首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endozepines, a family of regulatory peptides related to diazepam-binding inhibitor (DBI), are synthesized and released by astroglial cells. Because rat astrocytes express various subtypes of somatostatin receptors (sst), we have investigated the effect of somatostatin on DBI mRNA level and endozepine secretion in rat astrocytes in secondary culture. Somatostatin reduced in a concentration-dependent manner the level of DBI mRNA in cultured astrocytes. This inhibitory effect was mimicked by the selective sst4 receptor agonist L803-087 but not by the selective sst1, sst2 and sst3 receptor agonists L779-591, L779-976 and L797-778, respectively. Somatostatin was unable to further reduce DBI mRNA level in the presence of the MEK inhibitor U0126. Somatostatin and the sst1, sst2 and sst4 receptor agonists induced a concentration-dependent inhibition of endozepine release. Somatostatin and the sst1, sst2 and sst4 receptor agonists also inhibited cAMP formation dose-dependently. In addition, somatostatin reduced forskolin-induced endozepine release. H89 mimicked the inhibitory effect of somatostatin on endozepine secretion. In contrast the PLC inhibitor U73122, the PKC activator PMA and the PKC inhibitor calphostin C had no effect on somatostatin-induced inhibition of endozepine release. The present data demonstrate that somatostatin reduces DBI mRNA level mainly through activation of sst4 receptors negatively coupled to the MAPK pathway, and inhibits endozepine release through activation of sst1, sst2 and sst4 receptors negatively coupled to the adenylyl cyclase/PKA pathway.  相似文献   

2.
Acyl coenzyme A binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is a phylogenetically ancient protein present in some eubacteria and the entire eukaryotic radiation. In several eukaryotic phyla, ACBP/DBI transcends its intracellular function in fatty acid metabolism because it can be released into the extracellular space. This ACBP/DBI secretion usually occurs in response to nutrient scarcity through an autophagy-dependent pathway. ACBP/DBI and its peptide fragments then act on a range of distinct receptors that diverge among phyla, namely metabotropic G protein-coupled receptor in yeast (and likely in the mammalian central nervous system), a histidine receptor kinase in slime molds, and ionotropic gamma-aminobutyric acid (GABA)A receptors in mammals. Genetic or antibody-mediated inhibition of ACBP/DBI orthologs interferes with nutrient stress-induced adaptations such as sporulation or increased food intake in multiple species, as it enhances lifespan or healthspan in yeast, plant leaves, nematodes, and multiple mouse models. These lifespan and healthspan-extending effects of ACBP/DBI suppression are coupled to the induction of autophagy. Altogether, it appears that neutralization of extracellular ACBP/DBI results in “autophagy checkpoint inhibition” to unleash the anti-aging potential of autophagy. Of note, in humans, ACBP/DBI levels increase in various tissues, as well as in the plasma, in the context of aging, obesity, uncontrolled infection or cardiovascular, inflammatory, neurodegenerative, and malignant diseases.  相似文献   

3.
It has been established that neurosteroids can either inhibit or enhance GABA(A) receptor activity. Although GABA is the main inhibitory neurotransmitter in the mammalian retina, the effects of neurosteroids on retinal GABAergic activity have not been investigated. The aim of this work was to study the neurochemical and electroretinographic effects of neurosteroids in the golden hamster. On one hand, pregnenolone sulfate inhibited and allotetrahydrodeoxycorticosterone increased GABA-induced [36Cl]- uptake in neurosynaptosomes. On the other hand, in whole retinas, pregnenolone sulfate increased, whereas allotetrahydrodeoxycorticosterone decreased high potassium-induced [3H]GABA release. The effect of both neurosteroids on GABA release was Ca2+-dependent, as in its absence release was not altered. The intravitreal injection of pregnenolone sulfate or vigabatrin (an irreversible inhibitor of GABA degradation) significantly decreased scotopic b-wave amplitude, whereas the opposite effect was evident when bicuculline or allotetrahydrodeoxycorticosterone were injected. A protein with a molecular weight close to that of hamster adrenal cytochrome P450 side-chain cleavage (P450scc) was detected in the hamster retina. P450scc-like immunoreactivity was localized in the inner nuclear and the ganglion cell layers. These results indicate that neurosteroids significantly modulate retinal GABAergic neurotransmission and electroretinographic activity. In addition, the selective localization of P450scc suggests that neurosteroid biosynthesis might occur only in some layers of the hamster retina.  相似文献   

4.
Horizontal optokinetic stimulation of rabbit retina in vivo evokes increased expression of acyl coenzyme A-binding protein (ACBP), also known as 'diazepam binding inhibitor,' from retinal Müller cells. If the expressed ACBP were also secreted by Müller cells, then stimulus-evoked secretion of ACBP could influence the activity of GABAA receptor-expressing retinal neurons. In this study, we examine in vitro whether ACBP is secreted by Müller glial cells and Müller-like QNR/K2 cells following stimulation with elevated levels of KCl and phorbol myristic acetate (PMA). KCl and PMA stimulation evoked secretion of threonine-phosphorylated ACBP. A sequence analysis of ACBP shows that it has five potential phosphorylation sites: Two threonine sites fit a protein kinase C phosphorylation pattern. Two threonine sites fit a casein kinase II (CK2) pattern. One serine site fits a CK2 pattern. As CK2 is not expressed in QNR/K2 cells, it is probable that protein kinase C accounts for the phosphorylation of ACBP in these cells and for the PMA-evoked secretion of ACBP. Serine phosphorylation was constitutive. Horizontal optokinetic stimulation increased threonine-phosphorylated ACBP in rabbit retina. Phosphorylation of ACBP may influence its target affinity. We used a proteolytic fragment of ACBP, octadecaneuropeptide (ODN), to investigate how threonine phosphorylation influences its affinity for GABAA receptors. Threonine-phosphorylated ODN had a stronger affinity for GABAA receptors than did unphosphorylated ODN or unphosphorylated ACBP. We conclude that stimulus-induced Müller cell secretion of phosphorylated ACBP could influence the GABAergic transmission in neighboring retinal neurons.  相似文献   

5.
Neurosteroids may play a major role in the regulation of various neurophysiological and behavioural processes. However, while the biochemical pathways involved in the synthesis of neuroactive steroids in the central nervous system are now elucidated, the mechanisms controlling the activity of neurosteroid-producing cells remain almost completely unknown. In the present study, we have investigated the effect of the octadecaneuropeptide (ODN), an endogenous ligand of benzodiazepine receptors, in the control of steroid biosynthesis in the frog hypothalamus. Glial cells containing ODN-like immunoreactivity were found to send their thick processes in the close vicinity of neurones expressing the steroidogenic enzyme 3 beta-hydroxysteroid dehydrogenase. Exposure of frog hypothalamic explants to graded concentrations of ODN (10(-10)-10(-5) M) produced a dose-dependent increase in the conversion of tritiated pregnenolone into various radioactive steroids, including 17-hydroxypregnenolone, progesterone, 17-hydroxyprogesterone, dehydroepiandrosterone and dihydrotestosterone. The ODN-induced stimulation of neurosteroid biosynthesis was mimicked by the central-type benzodiazepine receptor (CBR) inverse agonists methyl beta-carboline-3-carboxylate (beta-CCM) and methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM). The stimulatory effects of ODN, beta-CCM and DMCM on steroid formation was markedly reduced by the CBR antagonist flumazenil. The ODN-evoked stimulation of neurosteroid production was also significantly attenuated by GABA. Collectively, these data indicate that the endozepine ODN, released by glial cell processes in the vicinity of 3 beta-hydroxysteroid dehydrogenase-containing neurones, stimulates the biosynthesis of neurosteroids through activation of central-type benzodiazepines receptors.  相似文献   

6.
Bicíková M  Klak J  Hill M  Zizka Z  Hampl R  Calda P 《Steroids》2002,67(5):399-402
Allopregnanolone and pregnenolone sulfate, which are neuroactive steroids that differentially modulate the sensitivity of GABA(A) and NMDA receptors, were measured simultaneously in maternal and fetal sera and in amniotic fluid for the first time during the second trimester of gravidity. The study included 33 pregnant women, who underwent cordocentesis due to suspicion of fetal abnormality or alloimmunization. Allopregnanolone concentrations in maternal and fetal sera were similar and close to the previously found levels in healthy controls at 20 weeks of gestation The levels of pregnenolone sulfate in maternal serum were 2-3 times higher and in fetal serum, as much as 10-25 times higher than those found by others in the serum of healthy, non-pregnant women. A positive correlation between maternal and fetal allopregnanolone indicate similar 5alpha-reductase activities or the efficient transport of allopregnanolone between the two subjects. No correlation of pregnenolone sulfate levels between mother and fetus was found. This finding suggests the autonomous production of pregnenolone sulfate in mother and fetus.  相似文献   

7.
Starving Dictyostelium discoideum cells secrete AcbA, an acyl coenzyme A–binding protein (ACBP) that lacks a conventional signal sequence for entering the endoplasmic reticulum (ER). Secretion of AcbA in D. discoideum requires the Golgi-associated protein GRASP. In this study, we report that starvation-induced secretion of Acb1, the Saccharomyces cerevisiae ACBP orthologue, also requires GRASP (Grh1). This highlights the conserved function of GRASP in unconventional secretion. Although genes required for ER to Golgi or Golgi to cell surface transport are not required for Acb1 secretion in yeast, this process involves autophagy genes and the plasma membrane t-SNARE, Sso1. Inhibiting transport to vacuoles does not affect Acb1 secretion. In sum, our experiments reveal a unique secretory pathway where autophagosomes containing Acb1 evade fusion with the vacuole to prevent cargo degradation. We propose that these autophagosome intermediates fuse with recycling endosomes instead to form multivesicular body carriers that then fuse with the plasma membrane to release cargo.  相似文献   

8.
Neuropsychopharmacological properties of neuroactive steroids.   总被引:4,自引:0,他引:4  
R Rupprecht  F Holsboer 《Steroids》1999,64(1-2):83-91
In addition to the well-known genomic effects of steroid molecules via intracellular steroid receptors, certain steroids rapidly alter neuronal excitability through interaction with neurotransmitter-gated ion channels. Several of these steroids accumulate in the brain after local synthesis or after metabolism of adrenal steroids. The 3alpha-hydroxy ring A-reduced pregnane steroids allopregnanolone and tetrahydrodeoxycorticosterone have been thought not to interact with intracellular receptors, but enhance gamma-aminobutyric acid (GABA)-mediated chloride currents, whereas pregnenolone sulfate and dehydroepiandrosterone (DHEA) sulfate display functional antagonistic properties at GABA(A) receptors. We demonstrated that these neuroactive steroids can regulate also gene expression via the progesterone receptor after intracellular oxidation. Thus, in physiological concentrations these neuroactive steroids regulate neuronal function through their concurrent influence on transmitter-gated ion channels and gene expression. When administered in animal studies, memory-enhancing effects have been shown for pregnenolone sulfate and DHEA. The 3alpha-hydroxy ring A-reduced neuroactive steroids predominantly display anxiolytic, anticonvulsant, and hypnotic activities. Sleep studies evaluating the effects of progesterone as a precursor molecule for these neuroactive steroids revealed a sleep electroencephalogram pattern similar to that obtained by the administration of benzodiazepines. These findings extend the concept of a "cross-talk" between membrane and nuclear hormone effects and provide a new role for the therapeutic application of these steroids in neurology and psychiatry.  相似文献   

9.
E Costa  A Guidotti 《Life sciences》1991,49(5):325-344
Diazepam binding inhibitor (DBI) is a 9-kD polypeptide that was first isolated in 1983 from rat brain by monitoring its ability to displace diazepam from the benzodiazepine (BZD) recognition site located on the extracellular domain of the type A receptor for gamma-aminobutyric acid (GABAA receptor) and from the mitochondrial BZD receptor (MBR) located on the outer mitochondrial membrane. In brain, DBI and its two major processing products [DBI 33-50, or octadecaneuropeptide (ODN) and DBI 17-50, or triakontatetraneuropeptide (TTN)] are unevenly distributed in neurons, with the highest concentrations of DBI (10 to 50 microMs) being present in the hypothalamus, amygdala, cerebellum, and discrete areas of the thalamus, hippocampus, and cortex. DBI is also present in specialized glial cells (astroglia and Bergmann glia) and in peripheral tissues. In the periphery, the highest concentration of DBI occurs in cells of the zona glomerulosa and fasciculata of the adrenal cortex and in Leydig cells of the testis; interestingly, these are the same cell types in which MBRs are highly concentrated. Stimulation of MBRs by appropriate ligands (including DBI and TTN) facilitates cholesterol influx into mitochondria and the subsequent formation of pregnenolone, the parent molecule for endogenous steroid production; this facilitation occurs not only in peripheral steroidogenic tissues, but also in glial cells, the steroidogenic cells of the brain. Some of the steroids (pregnenolone sulfate, dehydroepiandrosterone sulfate, 3 alpha-hydroxy-5 alpha-pregnan-20-one, and 3 alpha, 21-dihydroxy-5 alpha-pregnan-20-one) produced in brain (neurosteroids) function as potent (with effects in the nanomolar concentration range) positive or negative allosteric modulators of GABAA receptor function. Thus, accumulating evidence suggests that the various neurobiological actions of DBI and its processing products may be attributable to the ability of these peptides either to bind to BZD recognition sites associated with GABAA receptors or to bind to glial cell MBRs and modulate the rate and quality of neurosteroidogenesis. The neurobiological effects of DBI and its processing products in physiological and pathological conditions (hepatic encephlopaty, depression, panic) concentrations may therefore be explained by interactions with different types of BZD recognition site. In addition, recent reports that DBI and some of its fragments inhibit (in nanomolar concentrations) glucose-induced insulin release from pancreatic islets and bind acyl-coenzyme A with high affinity support the hypothesis that DBI isa precursor of biologically active peptides with multiple actions in the brain and in peripheral tissues.  相似文献   

10.
Models for the study of memory and neurosteroids]   总被引:1,自引:0,他引:1  
The steroids dehydroepiandrosterone sulfate (DHEA-S) and pregnenolone sulfate (Preg-S) are naturally synthetized in the brain. They improve short term and long term memory performances in a variety of learning tasks and models of amnesia in rodents. DHEA-S and Preg-S modulate GABAergic and glutamatergic synaptic transmission through direct interactions with GABA-A, NMDA and/or sigma 1 membrane receptors. In addition, these two neurosteroids facilitate the release of acetylcholine and modulate synaptic plasticity phenomena in cerebral structures, such as the hippocampus, known to play a role in learning and memory processes. The possible links between these actions and the promnestic effects of DHEA-S and Preg-S are discussed in the present review.  相似文献   

11.
We report that the two classes of regulatory neuropeptides, neuropeptide Y (NPY) and endogenous opioid peptides (EOP), modulate luteinizing hormone (LH) release in diverse fashion in gonad-intact rats. Each neuropeptide acts at two loci, the hypothalamus and pituitary, to excite (NPY) or inhibit (EOP) LH release. At the hypothalamic level, NPY stimulates luteinizing hormone releasing hormone (LHRH) release, a response mediated by alpha 2-adrenoreceptors and amplified in the presence of adrenergic agonists. At the pituitary level, NPY acts in concert with LHRH to amplify the LH response. In contrast, EOP inhibit LHRH release by decreasing the supply of excitatory adrenergic signals in the vicinity of LHRH neurons in the preoptic-tuberal pathway, and at the pituitary level, they decrease LH release in response to LHRH. Further, the gonadal steroidal milieu facilitates NPY neurosecretion and postsynaptic expression of NPY in concert with adrenergic system; a similar clear-cut facilitatory effect of gonadal steroids on EOP secretion is not yet obvious. Our additional studies imply that the EOP system has the potential to increase sensitivity towards gonadal steroids and that to induce the preovulatory LH surge the neural clock may decrease the inhibitory EOP tone prior to the critical period on proestrus. This antecedent neural event allows the excitatory adrenergic and NPY signals to evoke LHRH secretion at a higher frequency approximating that seen in ovariectomized rats. Further studies are under way to delineate the steroid-induced subcellular events that integrate the action of these regulatory peptides in the control of the episodic LHRH secretion pattern which sustains basal and cyclic gonadotropin release in the rat.  相似文献   

12.
Five 3beta-hydroxy-5-ene steroids involved in the metabolic route from pregnenolone sulfate to dehydroepiandrosterone and its sulfate, of which three are known allosteric modulators of neurotransmitter receptors, were monitored in the serum of 20 women around parturition. In addition, their levels in maternal and umbilical serum were compared at delivery. On the basis of these data, a scheme of steroid biosynthesis in maternal organism during the critical stages around parturition is proposed.In maternal serum, all the steroids except dehydroepiandrosterone sulfate decreased during labor and even first day after delivery, although their changes were less distinct the more distant from pregnenolone sulfate (PregS) in the metabolic pathway. Calculation of product/immediate precursor ratios in maternal serum over all stages around parturition enabled identification of the respective changes in the activities of the relevant enzymes. The ratio of 17-hydroxypregnenolone/pregnenolone did not change significantly, while that of dehydroepiandrosterone/17-hydroxypregnenolone grew, indicating increased C17,20 side chain cleavage on the account of C17-hydroxylation both catalyzed by C17-hydroxylase-C17,20-lyase. As was shown by factor analysis, the changes in the maternal steroids were associated with a single common factor, which strongly correlated with all the steroids except dehydroepiandrosterone sulfate. The lack of change in the pregnenolone sulfate/pregnenolone ratio and a marked increase of the ratio dehydroepiandrosterone sulfate to unconjugated dehydroepiandrosterone indicate a different means of formation of both steroid sulfates. On the basis of these data, a scheme of steroid biosynthesis in maternal organism during the critical stages around parturition is proposed.  相似文献   

13.
Accumulation of beta-amyloid peptide (Abeta), which is a landmark of Alzheimer's disease, may alter astrocyte functions before any visible symptoms of the disease occur. Here, we examined the effects of Abeta on biosynthesis and release of diazepam-binding inhibitor (DBI), a polypeptide primarily expressed by astroglial cells in the CNS. Quantitative RT-PCR and specific radioimmunoassay demonstrated that aggregated Abeta(25-35), at concentrations up to 10(-4) m, induced a dose-dependent increase in DBI mRNA expression and DBI-related peptide release from cultured rat astrocytes. These effects were totally suppressed when aggregation of Abeta(25-35) was prevented by Congo red. Measurement of the number of living cells revealed that Abeta(25-35) induced a trophic rather than a toxic effect on astrocytes. Administration of cycloheximide blocked Abeta(25-35)-induced increase of DBI gene expression and endozepine accumulation in astrocytes, indicating that protein synthesis is required for DBI gene expression. Altogether, the present data suggest that Abeta-induced activation of endozepine biosynthesis and release may contribute to astrocyte proliferation associated with Alzheimer's disease.  相似文献   

14.
Prion protein modulates many cellular functions including the secretion of trophic factors by astrocytes. Some of these factors are found in exosomes, which are formed within multivesicular bodies (MVBs) and secreted into the extracellular space to modulate cell-cell communication. The mechanisms underlying exosome biogenesis were not completely deciphered. Here, we demonstrate that primary cultures of astrocytes and fibroblasts from prnp-null mice secreted lower levels of exosomes than wild-type cells. Furthermore, prnp-null astrocytes exhibited reduced MVB formation and increased autophagosome formation. The reconstitution of PRNP expression at the cell membrane restored exosome secretion in PRNP-deficient astrocytes, whereas macroautophagy/autophagy inhibition via BECN1 depletion reestablished exosome release in these cells. Moreover, the PRNP octapeptide repeat domain was necessary to promote exosome secretion and to impair the formation of the CAV1-dependent ATG12–ATG5 cytoplasmic complex that drives autophagosome formation. Accordingly, higher levels of CAV1 were found in lipid raft domains instead of in the cytoplasm in prnp-null cells. Collectively, these findings demonstrate that PRNP supports CAV1-suppressed autophagy to protect MVBs from sequestration into phagophores, thus facilitating exosome secretion.  相似文献   

15.
The diazepam binding inhibitor (DBI) or the acyl-CoA-binding protein (ACBP) is a 9-10 kDa highly conserved multifunctional protein that plays important roles in GABA(A) receptor activity regulation, lipid absorption and steroidogenesis in various organisms. To study the functions of DBI/ACBP in insect development or diapause, we cloned the cDNA from Helicoverpa armigera (Har) utilizing rapid amplification of cDNA ends (RACE). By homology search, Har-DBI/ACBP is conserved with the DBI/ACBPs known from other insects. Northern blot analysis showed that DBI/ACBP gene expressed in nonneural and neural tissues. RT-PCR combined Southern blot analysis revealed that DBI/ACBP mRNA in the brain of nondiapause individual was much higher than that in the brain of diapausing insects. At early and middle stages of 6th instar larvae, the level of DBI/ACBP mRNA was higher in the midgut of diapause type than that in nondiapause type and low at late 6th instar larval stage and early pupal stage in both types. In the prothoracic gland (PG), DBI/ACBP expression appeared at a high level at middle and late stages of 6th larval instar in both nondiapause and diapause types, and declined after pupation. In vitro experiments revealed that DBI/ACBP mRNA in PG could be stimulated by synthetic H. armigera diapause hormone (Har-DH), suggesting that Har-DH may stimulate the PG to produce ecdysteroids by the DBI/ACBP signal pathway. By in vitro assay, we also found that FGIN-1-27, which has similar functions to DBI/ACBP in ecdysteroidogenesis, could induce PG ecdysteroidogenesis effectively, suggesting that DBI/ACBP regulates biosynthesis of ecdysteroids in PG. Thus, DBI/ACBP indeed plays a key role in metabolism and development in H. armigera.  相似文献   

16.
Neurosteroids in rodents can originate from peripheral tissues or be locally synthesized in specific brain areas. There is, as yet, no information about the synthesis and regulation of neurosteroids in human brain. We examined the ability of human brain cells to synthesize steroids from a radiolabeled precursor and the mRNA and protein expression of key components of peripheral steroidogenic machinery. Oligodendrocytes are the source of pregnenolone in human brain. Human astrocytes do not synthesize radiolabeled pregnenolone, nor do human neurons. There is potential for all three cell types to metabolize pregnenolone to other neurosteroids, including dehydroepiandrosterone. mRNA and protein for cytochrome P450 17alpha-hydroxylase were found in all cell types, although no activity could be demonstrated. We examined the ability of the cells to make dehydroepiandrosterone via an alternative pathway induced by treatment with Fe2+. Oligodendrocytes and astrocytes make dehydroepiandrosterone via this pathway, but neurons do not. In searching for a natural regulator of dehydroepiandrosterone formation, we observed that treating oligodendrocytes with beta-amyloid, which increases reactive oxygen species, also increased dehydroepiandrosterone formation. These effects of beta-amyloid were blocked by vitamin E. These results indicate that human brain makes steroids in a cell-specific manner and suggest that dehydroepiandrosterone synthesis can be regulated by intracellular free radicals.  相似文献   

17.
Communication between neuronal and glial cells is important for many brain functions. Astrocytes can modulate synaptic strength via Ca2+-stimulated release of various gliotransmitters, including glutamate and ATP. A physiological role of ATP release from astrocytes was suggested by its contribution to glial Ca2+-waves and purinergic modulation of neuronal activity and sleep homeostasis. The mechanisms underlying release of gliotransmitters remain uncertain, and exocytosis is the most intriguing and debated pathway. We investigated release of ATP from acutely dissociated cortical astrocytes using “sniff-cell” approach and demonstrated that release is vesicular in nature and can be triggered by elevation of intracellular Ca2+ via metabotropic and ionotropic receptors or direct UV-uncaging. The exocytosis of ATP from neocortical astrocytes occurred in the millisecond time scale contrasting with much slower nonvesicular release of gliotransmitters via Best1 and TREK-1 channels, reported recently in hippocampus. Furthermore, we discovered that elevation of cytosolic Ca2+ in cortical astrocytes triggered the release of ATP that directly activated quantal purinergic currents in the pyramidal neurons. The glia-driven burst of purinergic currents in neurons was followed by significant attenuation of both synaptic and tonic inhibition. The Ca2+-entry through the neuronal P2X purinoreceptors led to phosphorylation-dependent down-regulation of GABAA receptors. The negative purinergic modulation of postsynaptic GABA receptors was accompanied by small presynaptic enhancement of GABA release. Glia-driven purinergic modulation of inhibitory transmission was not observed in neurons when astrocytes expressed dn-SNARE to impair exocytosis. The astrocyte-driven purinergic currents and glia-driven modulation of GABA receptors were significantly reduced in the P2X4 KO mice. Our data provide a key evidence to support the physiological importance of exocytosis of ATP from astrocytes in the neocortex.  相似文献   

18.
Astroglial cells are important actors in the defense of brain against oxidative stress injuries. Glial cells synthesize and release the octadecaneuropeptide ODN, a diazepam-binding inhibitor (DBI)-related peptide, which acts through its metabotropic receptor to protect neurons and astrocytes from oxidative stress-induced apoptosis. The purpose of the present study is to examine the contribution of the endogenous ODN in the protection of astrocytes and neurons from moderate oxidative stress. The administration of H2O2 (50 μM, 6 h) induced a moderate oxidative stress in cultured astrocytes, i.e., an increase in reactive oxygen species, malondialdehyde, and carbonyl group levels, but it had no effect on astrocyte death. Mass spectrometry and QPCR analysis revealed that 50 μM H2O2 increased ODN release and DBI mRNA levels. The inhibition of ODN release or pharmacological blockage of the effects of ODN revealed that in these conditions, 50 μM H2O2 induced the death of astrocytes. The transfection of astrocytes with DBI siRNA increased the vulnerability of cells to moderate stress. Finally, the addition of 1 nM ODN to culture media reversed cell death observed in DBI-deficient astrocytes. The treatment of neurons with media from 50 μM H2O2-stressed astrocytes significantly reduced the neuronal death induced by H2O2; this effect is greatly attenuated by the administration of an ODN metabotropic receptor antagonist. Overall, these results indicate that astrocytes produce authentic ODN, notably in a moderate oxidative stress situation, and this glio- and neuro-protective agent may form part of the brain defense mechanisms against oxidative stress injury.  相似文献   

19.
GABA(A) receptor (GABA(A)R) expression level is inversely correlated with the proliferation rate of astrocytes after stroke or during malignancy of astrocytoma, leading to the hypothesis that GABA(A)R expression/activation may work as a cell proliferation repressor. A number of vasoactive peptides exhibit the potential to modulate astrocyte proliferation, and the question whether these mechanisms may imply alteration in GABA(A)R-mediated functions and/or plasma membrane densities is open. The peptide urotensin II (UII) activates a G protein-coupled receptor named UT, and mediates potent vasoconstriction or vasodilation in mammalian vasculature. We have previously demonstrated that UII activates a PLC/PIPs/Ca(2+) transduction pathway, via both G(q) and G(i/o) proteins and stimulates astrocyte proliferation in culture. It was also shown that UT/G(q)/IP(3) coupling is regulated by the GABA(A)R in rat cultured astrocytes. Here we report that UT and GABA(A)R are co-expressed in cerebellar glial cells from rat brain slices, in human native astrocytes and in glioma cell line, and that UII inhibited the GABAergic activity in rat cultured astrocytes. In CHO cell line co-expressing human UT and combinations of GABA(A)R subunits, UII markedly depressed the GABA current (β(3)γ(2)>α(2)β(3)γ(2)>α(2)β(1)γ(2)). This effect, characterized by a fast short-term inhibition followed by drastic and irreversible run-down, is not relayed by G proteins. The run-down partially involves Ca(2+) and phosphorylation processes, requires dynamin, and results from GABA(A)R internalization. Thus, activation of the vasoactive G protein-coupled receptor UT triggers functional inhibition and endocytosis of GABA(A)R in CHO and human astrocytes, via its receptor C-terminus. This UII-induced disappearance of the repressor activity of GABA(A)R, may play a key role in the initiation of astrocyte proliferation.  相似文献   

20.
Endozepine has recently been isolated from various steroid-forming organs. The following article explores the role of endozepine in the regulation of steroid synthesis. Steroid hormone synthesis from cholesterol begins in the inner mitochondrial membrane, where cytochrome P450 converts cholesterol to pregrenolone. Scientists thought that ACTH would stimulate this conversion, but experiments showed no such stimulation. However, addition of aminoglutethimide to block side-chain cleavage caused the expected reaction of ACTH to take place. Next the role of protein synthesis on the actions of ACTH was explored. Then endozepine was isolated from bovine fasciculata based on stimulation of pregnenolone production by freshly prepared mitochondria. After further experimentation it was concluded that endozepine is a peptide with at least two groups of actions: It binds GABAA receptors in the central nervous system, and it increases the mitochondrial synthesis of pregnenolone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号