首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Porcine reproductive and respiratory syndrome with PRRS virus (PRRSV) infection, which causes significant economic losses annually, is one of the most economically important diseases affecting swine industry worldwide. In 2006 and 2007, a large-scale outbreak of highly pathogenic porcine reproductive and respiratory syndrome (PRRS) happened in China and Vietnam. However little data is available on global host response to PRRSV infection at the protein level, and similar approaches looking at mRNA is problematic since mRNA levels do not necessarily predict protein levels. In order to improve the knowledge of host response and viral pathogenesis of highly virulent Chinese-type PRRSV (H-PRRSV) and Non-high-pathogenic North American-type PRRSV strains (N-PRRSV), we analyzed the protein expression changes of H-PRRSV and N-PRRSV infected lungs compared with those of uninfected negative control, and identified a series of proteins related to host response and viral pathogenesis.

Results

According to differential proteomes of porcine lungs infected with H-PRRSV, N-PRRSV and uninfected negative control at different time points using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mass spectrometry identification, 45 differentially expressed proteins (DEPs) were identified. These proteins were mostly related to cytoskeleton, stress response and oxidation reduction or metabolism. In the protein interaction network constructed based on DEPs from lungs infected with H-PRRSV, HSPA8, ARHGAP29 and NDUFS1 belonged to the most central proteins, whereas DDAH2, HSPB1 and FLNA corresponded to the most central proteins in those of N-PRRSV infected.

Conclusions

Our study is the first attempt to provide the complex picture of pulmonary protein expression during H-PRRSV and N-PRRSV infection under the in vivo environment using 2D-DIGE technology and bioinformatics tools, provides large scale valuable information for better understanding host proteins-virus interactions of these two PRRSV strains.  相似文献   

2.
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of PRRS, which causes severe reproductive failure in sows, respiratory disease in young and growing pigs, and enormous economic losses to the global swine industry. In this study, SILAC combined with MS/MS was used to quantitatively identify the secretory proteins differentially expressed in PRRSV‐infected Marc‐145 cells compared with mock‐infected controls. In total, we identified 204 secretory proteins showing significant differences in infected cells (163 upregulated, 41 downregulated). Intensive bioinformatic analysis of secretome data revealed that PRRSV infection strongly activated nonclassical protein secretion, especially vesicle‐mediated release of exosomal proteins, including different danger‐associated molecular pattern molecules and the majority of secreted proteins involved in protein binding and transport, regulation of response to stimulus, metabolic processes, and immune responses. According to the functional proteins analysis, we speculate that proteins functioning in binding, transport, and the immune response are exploited by PRRSV to facilitate virus replication and immune evasion. Our study for the first time analyzes the secretory protein profile of PRRSV‐infected Marc‐145 cells and provides valuable insight into the host response to PRRSV infection.  相似文献   

3.
4.
Porcine reproductive and respiratory syndrome virus (PRRSV) causes porcine reproductive and respiratory syndrome (PRRS), which is characterized by reproductive failure and respiratory disorders. The secretome of PRRSV‐infected porcine alveolar macrophages (PAMs), which are the primary target cells of PRRSV, was analyzed by label‐free quantitative proteomics to gain a profile of proteins secreted during PRRSV infection. A total of 95 secreted proteins with differentially expressed levels between PRRSV‐ and mock‐infected PAMs was screened. Among these, the expression levels of 49 and 46 proteins were up‐regulated and down‐regulated, respectively, in PRRSV‐infected cell supernatants, as compared with mock‐infected cell supernatants. Bioinformatic analysis revealed that the differentially expressed proteins were enriched in several signaling pathways related to the immune and inflammatory responses, such as the Toll‐like receptor signaling pathway and NF‐kappa B signaling pathway, and involved in a great diversity of biological processes, such as protein binding and localization, as well as immune effector processes. In addition, PRRSV‐infected cell supernatants induced significant expression of inflammatory cytokines in vascular endothelial cells. These findings suggest that the secreted proteins play potential roles in the host immune and inflammatory responses as well as PRRSV replication, thereby providing new insights into cell‐to‐cell communication during PRRSV infection.  相似文献   

5.
6.
《Genomics》2020,112(2):1879-1888
Porcine reproductive and respiratory syndrome (PRRS), which is caused by PRRS virus (PRRSV), is one of the most globally devastating swine diseases. It is essential to develop new strategy to control PRRS via an understanding of mechanisms that PRRSV utilizes to interfere with the host's innate immunity. In this study, we deeply sequenced and analyzed long noncoding RNA (lncRNA) and mRNA expression profiles of the porcine alveolar macrophages (PAMs) after PRRSV infection. 126 lncRNAs and 753 mRNAs were differentially expressed between PRRSV-infected and control PAMs. The co-expressed genes of down-regulated lncRNAs were significantly enriched within NF-kappa B and toll-like receptor signaling pathways. Co-expression network analysis indicated that part of the dysregulated lncRNAs associated with the interferon-induced genes. These dysregulated lncRNAs may play an important role in the host's innate immune responses to PRRSV infection. However, further research is required to characterize the function of these lncRNAs.  相似文献   

7.
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important diseases of swine, which is caused by PRRS virus (PRRSV). CD151, one of PRRSV entry mediators, determines the cell susceptibility for PRRSV. Emerging evidence indicates that the host microRNAs (miRNAs) play key roles in modulating virus infection and viral pathogenesis. In the present study, targeting porcine CD151 miRNAs were identified, and their function during PRRSV infection in MARC-145 cells was further verified. We found that miR-506 could directly target porcine CD151 3′-UTR mRNA by luciferase reporter assay. Overexpression of miR-506 significantly decreased CD151 expression at both mRNA and protein levels. Furthermore, overexpression of miR-506 reduced cellular PRRSV replication and virus release in MARC-145 cells. Our results suggested that miR-506 could inhibit PRRSV replication by directly targeting PRRSV receptor of CD151 in MARC-145 cells. However, the molecular mechanisms of miR-506 and its function in vivo need further investigation.  相似文献   

8.
9.
Porcine reproductive and respiratory syndrome (PRRS) continues to be one of the most important swine diseases worldwide. Interferon-γ (IFNγ)-mediated type Ⅰ cell-mediated immune response plays an important role in protection from, and clearance of, PRRS virus (PRRSV). Several lymphocyte subsets including T-helper, CTLs, Th/memory cells, and γδ T lymphocytes were previously reported to produce IFNγ during PRRSV infection. However, the proportion and phenotypic characterization of these IFNγ-secreting lymphocytes have not been explored. In this study, IFNγ producted by different lymphocyte subsets was assessed by multi-color flow cytometry after vaccination with PRRSV modified live vaccine (PRRSV-MLV) and challenge with homogeneous or heterogeneous PRRSV. The results showed that T-helper cells were the major IFNγ-secreting cell population after PRRSV-MLV vaccination and PRRSV challenge. Additionally, the proportion of IFNγ producing Th/memory cells and γδ T cells increased after PRRSV challenge. This difference was accounted for an enhanced ability to produce IFNγ in Th/memory cells and an enlarged quantity of γδ T cells. The results presented here could contribute to our understanding of the roles of IFNγ in protective immunity against PRRSV infection and may be useful for assessment of cell-mediated immunity in vaccine tests.  相似文献   

10.
Porcine reproductive and respiratory syndrome virus (PRRSV) negatively modulates host immune responses, resulting in persistent infection and immunosuppression. PRRSV infection increases the number of PRRSV-specific regulatory T lymphocytes (Tregs) in infected pigs. However, the target antigens for Tregs proliferation in PRRSV infection have not been fully understood. In this study, we demonstrated that the highly pathogenic PRRSV (HP-PRRSV) induced more CD4+CD25+Foxp3+ Tregs than classical PRRSV (C-PRRSV) strain. Of the recombinant GP5, M and N proteins of HP-PRRSV expressed in baculovirus expression systems, only N protein induced Tregs proliferation. The Tregs assays showed that three amino-acid regions, 15–21, 42–48 and 88–94, in N protein played an important role in induction of Tregs proliferation with synthetic peptides covering the whole length of N protein. By using reverse genetic methods, it was firstly found that the 15N and 46R residues in PRRSV N protein were critical for induction of Tregs proliferation. The phenotype of induced Tregs closely resembled that of transforming-growth-factor-β-secreting T helper 3 Tregs in swine. These data should be useful for understanding the mechanism of immunity to PRRSV and development of infection control strategies in the future.  相似文献   

11.
Porcine reproductive and respiratory syndrome (PRRS) is a viral disease defined by reproductive problems, respiratory distress and a negative impact on growth rate and general condition. Virulent PRRS virus (PRRSV) strains have emerged in the last years with evident knowledge gaps in their impact on the host immune response. Thus, the present study examines the impact of acute PRRS virus (PRRSV) infection, with two strains of different virulence, on selected immune parameters and on the gut microbiota composition of infected pigs using 16S rRNA compositional sequencing. Pigs were infected with a low virulent (PRRS_3249) or a virulent (Lena) PRRSV-1 strain and euthanized at 1, 3, 6, 8 or 13 days post-inoculation (dpi). Faeces were collected from each animal at the necropsy time-point. Alpha and beta diversity analyses demonstrated that infection, particularly with the Lena strain, impacted the microbiome composition from 6 dpi onwards. Taxonomic differences revealed that infected pigs had higher abundance of Treponema and Methanobrevibacter (FDR < 0.05). Differences were more considerable for Lena- than for PRRS_3249-infected pigs, showing the impact of strain virulence in the intestinal changes. Lena-infected pigs had reduced abundancies of anaerobic commensals such as Roseburia, Anaerostipes, Butyricicoccus and Prevotella (P < 0.05). The depletion of these desirable commensals was significantly correlated to infection severity measured by viraemia, clinical signs, lung lesions and immune parameters (IL-6, IFN-γ and Hp serum levels). Altogether, the results from this study demonstrate the indirect impact of PRRSV infection on gut microbiome composition in a strain virulence-dependent fashion and its association with selected immune markers.  相似文献   

12.
13.
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease in pigs caused by PRRS virus (PRRSV). Although PRRSV infection-induced cell apoptosis has been established, the related viral protein is still unknown. Here, we reported that PRRSV nonstructural protein 4 (nsp4) was a critical apoptosis inducer. Nsp4 could activate caspase-3, -8, and -9. Using truncated constructs without different domains in nsp4, we demonstrated that the full-length of nsp4 structure was required for its apoptosis-inducing activity. Furthermore, using site-directed mutagenesis to inactivate the 3C-like serine protease activity of nsp4, we showed that nsp4-induced apoptosis was dependent on its serine protease activity. The ability of nsp4 to induce apoptosis was significantly impaired by His39, Asp64, and Ser118 mutations, suggesting that His39, Asp64, and Ser118 were essential for nsp4 to trigger apoptosis. In conclusion, our present work showed that PRRSV nsp4 could induce apoptosis in host cells and might be partially responsible for the apoptosis induced by PRRSV infection. PRRSV 3C-like protease-mediated apoptosis represents the first report in the genus Arterivirus, family Arteriviridae.  相似文献   

14.
Differences in gene expression were compared between RNAs from lungs of high (HR) and low (LR) porcine reproductive and respiratory syndrome virus (PRRSV) burden pigs using the swine protein-annotated long oligonucleotide microarray, the Pigoligoarray. Pathway analyses were carried out to determine biological processes, pathways and networks that differ between the LR and HR responses. Differences existed between HR and LR pigs for 16 signalling pathways [P < 0.01/-log (P-value) >1.96]. Top canonical pathways included acute phase response signalling, crosstalk between dendritic cells and natural killer cells and tight junction signalling, with numerous immune response genes that were upregulated (SOCS1, SOD2, RBP4, HLA-B, HLA-G, PPP2R1A and TAP1) or downregulated (IL18, TF, C4BPA, C1QA, C1QB and TYROBP). One mechanism, regulation of complement activation, may have been blocked in HR (PRRSV-susceptible) pigs and could account for the poor clearance of PRRSV by infected macrophages. Multiple inhibiting signals may have prevented effective immune responses in susceptible HR pigs, although some protective genes were upregulated in these pigs. It is likely that in HR pigs, expression of genes associated with protection was delayed, so that the immune response was not stimulated early; thus, PRRSV infection prevented protective immune responses.  相似文献   

15.
16.
Porcine reproductive and respiratory syndrome (PRRS) is caused by PRRS virus, which, like other members of the Arterividae family, has the ability to infect macrophages and to persist in tissues for at least several months after the acute stage of infection subsides. As a consequence, PRRS has a complex epidemiologic profile and has been especially difficult to control under the usual conditions of commercial swine production. Although vaccines are commonly used, vaccination is only one of several approaches to be considered in designing a control strategy. At least equally important are procedures developed on the basis of a thorough understanding of the epidemiology of the disease. The objective of this review is to summarize current knowledge in relation to PRRS virus (PRRSV) infection in the boar. The information available related to this topic will be summarized and discussed, and the implications for the control of the condition highlighted. The main emphasis will be on questions about the pathogenesis of infection, including duration of viremia and the origin of PRRSV found in semen; the clinical signs associated with the disease, paying special attention to the effects on seminal quality; the epidemiology of the condition, with special emphasis on the duration of PRRSV shedding in semen and the implications that this may have on venereal transmission, as well as the role that other potential routes of shedding may have on the dissemination of PRRSV.  相似文献   

17.
18.
Balanced activity of pro- and anti-inflammatory cytokines during innate immune responses is required to allow effective host defense while avoiding tissue damage and autoimmunity. Induction of cytokine production after recognition of pathogen-associated molecular patterns (PAMPs) by innate immune cells has been well demonstrated, but modulation of cytokine function by PAMPs is not well understood. In this study we show that stimulation of macrophages with zymosan, which contains PAMPs derived from yeast, rapidly extinguished macrophage responses to IL-10, a suppressive cytokine that limits inflammatory tissue damage but also compromises host defense. The mechanism of inhibition involved protein kinase Cbeta and internalization of IL-10R, and was independent of TLR2 and phagocytosis. Inhibition of IL-10 signaling and function required direct contact with zymosan, and cells in an inflammatory environment that had not contacted zymosan remained responsive to the paracrine activity of zymosan-induced IL-10. These results reveal a mechanism that regulates IL-10 function such that antimicrobial functions of infected macrophages are not suppressed, but the activation of surrounding noninfected cells and subsequent tissue damage are limited. The fate of individual cells in an inflammatory microenvironment is thus specified by dynamic interactions among host cells, microbes, and cytokines that determine the balance between protection and pathology.  相似文献   

19.
猪瘟(Classical swine fever,CSF)是由猪瘟病毒(Classical swine fever virus,CSFV)感染引起的一种高度接触性传染病,临床上以出血综合征与免疫抑制为主要特征。它在多个国家流行,给中国乃至世界养猪业造成巨大的经济损失。研究表明,猪瘟病毒感染能够诱导宿主的天然免疫应答,也能通过影响天然免疫效应分子的表达来抑制宿主的天然免疫功能。本文将对猪瘟病毒感染与天然免疫应答及其免疫抑制的现象与机理进行综述。  相似文献   

20.
Pigs are often colonized by more than one bacterial and/or viral species during respiratory tract infections. This phenomenon is known as the porcine respiratory disease complex (PRDC). Actinobacillus pleuropneumoniae (App) and porcine reproductive and respiratory syndrome virus (PRRSV) are pathogens that are frequently involved in PRDC. The main objective of this project was to study the in vitro interactions between these two pathogens and the host cells in the context of mixed infections. To fulfill this objective, PRRSV permissive cell lines such as MARC-145, SJPL, and porcine alveolar macrophages (PAM) were used. A pre-infection with PRRSV was performed at 0.5 multiplicity of infection (MOI) followed by an infection with App at 10 MOI. Bacterial adherence and cell death were compared. Results showed that PRRSV pre-infection did not affect bacterial adherence to the cells. PRRSV and App co-infection produced an additive cytotoxicity effect. Interestingly, a pre-infection of SJPL and PAM cells with App blocked completely PRRSV infection. Incubation of SJPL and PAM cells with an App cell-free culture supernatant is also sufficient to significantly block PRRSV infection. This antiviral activity is not due to LPS but rather by small molecular weight, heat-resistant App metabolites (<1 kDa). The antiviral activity was also observed in SJPL cells infected with swine influenza virus but to a much lower extent compared to PRRSV. More importantly, the PRRSV antiviral activity of App was also seen with PAM, the cells targeted by the virus in vivo during infection in pigs. The antiviral activity might be due, at least in part, to the production of interferon γ. The use of in vitro experimental models to study viral and bacterial co-infections will lead to a better understanding of the interactions between pathogens and their host cells, and could allow the development of novel prophylactic and therapeutic tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号