption of the central polypurine tract-central termination sequence (cPPT-CTS) clearly affects the kinetics of viral DNA entry into the nucleus. This effect is independent of the cell cycle status of the target cells and is observed in cycling as well as in nondividing primary cells, suggesting that nuclear import of viral DNA may occur similarly under both conditions. Nonetheless, this study indicates that other components are utilized along with the cPPT-CTS for an efficient entry of viral DNA into the nucleus.Lentiviruses display an exquisite ability to infect dividing and nondividing cells alike that is unequalled among Retroviridae. This property is thought to be due to the particular behavior or composition of the viral nucleoprotein complexes (NPCs) that are liberated into the cytoplasm of target cells upon virus-to-cell membrane fusion and that allow lentiviruses to traverse an intact nuclear membrane (17, 28, 29, 39, 52, 55, 67, 79). In the case of the human immunodeficiency type I virus (HIV-1), several studies over the years identified viral components of such structures with intrinsic karyophilic properties and thus perfect candidates for mediation of the passage of viral DNA (vDNA) through the nuclear pore: the matrix protein (MA); Vpr; the integrase (IN); and a three-stranded DNA flap, a structure present in neo-synthesized viral DNA, specified by the central polypurine tract-central termination sequence (cPPT-CTS). It is clear that these elements may mediate nuclear import directly or via the recruitment of the host''s proteins, and indeed, several cellular proteins have been found to influence HIV-1 infection during nuclear import, like the karyopherin α2 Rch1 (38); importin 7 (3, 30, 93); the transportin SR-2 (13, 20); or the nucleoporins Nup98 (27), Nup358/RANBP2, and Nup153 (13, 56).More recently, the capsid protein (CA), the main structural component of viral nucleoprotein complexes at least upon their cytoplasmic entry, has also been suggested to be involved in nuclear import or in postnuclear entry steps (14, 25, 74, 90, 92). Whether this is due to a role for CA in the shaping of viral nucleoprotein complexes or to a direct interaction between CA and proteins involved in nuclear import remains at present unknown.Despite a large number of reports, no single viral or cellular element has been described as absolutely necessary or sufficient to mediate lentiviral nuclear import, and important controversies as to the experimental evidences linking these elements to this step exist. For example, MA was among the first viral protein of HIV-1 described to be involved in nuclear import, and 2 transferable nuclear localization signals (NLSs) have been described to occur at its N and C termini (40). However, despite the fact that early studies indicated that the mutation of these NLSs perturbed HIV-1 nuclear import and infection specifically in nondividing cells, such as macrophages (86), these findings failed to be confirmed in more-recent studies (23, 33, 34, 57, 65, 75).Similarly, Vpr has been implicated by several studies of the nuclear import of HIV-1 DNA (1, 10, 21, 43, 45, 47, 64, 69, 72, 73, 85). Vpr does not possess classical NLSs, yet it displays a transferable nucleophilic activity when fused to heterologous proteins (49-51, 53, 77, 81) and has been shown to line onto the nuclear envelope (32, 36, 47, 51, 58), where it can truly facilitate the passage of the viral genome into the nucleus. However, the role of Vpr in this step remains controversial, as in some instances Vpr is not even required for viral replication in nondividing cells (1, 59).Conflicting results concerning the role of IN during HIV-1 nuclear import also exist. Indeed, several transferable NLSs have been described to occur in the catalytic core and the C-terminal DNA binding domains of IN, but for some of these, initial reports of nuclear entry defects (2, 9, 22, 46, 71) were later shown to result from defects at steps other than nuclear import (60, 62, 70, 83). These reports do not exclude a role for the remaining NLSs in IN during nuclear import, and they do not exclude the possibility that IN may mediate this step by associating with components of the cellular nuclear import machinery, such as importin alpha and beta (41), importin 7 (3, 30, 93, 98), and, more recently, transportin-SR2 (20).The central DNA flap, a structure present in lentiviruses and in at least 1 yeast retroelement (44), but not in other orthoretroviruses, has also been involved in the nuclear import of viral DNA (4, 6, 7, 31, 78, 84, 95, 96), and more recently, it has been proposed to provide a signal for viral nucleoprotein complexes uncoating in the proximity of the nuclear pore, with the consequence of providing a signal for import (8). However, various studies showed an absence or weakness of nuclear entry defects in viruses devoid of the DNA flap (24, 26, 44, 61).Overall, the importance of viral factors in HIV-1 nuclear import is still unclear. The discrepancies concerning the role of MA, IN, Vpr, and cPPT-CTS in HIV-1 nuclear import could in part be explained by their possible redundancy. To date, only one comprehensive study analyzed the role of these four viral potentially karyophilic elements together (91). This study showed that an HIV-1 chimera where these elements were either deleted or replaced by their murine leukemia virus (MLV) counterparts was, in spite of an important infectivity defect, still able to infect cycling and cell cycle-arrested cell lines to similar efficiencies. If this result indicated that the examined viral elements of HIV-1 were dispensable for the cell cycle independence of HIV, as infections proceeded equally in cycling and arrested cells, they did not prove that they were not required in nuclear import, because chimeras displayed a severe infectivity defect that precluded their comparison with the wild type (WT).Nuclear import and cell cycle independence may not be as simply linked as previously thought. On the one hand, there has been no formal demonstration that the passage through the nuclear pore, and thus nuclear import, is restricted to nondividing cells, and for what we know, this passage may be an obligatory step in HIV infection in all cells, irrespective of their cycling status. In support of this possibility, certain mutations in viral elements of HIV affect nuclear import in dividing as well as in nondividing cells (4, 6, 7, 31, 84, 95). On the other hand, cell cycle-independent infection may be a complex phenomenon that is made possible not only by the ability of viral DNA to traverse the nuclear membrane but also by its ability to cope with pre- and postnuclear entry events, as suggested by the phenotypes of certain CA mutants (74, 92).Given that the cellular environment plays an important role during the early steps of viral infection, we chose to analyze the role of the four karyophilic viral elements of HIV-1 during infection either alone or combined in a wide comparison between cells highly susceptible to infection and more-restrictive primary cell targets of HIV-1 in vivo, such as primary blood lymphocytes (PBLs), monocyte-derived macrophages (MDM), and dendritic cells (DCs).In this study, we show that an HIV-1-derived virus in which the 2 NLSs of MA are mutated and the IN, Vpr, and cPPT-CTS elements are removed displays no detectable nuclear import defect in HeLa cells independently of their cycling status. However, this mutant virus is partially impaired for nuclear entry in primary cells and more specifically in DCs and PBLs. We found that this partial defect is specified by the cPPT-CTS, while the 3 remaining elements seem to play no role in nuclear import. Thus, our study indicates that the central DNA flap specifies the most important role among the viral elements involved thus far in nuclear import. However, it also clearly indicates that the role played by the central DNA flap is not absolute and that its importance varies depending on the cell type, independently from the dividing status of the cell.  相似文献   

18.
Putative open reading frames (ORFs) encoding laminin-like proteins are found in all members of the genus Megalocytivirus, family Iridoviridae. This is the first study that identified the VP23R protein encoded by ORF23R of the infectious spleen and kidney necrosis virus (ISKNV), a member of these genes of megalocytiviruses. The VP23R mRNA covering the ISKNV genomic coordinates 19547 to 22273 was transcribed ahead of the major capsid protein. Immunofluorescence analysis demonstrated that VP23R was expressed on the plasma membrane of the ISKNV-infected cells and could not be a viral envelope protein. Residues 292 to 576 of VP23R are homologous to the laminin γ1III2-6 fragment, which covers the nidogen-binding site. An immunoprecipitation assay showed that VP23R could interact with nidogen-1, and immunohistochemistry showed that nidogen-1 was localized on the outer membrane of the infected cells. Electron microscopy showed that a virus-mock basement membrane (VMBM) was formed on the surface of the infected cells and a layer of endothelial cells (ECs) was attached to the VMBM. The VMBM contained VP23R and nidogen-1 but not collagen IV. The attached ECs were identified as lymphatic endothelial cells (LECs), which have unique feature of overlapping intercellular junctions and can be stained by immunohistochemistry using an antibody against a specific lymphatic marker, Prox-1. Such infection signs have never been described in viruses. Elucidating the functions of LECs attached to the surface of the infected cells may be useful for studies on the pathogenic mechanisms of megalocytiviruses and may also be important for studies on lymphangiogenesis and basement membrane functions.Basement membrane (BM), a dense and sheetlike structure that is always associated with cells, is a very important specialized form of extracellular matrix (31, 67). BMs mediate tissue compartmentalization and provide structural support to the epithelium, endothelium, peripheral nerve axons, fat cells, and muscle cells, as well as structural and functional foundations of the vasculature (25, 31, 52). BM is also an important regulator of cell behaviors, such as adhesion, migration, proliferation, and differentiation. BMs are highly cross-linked and insoluble materials. They are highly complex and are made up of more than 50 known components (31, 54). Although the molecular composition of BMs is unique in each tissue, their basic structures are similar. Even if many more isoforms exist in different species, the major BM proteins and their receptors are conserved from Caenorhabditis elegans to mammals. BM consists of a layer of laminin polymer, a layer of type IV collagen network, and the nidogen protein, which acts as a cross-linker of these two networks. Other BM components, such as perlecan and fibulin, interact with the laminin polymer and the type IV collagen network to organize a functional BM on the basolateral aspect of the cells (31, 45, 52).The components of BM are able to self-assemble and form a sheetlike structure, and laminin is the key molecule in this process (50). Laminin protein consists of three different chains (α, β, and γ), which comprise a cross-shaped molecular structure with three short amino-terminal arms and a long carboxyl-terminal triple-helical arm (58, 68). The three short arms of this cross-shaped structure can interact with each other in the presence of calcium. Through the binding of globular G domain at the carboxyl-terminal end of the α chain to the cell receptors (e.g., integrins and dystroglycans), laminin self-assembles into polygonal lattices on cell surfaces. This process initiates BM self-assembly (15, 21, 25, 38, 65, 66). To date, 17 laminin isoforms have been observed in different tissues (51). Among them, laminin-1, the crux of early embryonic BM assembly, has been well studied. Laminin-1 consists of α1, β1, and γ1 chains and can interact with nidogen-1 with high affinity through a laminin-type epidermal growth factor-like (LE) module, γ1III4, within the domain III of the γ1 chain (1, 42). The heptapeptide “NIDPNAV” within the γ1III4 motif of laminin-1 is essential for the interaction between laminin-1 and nidogen-1 (41, 46). Blocking the interactions between laminin-1 and nidogen-1 leads to the disruption of BMs. This indicates that the formation of laminin/nidogen complex is essential for BM assembly and stability (30, 61). Nidogen-1, also called entactin-1, is a dumbbell-shaped sulfated 150-kDa glycoprotein consisted of three domains (G1, G2, and G3) (12). By interacting with collagen IV through its G2 domain and binding with laminin γ1 chain through its G3 domain, nidogen-1 bridges the layers of the laminin network and the collagen IV network to construct the fundamental structure of BMs (48). Collagen IV is a triple-helical trimer composed of three α chains. Through the hexamer formation of the carboxyl-terminal globular non-collagenous-1 (NC1) domain of each α chain, two collagen IV proteins assemble into a dimer. Dimers of collagen IV connect with each other via their amino-terminal 7S domains and self-assemble into a network (24, 27, 31, 32). Six kinds of α chains of collagen IV have been identified in mammals. Among them, α1 and α2 chains are the most abundant forms of collagen IV found in all BMs (19, 23). They commonly form a collagen IV molecule with a α1 and α2 ratio of 2:1 (31, 35).Iridoviruses infect invertebrates and poikilothermic vertebrates, including insects, fish, amphibians, and reptiles. These viruses are a group of icosahedral cytoplasmic DNA viruses with circularly permuted and terminally redundant DNA genomes (6, 8, 9, 10, 57, 62). The family Iridoviridae has been subdivided into five genera: Iridovirus, Chloriridovirus, Ranavirus, Lymphocystisvirus, and Megalocystivirus (7). The genus Megalocystivirus, characterized by the ability to cause swelling of the infected cells, is one group of the most harmful viruses to cultured fish (7, 26, 29). Infectious spleen and kidney necrosis virus (ISKNV), the causative agent of a disease that causes high mortality rates in farmed mandarin fish, Siniperca chuatsi, and large-mouth bass, Micropterus salmoides, is regarded as the type species of Megalocystivirus (7). Similar to infection caused by other members of the Megalocystivirus, fish ISKNV infection is characterized by cell hypertrophy in the spleen, kidney, cranial connective tissue, and endocardium (16, 17). Aside from mandarin fish and large-mouth bass, ISKNV-like virus can also be detected in the tissues of more than 60 marine and freshwater fishes (14, 28, 59, 64). The entire genome of ISKNV has been sequenced, and the organization of open reading frames (ORFs) of ISKNV was analyzed by using DNASTAR Omiga 2.0 and Genescan (18). The ISKNV genome is about 110 kbp and contains 125 putative ORFs (GenBank accession no. AF371960).Putative ORFs, encoding viral proteins containing a fragment homologous to laminin and a putative transmembrane fragment, were found in all of the sequenced genomes of the members of Megalocystivirus. These ORFs include ORF23R of ISKNV (GenBank accession no. AAL98747), laminin-like protein gene of olive flounder iridovirus (GenBank accession no. AAT76907), ORF2 of sea perch iridovirus (GenBank accession no. AAV51313), predicted laminin-type epidermal growth factor-like protein of large yellow croaker iridovirus (GenBank accession no. ABI32391), an unknown gene of red sea bream iridovirus (GenBank accession no. AAQ07956), ORF2 of rock bream iridovirus (GenBank accession no. AAN86692), and laminin-type epidermal growth factor-like protein of orange-spotted grouper iridovirus (GenBank accession no. AAX82335). These putative proteins are highly homologous to each other in amino acid sequence (65 to 99% identity). However, the functions of these proteins have never been identified. This is the first study to identify that the VP23R protein encoded by ORF23R of ISKNV is a plasma membrane-localized viral protein. In addition, we discovered a new function of VP23R in a unique pathological phenomenon of virus infection: the attachment of lymphatic endothelial cells (LECs) to the infected cells. Nidogen-1 assisted VP23R in the construction of a BM-like structure, providing an attachment site for LECs. This unique pathological phenomenon has never been found in viruses and is an attractive direction for studies of pathogenic mechanisms of megalocystiviruses. Moreover, studies on the unique profiles of the virus-mock BM can help us learn more about the functions of BM components and the mechanisms of lymphangiogenesis.  相似文献   

19.
20.
Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding first to CD4 and then to a coreceptor (CoR), of which C-C chemokine receptor 5 (CCR5) is the most common (6, 53). CXCR4 is an additional CoR for up to 50% of subtype B and D HIV-1 isolates at very late stages of disease (4, 7, 28, 35). Many other seven-membrane-spanning G-protein-coupled receptors (GPCRs) have been identified as alternative CoRs when expressed on various target cell lines in vitro, including CCR1 (76, 79), CCR2b (24), CCR3 (3, 5, 17, 32, 60), CCR8 (18, 34, 38), GPR1 (27, 65), GPR15/BOB (22), CXCR5 (39), CXCR6/Bonzo/STRL33/TYMSTR (9, 22, 25, 45, 46), APJ (26), CMKLR1/ChemR23 (49, 62), FPLR1 (67, 68), RDC1 (66), and D6 (55). HIV-2 and simian immunodeficiency virus SIVmac isolates more frequently show expanded use of these alternative CoRs than HIV-1 isolates (12, 30, 51, 74), and evidence that alternative CoRs other than CXCR4 mediate infection of primary target cells by HIV-1 isolates is sparse (18, 30, 53, 81). Genetic deficiency in CCR5 expression is highly protective against HIV-1 transmission (21, 36), establishing CCR5 as the primary CoR. The importance of alternative CoRs other than CXCR4 has remained elusive despite many studies (1, 30, 70, 81). Expansion of CoR use from CCR5 to include CXCR4 is frequently associated with the ability to use additional alternative CoRs for viral entry (8, 16, 20, 63, 79) in most but not all studies (29, 33, 40, 77, 78). This finding suggests that the sequence changes in HIV-1 env required for use of CXCR4 as an additional or alternative CoR (14, 15, 31, 37, 41, 57) are likely to increase the potential to use other alternative CoRs.We have used the highly permissive NP-2/CD4 human glioma cell line developed by Soda et al. (69) to classify virus entry via the alternative CoRs CCR1, CCR3, CCR8, GPR1, CXCR6, APJ, CMKLR1/ChemR23, FPRL1, and CXCR4. Full-length molecular clones of 66 env genes from most prevalent HIV-1 subtypes were used to generate infectious virus pseudotypes expressing a luciferase reporter construct (19, 57). Two types of analysis were performed: the level of virus entry mediated by each alternative CoR and linear regression of entry mediated by CCR5 versus all other alternative CoRs. We thus were able to identify patterns of alternative CoR use that were subtype specific and to determine if use of any alternative CoR was correlated or independent of CCR5-mediated entry. The results obtained have implications for the evolution of env function, and the analyses revealed important differences between subtype B Env function and all other HIV-1 subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号