首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capacity to remove viruses by Planova filters produced by Asahi Kasei, primarily by small virus-retentive filters, were compiled from data in peer-reviewed publications and, partly, publicly available data from presentations at conferences (Planova workshops). Data from more than 100 publications and presentations at conferences covering Planova filters were assessed. The data were grouped according to the different virus filters regarding mean pore sizes and viruses of different sizes for plasma and cell culture derived products. Planova 15N and 20N filters removed parvoviruses below the limit of detection of viruses in the filtrate in approx. 50% of all studies and mean LRFs (log reduction factors) for viruses detected in the filtrate were above 4, demonstrating effective parvovirus reduction. Parvovirus removal capacity increased for Planova BioEX filters as well as for 2 Planova 20N in series. Large viruses as retroviruses (e.g., HIV and MuLV), herpesviruses, flaviviruses and togaviruses were removed effectively by Planova 15N, 20N and BioEX filters and also by Planova 35N filters. Flow interruption, transmembrane pressure, volume and protein concentration per filter area had had no substantial impact on virus removal capacity at manufacturing specification. In conclusion, the incorporation of Planova filters in manufacturing processes of biologicals remove, depending on the filter pore size, small and large viruses from the feed stream reliably. This virus reduction step with an orthogonal mechanism integrated in the manufacturing processes of biologicals, based primarily on size exclusion of viruses, improves the virus safety of these biopharmaceutical products considerably.  相似文献   

2.
Viral safety is an important prerequisite for clinical immunoglobulin preparations. A common manufacturing practice is to utilize several virus removal/inactivation process steps to ensure the safety of human intravenous immunoglobulin (IVIg). In this regard, we examined the use of Planova 35 nm filters to reduce potential loads of both non-enveloped and enveloped viruses prior to end-stage solvent detergent treatment. The nanofiltration process was validated for removal of a variety of enveloped and non-enveloped viruses ranging in size from 70 nm to 18 nm including: Sindbis virus, Simian Virus 40 (SV40), Bovine Viral Diarrhoea virus (BVDV), Feline Calicivirus, Encephalomyocarditis virus (EMC), Hepatitis A virus (HAV), Bovine Parvovirus (BPV) and Porcine Parvovirus (PPV). The filtration procedure was carried out by first spiking a 7% solution of IVIg with < 10(8) virus. The spiked IVIg solution was then filtered through a 75 nm Planova filter followed by two Planova 35 nm filters in series (75/35/35). The 75 nm prefilter is incorporated into this process to increase the capacity of the 35 nm viral removal filters. As a result of the inclusion of the 75 nm pre-filtration step it was possible to assess the removal of virus by the 35 nm filters independent of possible aggregation of the initial viral spiking material. Samples were collected at each step and immediately titred by viral plaque assay. A process control sample of the spiked load solution was held at the same conditions for the duration of the filtration process and then titred to determine the extent to which antibody neutralization may have contributed to overall viral reduction. Control assays of spiked IVIg were performed to establish the degree of toxicity of the IVIg solution to the indicator cell lines and the extent to which the IVIg interfered with plaque formation in the assay system. This combined data was used to establish assay sensitivity for the calculation of log removal by the filtration process. It was noted that toxicity/interference effects could have a significant effect upon apparent log reductions, and these effects could vary greatly, even within viruses of the same family. The results of these studies indicate that 35 nm filtration is very effective for removing substantial quantities of both non-enveloped and enveloped viruses from IVIg. Complete clearance (to the limits of detection of the assay) was obtained for all viruses larger than 35 nm. Interestingly, viruses reported to have mean diameters of less than 35 nm (EMC and HAV) were at least partially removed by the filtration (4.3 and > 4.7 logs removal, respectively). Even small viruses such as PPV were to some extent removed from the IVIg solution by the filters (2.6 logs removal). Reduction of BPV would not be assessed due to extensive neutralization and interference with plaque formation by the IVIg. Sindbis and SV40 also were subject to neutralization and assay interference due to the IVIg, though to a lesser extent. We conclude from these studies that the 35 nm mean pore size is functionally efficient in removal of smaller size viruses from spiked IVIg concentrates.  相似文献   

3.
Virus filtration with nanometer size exclusion membranes (“nanofiltration”) is effective for removing infectious agents from biopharmaceuticals. While the virus removal capability of virus removal filters is typically evaluated based on calculation of logarithmic reduction value (LRV) of virus infectivity, knowledge of the exact mechanism(s) of virus retention remains limited. Here, human parvovirus B19 (B19V), a small virus (18–26 nm), was spiked into therapeutic plasma protein solutions and filtered through Planova™ 15N and 20N filters in scaled-down manufacturing processes. Observation of the gross structure of the Planova hollow fiber membranes by transmission electron microscopy (TEM) revealed Planova filter microporous membranes to have a rough inner, a dense middle and a rough outer layer. Of these three layers, the dense middle layer was clearly identified as the most functionally critical for effective capture of B19V. Planova filtration of protein solution containing B19V resulted in a distribution peak in the dense middle layer with an LRV >4, demonstrating effectiveness of the filtration step. This is the first report to simultaneously analyze the gross structure of a virus removal filter and visualize virus entrapment during a filtration process conducted under actual manufacturing conditions. The methodologies developed in this study demonstrate that the virus removal capability of the filtration process can be linked to the gross physical filter structure, contributing to better understanding of virus trapping mechanisms and helping the development of more reliable and robust virus filtration processes in the manufacture of biologicals.  相似文献   

4.
Virus removal from a high purity factor IX, Replenine®-VF, by filtration using a Planova 15N filter has been investigated. A wide range of relevant and model enveloped and non-enveloped viruses, of various sizes, were effectively removed by this procedure. Virus removal was confirmed to be effective when different batches of filter were challenged with poliovirus-1. It was confirmed that intentionally modified filters that failed the leakage test had completely lost the ability to remove virus, thus confirming that this test demonstrates gross filter failure. In the case of the more sensitive integrity test based on gold particle removal, it was found that a pre-wash step was not essential. Planova filters that had been modified by sodium hydroxide treatment to make them more permeable, and filters manufactured with varying pore-sizes over the range of 15–35 nm, were tested. The integrity test value that resulted in the removal of >4 log10 of poliovirus-1 from the product correlated with that recommended by the filter manufacturer. Virus removal from the product was not influenced by filter load mass, flow-rate or pressure. These studies confirm the robustness of this filtration procedure and allow suitable process limits to be set for this manufacturing step.  相似文献   

5.
Viral filtration is routinely incorporated into the downstream purification processes for the production of biologics produced in mammalian cell cultures (MCC) to remove potential viral contaminants. In recent years, the use of retentive filters designed for retaining parvovirus (~20 nm) has become an industry standard in a conscious effort to further improve product safety. Since retentive filters remove viruses primarily by the size exclusion mechanism, it is expected that filters designed for parvovirus removal can effectively clear larger viruses such as retroviruses (~100 nm). In an attempt to reduce the number of viral clearance studies, we have taken a novel approach to demonstrate the feasibility of claiming modular retrovirus clearance for Asahi Planova 20N filters. Porcine parvovirus (PPV) and xenotropic murine leukemia virus (XMuLV) were co‐spiked into six different feedstreams and then subjected to laboratory scale Planova 20N filtration. Our results indicate that Planova 20N filters consistently retain retroviruses and no retrovirus has ever been detected in the filtrates even when significant PPV breakthrough is observed. Based on the data from multiple in‐house viral validation studies and the results from the co‐spiking experiments, we have successfully claimed a modular retrovirus clearance of greater than 6 log10 reduction factors (LRF) to support clinical trial applications in both USA and Europe. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:79–85, 2014  相似文献   

6.
We designed small-scale virus filtration models to investigate the impact of the extended process times and dynamic product streams present in continuous manufacturing. Our data show that the Planova 20N and BioEX virus filters are capable of effectively removing bacteriophage PP7 (>4 log) when run continuously for up to 4 days. Additionally, both Planova 20N and BioEX filters were able to successfully process a mock elution peak of increased protein, salt, and bacteriophage concentrations with only an increase in filtration pressure observed during the higher protein concentration peak. These experiments demonstrated that small-scale viral clearance studies can be designed to model a continuous virus filtration step with specific process parameters.  相似文献   

7.
As a possible method for reducing the risk of transmissible spongiform encephalopathy (TSE) infection, Planova virus removal filters were tested for their ability to remove scrapie agent ME7. Albumin solution was spiked with high-titre ME7 and filtered through three different pore sizes of Planova filters. Infectivity of the pre- and post-filtration samples was assayed in log dilutions by intracerebral inoculation into C57B1/6 mice. Filtration of albumin solution in the absence or presence of a detergent (Sarkosyl) with Planova 35N (35+/-2 nm mean pore size) removed the contaminating scrapie agent with reduction factors of 4.93 log10 and 1.61 log10, respectively. Filtration, both in the absence and presence of detergent with Planova 15N (15+/-2 nm mean pore size), and in the presence of detergent with Planova 10N (9+/-2 nm mean pore size), showed high levels of scrapie reduction of >5.87 log10, >4.21 log10, and >3.80 log10, respectively, with no residual infectively detected in any of the filtrate samples. The effectiveness of Planova 35N filtration for the removal of infectivity of this TSE agent is greatly reduced in the presence of a strong detergent, but Planova filters with 15 nm or smaller pore size membranes can remove such infectivity at high reduction rates.  相似文献   

8.
Parvovirus retentive filters that assure removal of viruses and virus‐like particles during the production of therapeutic proteins significantly contribute to total manufacturing costs. Operational approaches that can increase throughput and reduce filtration area would result in a significant cost savings. A combination of methods was used to achieve high throughputs of an antibody or therapeutic protein solution through three parvovirus retentive filters. These methods included evaluation of diatomaceous earth or size‐based prefilters, the addition of additives, and the optimization of protein concentration, temperature, buffer composition, and solution pH. An optimum temperature of 35°C was found for maximizing throughput through the Virosart CPV and Viresolve Pro filters. Mass‐throughput values of 7.3, 26.4, and 76.2 kg/m2 were achieved through the Asahi Planova 20N, Virosart CPV, and Viresolve Pro filters, respectively, in 4 h of processing. Mass‐throughput values of 73, 137, and 192 kg/m2 were achieved through a Millipore Viresolve Pro filter in 4.0, 8.8, and 22.1 h of processing, respectively, during a single experiment. However, large‐scale parvovirus filtration operations are typically controlled to limit volumetric throughput to below the level achieved during small‐scale virus spiking experiments. The virus spike may cause significant filter plugging, limiting throughput. Therefore newer parvovirus filter spiking strategies should be adopted that may lead to more representative viral clearance data and higher utilization of large‐scale filter capacity. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

9.
Virus filtration provides robust removal of potential viral contaminants and is a critical step during the manufacture of biotherapeutic products. However, recent studies have shown that small virus removal can be impacted by low operating pressure and depressurization. To better understand the impact of these conditions and to define robust virus filtration design spaces, we conducted multivariate analyses to evaluate parvovirus removal over wide ranges of operating pressure, solution pH, and conductivity for three mAb products on Planova? BioEX and 20N filters. Pressure ranges from 0.69 to 3.43 bar (10.0–49.7 psi) for Planova BioEX filters and from 0.50 to 1.10 bar (7.3 to 16.0 psi) for Planova 20N filters were identified as ranges over which effective removal of parvovirus is achieved for different products over wide ranges of pH and conductivity. Viral clearance at operating pressure below the robust pressure range suggests that effective parvovirus removal can be achieved at low pressure but that Minute virus of mice (MVM) logarithmic reduction value (LRV) results may be impacted by product and solution conditions. These results establish robust design spaces for Planova BioEX and 20N filters where high parvovirus clearance can be expected for most antibody products and provide further understanding of viral clearance mechanisms. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1294–1302, 2017  相似文献   

10.
Virus filtration remains a critical step in the downstream process for the production of monoclonal antibodies and other mammalian cell-derived biotherapeutics. Recent studies have shown large differences in virus capture behavior of different virus filters, although the origin of these differences is still unclear. The objective of this study was to use confocal and scanning electron microscopy to directly evaluate the capture of virus-size nanoparticles in Planova 20N and BioEX hollow-fiber virus filters. Confocal images of fluorescent nanoparticles were quantified using ImageJ image processing software based on the measured fluorescence intensity of the labeled nanoparticles. Nanoparticle capture by the Planova BioEX was independent of transmembrane pressure from 10 to 45 psi. In contrast, the Planova 20N showed significant differences in nanoparticle capture profile at low pressure, consistent with literature data showing virus breakthrough under these conditions. Images obtained after a process interruption show significant migration of previously captured nanoparticles in the Planova 20N filters but not in the BioEX. These results provide important insights into the nature of virus capture in different virus filters and its dependence on the underlying structure of the virus filtration membranes.  相似文献   

11.
The evaluation of the removal efficacy during manufacturing is important for the risk assessment of plasma products with respect to possible contamination by infectious prions, as recently reported in several papers on the potential for prion transmission through plasma products. Here, we evaluated a virus removal filter which has 15 nm pores. An antithrombin sample immediately prior to nano-filtration was spiked with prion material prepared in two different ways. The removal (log reduction factor) of prion infectivity using animal bioassays was ≥4.72 and 4.00 in two independent filtrations. However, infectivity was detected in both the pellet and supernatant following ultracentrifugation of the 15 nm filtered samples, indicating difficulty in complete removal. The data supports the conclusion that a certain amount of infectious prion protein is present as a smaller and/or soluble form (less than ~15 nm in diameter).  相似文献   

12.
A new human liquid intravenous immunoglobulin product, Flebogamma® DIF, has been developed. This IgG is purified from human plasma by cold ethanol fractionation, PEG precipitation and ion exchange chromatography. The manufacturing process includes three different specific pathogen clearance (inactivation/removal) steps: pasteurization, solvent/detergent treatment and Planova? nanofiltration with a pore size of 20 nm. This study evaluates the pathogen clearance capacity of seven steps in the production process for a wide range of viruses through spiking experiments: the three specific steps mentioned above and also four more production steps. Infectivity of samples was measured using a Tissue Culture Infectious Dose assay (log10 TCID50) or Plaque Forming Units assay (log10 PFU). Validation studies demonstrated that each specific step cleared more than 4 log10 for all viruses assayed. An overall viral clearance between ≥13.33 log10 and ≥25.21 log10, was achieved depending on the virus and the number of steps studied for each virus. It can be concluded that Flebogamma® DIF has a very high viral safety profile.  相似文献   

13.
《Biologicals》2007,35(3):173-181
We studied the efficacy of virus reduction by three process steps (polyethylene glycol 4000 (PEG) precipitation, pasteurization, and 15 nm virus filtration) in the manufacturing of C1-inhibitor NF. The potential prion removing capacity in this process was estimated based on data from the literature. Virus studies were performed using hepatitis A virus (HAV) and human immunodeficiency virus (HIV) as relevant viruses and bovine viral diarrhea virus (BVDV), canine parvovirus (CPV) and pseudorabies virus (PRV) as model viruses, respectively. In the PEG precipitation step, an average reduction in infectious titer of 4.5 log10 was obtained for all five viruses tested. Pasteurization resulted in reduction of infectious virus of >6 log10 for BVDV, HIV, and PRV; for HAV the reduction factor was limited to 2.8 log10 and for CPV it was zero. Virus filtration (15 nm) reduced the infectious titer of all viruses by more than 4.5 log10. The overall virus reducing capacity was >16 log10 for the LE viruses. For the NLE viruses CPV and HAV, the overall virus reducing capacities were >8.7 and >10.5 log10, respectively. Based on literature and theoretical assumptions, the prion reducing capacity of the C1-inhibitor NF process was estimated to be >9 log10.  相似文献   

14.
We aimed to investigate the effect of virus‐spiking conditions on the filter performance (flux, flux decay, and parvovirus reduction) of the small virus filter Planova? 20N. We used three kinds of porcine parvovirus (PPV) stocks: serum, serum‐free, and purified. The flux profile with PPV spiking was similar to that without spiking for normal load filtration of about 250–300 L/m2. High volume (3 vol %) of serum‐free PPV and 1 vol % serum PPV reduced the flux to some extent for high‐load filtration (over 10 h, ca., 500 L/m2, 5 mg/mL IgG solution). Log reduction value (LRV) of PPV was maintained at a high level (>5) over the filtration volume. Flux for Planova? 20N was only minimally affected by the use of different virus stocks for spiking. Transmission electron microphotography showed that the distribution of PPV particles captured inside the membrane wall was reached until the ?60% thickness of the membrane, showing that the membrane of Planova? 20N has a thick effective layer for virus removal. These results provided evidence for the robustness of the filter performance of Planova? 20N, showing that it was not easily affected by virus spiking conditions and that it has a large capacity for high‐load conditions. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

15.
《Biologicals》2014,42(2):79-85
In this study, the virus-removal capacity of nanofiltration was assessed using validated laboratory scale models on a wide range of viruses (pseudorabies virus; human immunodeficiency virus; bovine viral diarrhea virus; West Nile virus; hepatitis A virus; murine encephalomyocarditis virus; and porcine parvovirus) with sizes from 18 nm to 200 nm and applying the different process conditions existing in a number of Grifols' plasma-derived manufacturing processes (thrombin, α1-proteinase inhibitor, Factor IX, antithrombin, plasmin, intravenous immunoglobulin, and fibrinogen). Spiking experiments (n = 133) were performed in process intermediate products, and removal was subsequently determined by infectivity titration. Reduction Factor (RF) was calculated by comparing the virus load before and after nanofiltration under each product purification condition. In all experiments, the RFs were close to or greater than 4 log10 (>99.99% of virus elimination). RF values were not significantly affected by the process conditions within the limits assayed (pH, ionic strength, temperature, filtration ratio, and protein concentration). The virus-removal capacity of nanofiltration correlated only with the size of the removed agent. In conclusion, nanofiltration, as used in the manufacturing of several Grifols' products, is consistent, robust, and not significantly affected by process conditions.  相似文献   

16.
Cell-based manufacturing processes have occasionally been exposed to adventitious viruses, leading to manufacturing interruptions and unstable supply situations. The rapid progress of advanced therapy medicinal products needs innovative approaches to avoid any unwelcome reminder of the universal presence of viruses. Here, we investigated upstream virus filtration as a clearance step for any product too complex for downstream interventions. Culture media virus filtration was investigated with respect to virus clearance capacities under extreme conditions such as high process feed loading (up to ~19,000 L/m²), long duration (up to 34 days), and multiple process interruptions (up to 21 h). The small nonenveloped Minute virus of mice was used as relevant target virus, and as worse-case challenge for the investigated virus filters with a stipulated pore-size of about 20 nm. Certain filters—especially of the newer second generation—were capable of effective virus clearance despite the harsh regimen they were subjected to. The biochemical parameters for un-spiked control runs showed the filters to have no measurable impact on the composition of the culture media. Based on these findings, this technology seems to be quite feasible for large volume premanufacturing process culture media preparations.  相似文献   

17.
Virus‐removal filtration technology is commonly used in the manufacturing process for biologics to remove potential viral contaminants. Virus‐removal filters designed for retaining parvovirus, one of the smallest mammalian viruses, are considered an industry standard as they can effectively remove broad ranges of viruses. It has long been observed that the performance of virus filters can be influenced by virus preparations used in the laboratory scale studies (PDA, 2010 ). However, it remains unclear exactly what quality attributes of virus preparations are critical or indicative of virus filter performance as measured by effectiveness of virus removal and filter capacity consistency. In an attempt to better understand the relationship between virus preparation and virus filter performance, we have systematically prepared and analyzed different grades of parvovirus with different purity levels and compared their performance profiles on Viresolve® Pro parvovirus filters using four different molecules. Virus preparations used in the studies were characterized using various methods to measure DNA and protein content as well as the hydrodynamic diameter of virus particles. Our results indicate that the performance of Viresolve® Pro filters can be significantly impacted depending on the purity of the virus preparations used in the spike and recovery studies. More importantly, we have demonstrated that the purity of virus preparations is directly correlated to the measurable biochemical and biophysical properties of the virus preparations such as DNA and protein content and monodispersal status, thus making it possible to significantly improve the consistency and predictability of the virus filter performance during process step validations. Biotechnol. Bioeng. 2013; 110: 229–239. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Fluorescence diagnosis may be used to improve the safety and reliability of stereotactic brain tumor biopsies using biopsy needles with integrated fiber optics. Based on 5‐aminolevulinic‐acid‐induced protoporphyrin IX (PpIX) fluorescence, vital tumor tissue can be localized in vivo during the excision procedure to reduce the number of necessary samples for a reliable diagnosis. In this study, the practical suitability of two different PpIX excitation wavelengths (405 nm, 633 nm) was investigated on optical phantoms. Violet excitation at 405 nm provides a 50‐fold higher sensitivity for the bulk tumor; this factor increases up to 100 with decreasing fluorescent volume as shown by ray tracing simulations. Red excitation at 633 nm, however, is noticeably superior with regard to blood layers obscuring the fluorescence. Experimental results on the signal attenuation through blood layers of well‐defined thicknesses could be confirmed by ray tracing simulations. Typical interstitial fiber probe measurements were mimicked on agarose‐gel phantoms. Even in direct contact, blood layers of 20–40 µm between probe and tissue must be expected, obscuring 405‐nm‐excited PpIX fluorescence almost completely, but reducing the 633‐nm‐excited signal only by 25.5%. Thus, 633 nm seems to be the wavelength of choice for PpIX‐assisted detection of high‐grade gliomas in stereotactic biopsy.

PpIX signal attenuation through clinically relevant blood layers for 405 nm (violet) and 633 nm (red) excitation.  相似文献   


19.
Manufacturing processes for plasma derivatives are in general highly effective for removal or inactivation of enveloped viruses and the products are safe with regard to the clinically important viruses HIV, HCV and HBV. They are not so effective for the elimination for non-enveloped viruses, especially Parvovirus B19 (B19). A certain risk remains of B19 contamination for some plasma derivatives that is caused, firstly, by the occurrence of highly contaminated donations (up to 10(14)genomes/ml) and secondly, by the extreme heat resistance and small size of B19 which makes it difficult to remove or inactivate. NAT is a beneficial tool for detection of virus contamination. It is routinely used for the detection of HCV-RNA in plasma pools, thereby preventing the processing of HCV-RNA positive material. NAT assays may also be valuable for testing the removal of viruses during manufacturing. This may be especially important if a virus cannot be tested by infectivity assays.  相似文献   

20.
We investigated the effect of antibody solution conditions (ionic strength, pH, IgG concentration, buffer composition, and aggregate level (dimer content)) on filter performance for a virus removal filtration process using the Planova? 20N, a virus removal filter. Ionic strength and pH affected the filter flux. A consistent high flux was maintained at an ionic strength greater than 10 mM and at pH 4–8 under a typical buffer composition (sodium chloride, citrate, acetate, and phosphate). Optimum IgG concentration was 10–20 mg/mL allowing for high throughput (kg/m2 of IgG). Dimer content negligibly affected the flux level. Under high throughput conditions, virus spiking did not affect flux whereas a parvovirus logarithmic reduction value greater than 5 was maintained. From the results of zeta potential analyses for IgG and the membrane, we considered that electrostatic interactions between antibodies and the membrane affect filter performance (flux level and throughput). These results indicate that the Planova? 20N filter is applicable for a wide range of solution conditions typically used in antibody processing. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号