首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Campylobacter infections have been reported at prevalences ranging from 2 to 50% in a range of wild bird species, although there have been few studies that have investigated the molecular epidemiology of Campylobacter spp. Consequently, whether wild birds are a source of infection in humans or domestic livestock or are mainly recipients of domestic animal strains and whether separate cycles of infection occur remain unknown. To address these questions, serial cross-sectional surveys of wild bird populations in northern England were carried out over a 2-year period. Fecal samples were collected from 2,084 wild bird individuals and screened for the presence of Campylobacter spp. A total of 56 isolates were recovered from 29 birds sampled at 15 of 167 diverse locales. Campylobacter jejuni, Campylobacter lari, and Campylobacter coli were detected by PCR, and the prevalences of different Campylobacter spp. in different avian families ranged from 0% to 33%. Characterization of 36 C. jejuni isolates by multilocus sequence typing revealed that wild birds carry both livestock-associated and unique strains of C. jejuni. However, the apparent absence of unique wild bird strains of C. jejuni in livestock suggests that the direction of infection is predominantly from livestock to wild birds. C. lari was detected mainly in wild birds sampled in an estuarine or coastal habitat. Fifteen C. lari isolates were analyzed by macrorestriction pulsed-field gel electrophoresis, which revealed genetically diverse populations of C. lari in Eurasian oystercatchers (Haematopus ostralegus) and clonal populations in magpies (Pica pica).Infection with Campylobacter spp. continues to be the leading cause of human infectious intestinal disease in the United Kingdom and has a significant economic impact (39). Consequently, there is a continuing effort to identify effective control methods. The majority of human infections (∼90%) are caused by Campylobacter jejuni subsp. jejuni (46). Other Campylobacter species, including Campylobacter coli and Campylobacter lari, can also cause enteritis in humans, but their prevalence is lower. Most C. jejuni infections are believed to result from consumption of contaminated food, including poultry meat (27, 40), red meat (52), and milk (13), which is thought to be contaminated primarily by feces. It is well established that most livestock species, including poultry, ruminants, and pigs, carry C. jejuni asymptomatically (27), making control at the farm level difficult. However, the epidemiology of C. jejuni cannot be explained solely by food-borne exposure; C. jejuni has also been isolated from a range of environmental samples, including samples of soil, water, sand, and the feces of a number of wildlife species, including wild birds (1-3). However, the role that non-food-borne exposure plays in the epidemiology of C. jejuni is currently not well defined.High prevalences of Campylobacter species infections have been found in a wide range of wild bird species, although there is great variation between taxa (2, 4, 7, 16, 35, 47, 48). Given their ability to fly long distances and their ubiquity, wild birds have the potential to play an important role in the epidemiology and evolution of Campylobacter spp. However, whether wild birds are a source of infection for humans or domestic livestock or are mainly recipients of domestic animal strains or, indeed, whether separate cycles of infection occur remain unknown. These questions remain unanswered in part because investigations of the epidemiology of Campylobacter spp. have been complicated by their high inter- and intraspecies genetic diversity (6).The methods that have been routinely used to characterize Campylobacter isolates are restricted due to genomic instability in Campylobacter populations (10, 38, 45). Multilocus sequence typing (MLST) is a method that has the advantage of being objective since it is sequence based, which allows comparison of isolates from different laboratories and accurate determination of relationships between isolates from diverse sources (11). MLST studies of C. jejuni in farm animals and the environment, including wildlife, suggest that some strains may be associated with particular host groups (6, 10, 15, 30). However, in the same studies other strains were found to occur in several host species or habitats. Few studies have investigated the molecular epidemiology of Campylobacter infection in wild bird populations using MLST, and because only a relatively small number of isolates from wild birds have been characterized by MLST, conclusions have not been drawn yet about how wild bird isolates fit into the overall phylogenetic scheme or whether wild birds act as reservoirs, amplifiers, or merely indicators of infection of domestic animals with zoonotic genotypes.In the current study a large cross-sectional survey of wild bird populations in northern England was undertaken to investigate the epidemiology of Campylobacter infection. Previous studies that have focused on the epidemiology of Campylobacter spp. solely in wild birds have investigated either a narrow range of taxonomic groups (2, 5, 17, 23, 29, 33, 43, 50) or wild birds from a limited range of habitats (18, 25, 48). Studies that have investigated a broad range of wild bird species have used Campylobacter characterization techniques that do not allow conclusions about possible host associations to be drawn or comparison of the genetic diversity of isolates between studies (21, 25, 34, 47, 53). Therefore, the aims of this study were (i) to determine the host range and prevalence of Campylobacter spp. in a wild bird population and (ii) through molecular characterization of isolates to determine whether wild birds were a likely source of infection in humans or domestic livestock and whether separate cycles of infection with host-adapted strains of Campylobacter spp. were maintained in the wild bird population.  相似文献   

2.
3.
The microaerophilic human pathogen Campylobacter jejuni is the leading cause of food-borne bacterial gastroenteritis in the developed world. During transmission through the food chain and the environment, the organism must survive stressful environmental conditions, particularly high oxygen levels. Biofilm formation has been suggested to play a role in the environmental survival of this organism. In this work we show that C. jejuni NCTC 11168 biofilms developed more rapidly under environmental and food-chain-relevant aerobic conditions (20% O2) than under microaerobic conditions (5% O2, 10% CO2), although final levels of biofilms were comparable after 3 days. Staining of biofilms with Congo red gave results similar to those obtained with the commonly used crystal violet staining. The level of biofilm formation by nonmotile aflagellate strains was lower than that observed for the motile flagellated strain but nonetheless increased under aerobic conditions, suggesting the presence of flagellum-dependent and flagellum-independent mechanisms of biofilm formation in C. jejuni. Moreover, preformed biofilms shed high numbers of viable C. jejuni cells into the culture supernatant independently of the oxygen concentration, suggesting a continuous passive release of cells into the medium rather than a condition-specific active mechanism of dispersal. We conclude that under aerobic or stressful conditions, C. jejuni adapts to a biofilm lifestyle, allowing survival under detrimental conditions, and that such a biofilm can function as a reservoir of viable planktonic cells. The increased level of biofilm formation under aerobic conditions is likely to be an adaptation contributing to the zoonotic lifestyle of C. jejuni.Infection with Campylobacter jejuni is the leading cause of food-borne bacterial gastroenteritis in the developed world and is often associated with the consumption of undercooked poultry products (19). The United Kingdom Health Protection Agency reported more than 45,000 laboratory-confirmed cases for England and Wales in 2006 alone, although this is thought to be a 5- to 10-fold underestimation of the total number of community incidents (20, 43). The symptoms associated with C. jejuni infection usually last between 2 and 5 days and include diarrhea, vomiting, and stomach pains. Sequelae of C. jejuni infection include more-serious autoimmune diseases, such as Guillain-Barré syndrome, Miller-Fisher syndrome (18), and reactive arthritis (15).Poultry represents a major natural reservoir for C. jejuni, since the organism is usually considered to be a commensal and can reach densities as high as 1 × 108 CFU g of cecal contents−1 (35). As a result, large numbers of bacteria are shed via feces into the environment, and consequently, C. jejuni can spread rapidly through a flock of birds in a broiler house (1). While well adapted to life in the avian host, C. jejuni must survive during transit between hosts and on food products under stressful storage conditions, including high and low temperatures and atmospheric oxygen levels. The organism must therefore have mechanisms to protect itself from unfavorable conditions.Biofilm formation is a well-characterized bacterial mode of growth and survival, where the surface-attached and matrix-encased bacteria are protected from stressful environmental conditions, such as UV radiation, predation, and desiccation (7, 8, 28). Bacteria in biofilms are also known to be >1,000-fold more resistant to disinfectants and antimicrobials than their planktonic counterparts (11). Several reports have now shown that Campylobacter species are capable of forming a monospecies biofilm (21, 22) and can colonize a preexisting biofilm (14). Biofilm formation can be demonstrated under laboratory conditions, and environmental biofilms, from poultry-rearing facilities, have been shown to contain Campylobacter (5, 32, 44). Campylobacter biofilms allow the organism to survive up to twice as long under atmospheric conditions (2, 21) and in water systems (27).Molecular understanding of biofilm formation by Campylobacter is still in its infancy, although there is evidence for the role of flagella and gene regulation in biofilm formation. Indeed, a flaAB mutant shows reduced biofilm formation (34); mutants defective in flagellar modification (cj1337) and assembly (fliS) are defective in adhering to glass surfaces (21); and a proteomic study of biofilm-grown cells shows increased levels of motility-associated proteins, including FlaA, FlaB, FliD, FlgG, and FlgG2 (22). Flagella are also implicated in adhesion and in biofilm formation and development in other bacterial species, including Aeromonas, Vibrio, Yersinia, and Pseudomonas species (3, 23, 24, 31, 42).Previous studies of Campylobacter biofilms have focused mostly on biofilm formation under standard microaerobic laboratory conditions. In this work we have examined the formation of biofilms by motile and nonmotile C. jejuni strains under atmospheric conditions that are relevant to the survival of this organism in a commercial context of environmental and food-based transmission.  相似文献   

4.
The ability of various subsets of poultry intestinal microbiota to protect turkeys from colonization by Campylobacter jejuni was investigated. Community subsets were generated in vivo by inoculation of day-old poults with the cecal contents of a Campylobacter-free adult turkey, followed by treatment with one antimicrobial, either virginiamycin, enrofloxacin, neomycin, or vancomycin. The C. jejuni loads of the enrofloxacin-, neomycin-, and vancomycin-derived communities were decreased by 1 log, 2 logs, and 4 logs, respectively. Examination of the constituents of the derived communities via the array-based method oligonucleotide fingerprinting of rRNA genes detected a subtype of Megamonas hypermegale specific to the C. jejuni-suppressive treatments.Campylobacter jejuni, a spiral, flagellated epsilonproteobacterial commensal of poultry, is the predominant cause of bacterial food-borne illness in the United States, resulting in approximately 2 million cases per year. A role for endogenous poultry intestinal microbiota in competitive exclusion (CE) of Campylobacter was first investigated in 1982 (38). Since then, numerous studies have attempted to identify microbes associated with Campylobacter CE. Suspensions of intestinal bacteria, isolated from Campylobacter-free adult poultry and passaged under strict anaerobic conditions, were found to protect chicks from colonization by the pathogen (31). Bacteria derived from the scrapings of broiler intestinal mucosa were proven more effective than the earlier fecal culture, a result not surprising, as Campylobacter is known to preferentially colonize cecal crypts (4, 39). The CE function of the bacterial suspensions decreased with time in storage, however (39, 40). Evidence also indicates that CE may depend on the presence of strictly anaerobic bacteria (31). As an oxygen gradient likely occurs from the host epithelium into the luminal contents, a CE role for both mucosal and luminal microbes in concert is likely.Attempts have been made to identify specific microbes antagonistic to Campylobacter, and initial attempts isolated mucin-dwelling organisms with in vitro antagonistic effects against the pathogen (35, 36). Recent experiments have identified numerous bacterial groups producing anti-Campylobacter bacteriocins (29, 41, 42, 44, 45). Direct treatment of market-weight birds with the therapeutic bacteriocin Enterococcus faecium E 50-52 is effective for removal of Campylobacter spp. immediately prior to slaughter (44).Despite progress toward a solution to contamination of poultry products by Campylobacter species, incomplete or intermittent CE protection, combined with a lack of studies addressing long-term CE efficacy, indicates that the Campylobacter colonization problem is far from solved (35). In addition, risk factors for campylobacteriosis other than direct consumption of contaminated poultry include consumption of fresh vegetables and bottled water (14). Campylobacter has been found in poultry manure used to fertilize crops as well as in runoff from these farms (22, 24, 50). We believe that novel approaches for studying microbial ecology in the gut are necessary for development of intervention strategies, including competitive exclusion.The work described here takes a functional approach to identify microbes associated with protection of the intestine from Campylobacter jejuni colonization, an approach we are calling antibiotic dissection. The cecal contents from a Campylobacter-free adult turkey were inoculated into day-old poults and the microbial communities in these poults modified by treatment with therapeutic levels of antibiotics. The resulting modified microbiota were then tested for the ability to outcompete a C. jejuni challenge, and a microbe potentially associated with C. jejuni exclusion was identified.  相似文献   

5.
Significant interest in studying the lipooligosaccharide (LOS) of Campylobacter jejuni has stemmed from its potential role in postinfection paralytic disorders. In this study we present the results of PCR screening of five LOS locus classes (A, B, C, D, and E) for a collection of 116 C. jejuni isolates from chicken meat (n = 76) and sporadic human cases of diarrhea (n = 40). We correlated LOS classes with clonal complexes (CC) assigned by multilocus sequence typing (MLST). Finally, we evaluated the invasion potential of a panel of 52 of these C. jejuni isolates for Caco-2 cells. PCR screening showed that 87.1% (101/116) of isolates could be assigned to LOS class A, B, C, D, or E. Concordance between LOS classes and certain MLST CC was revealed. The majority (85.7% [24/28]) of C. jejuni isolates grouped in CC-21 were shown to express LOS locus class C. The invasion potential of C. jejuni isolates possessing sialylated LOS (n = 29; classes A, B, and C) for Caco-2 cells was significantly higher (P < 0.0001) than that of C. jejuni isolates with nonsialylated LOS (n = 23; classes D and E). There was no significant difference in invasiveness between chicken meat and human isolates. However, C. jejuni isolates assigned to CC-206 (correlated with LOS class B) or CC-21 (correlated with LOS class C) showed statistically significantly higher levels of invasion than isolates from other CC. Correlation between LOS classes and CC was further confirmed by pulsed-field gel electrophoresis. The present study reveals a correlation between genotypic diversity and LOS locus classes of C. jejuni. We showed that simple PCR screening for C. jejuni LOS classes could reliably predict certain MLST CC and add to the interpretation of molecular-typing results. Our study corroborates that sialylation of LOS is advantageous for C. jejuni fitness and virulence in different hosts. The modulation of cell surface carbohydrate structure could enhance the ability of C. jejuni to adapt to or survive in a host.Campylobacter jejuni is an important human enteric pathogen worldwide (3, 7, 26). Infected humans exhibit a range of clinical spectra, from mild, watery diarrhea to severe inflammatory diarrhea (28). Factors influencing the virulence of C. jejuni include motility, chemotaxis, the ability to adhere to and invade intestinal cells, intracellular survival, and toxin production (28, 30, 52). Besides its role in human enteric illnesses, C. jejuni is a predominant infectious trigger of acute postinfectious neuropathies, such as Guillain-Barré syndrome (GBS) and Miller Fisher syndrome (MFS) (1). Significant interest in studying the structure and biosynthesis of the core lipooligosaccharide (LOS) of C. jejuni has resulted from its potential role in these paralytic disorders. Many studies have now provided convincing evidence that molecular mimicry between C. jejuni LOS and gangliosides in human peripheral nerve tissue plays an important causal role in the pathogenesis of GBS/MFS (16, 17, 19, 21).Initial comparative studies of C. jejuni LOS structure and the corresponding DNA sequences of the LOS biosynthesis loci identified eight different LOS locus classes. Three of these classes, A, B, and C, harbor sialyltransferase genes involved in incorporating sialic acid into the LOS (42). Sialylation of the LOS core was found to be associated with ganglioside mimicry and also to affect immunogenicity and serum resistance (21). Recently, Parker et al. (43) identified 11 additional LOS classes on the basis of the sequence at the LOS biosynthesis locus. Their investigation also suggested that the LOS loci of C. jejuni strains are hot spots for genetic exchange, which can lead to mosaicism.Despite evidence on locus variation within C. jejuni LOS classes, PCR-based screening of a collection of 123 clinical and environmental strains showed that almost 60% of C. jejuni strains belong to class A, B, or C (42). Additionally, Godschalk et al. (16) found that 53% (9/17) of GBS-associated C. jejuni strains possessed LOS of class A, while 64% (35/55) of the non-GBS-associated isolates possessed LOS of class A, B, or C, and 62% (13/21) of enteritis-associated Campylobacter strains expressed LOS of class A, B, or C, as well. This relative representation of sialylated LOS classes A, B, and C was hypothesized to be advantageous for C. jejuni in the colonization and infection of various hosts (42, 49). Recently, Louwen et al. (34) demonstrated that C. jejuni strains possessing sialylated LOS (class A, B, or C) invade Caco-2 cells significantly better than nonsialylated strains (with class D or E). Knockout mutagenesis of the LOS sialyltransferase Cst-II in three C. jejuni strains revealed a significant reduction in the invasion potentials of the mutant strains (34). The possible role of LOS in adhesion and invasion was previously highlighted in the work of Perera et al. (44) and Kanipes et al. (29), where a C. jejuni waaF mutant strain showed significant reductions in levels of adherence to and invasion of INT-407 cells.LOS class diversity in C. jejuni strains isolated from chicken meat, an important source of human campylobacteriosis (6, 7, 26), has hardly been studied at all. In addition, the role of LOS class variation in the invasion potential of C. jejuni strains from chicken meat still needs to be explored. The epidemiological relevance of C. jejuni LOS gene screening can be further elaborated by correlating its results with results from other molecular-typing tools (e.g., multilocus sequence typing [MLST] and pulsed-field gel electrophoresis [PFGE]). In the present study, we screened a diverse collection of C. jejuni isolates, from consumer-packaged chicken meats and from sporadic human cases of diarrhea, by PCR for five LOS classes (A, B, C, D, and E). Then we correlated the LOS classes assigned by PCR screening with the genotypes assigned by PFGE and MLST. Finally, we tested the invasion potentials of a representative subset of C. jejuni isolates in relation to their LOS classes and genotypic diversity.  相似文献   

6.
Campylobacter jejuni, a gram-negative, microaerophilic bacterium, is a predominant cause of bacterial gastroenteritis in humans. Although considered fragile and fastidious and lacking many classical stress response mechanisms, C. jejuni exhibits a remarkable capacity for survival and adaptation, successfully infecting humans and persisting in the environment. Consequently, understanding the physiological and genetic properties that allow C. jejuni to survive and adapt to various stress conditions is crucial for therapeutic interventions. Of importance is polyphosphate (poly-P) kinase 1 (PPK1), which is a key enzyme mediating the synthesis of poly-P, an essential molecule for survival, mediating stress responses, host colonization, and virulence in many bacteria. Therefore, we investigated the role of PPK1 in C. jejuni pathogenesis, stress survival, and adaptation. Our findings demonstrate that a C. jejuni Δppk1 mutant was deficient in poly-P accumulation, which was associated with a decreased ability to form viable-but-nonculturable cells under acid stress. The Δppk1 mutant also showed a decreased frequency of natural transformation and an increased susceptibility to various antimicrobials. Furthermore, the Δppk1 mutant was characterized by a dose-dependent deficiency in chicken colonization. Complementation of the Δppk1 mutant with the wild-type copy of ppk1 restored the deficient phenotypes to levels similar to those of the wild type. Our results suggest that poly-P plays an important role in stress survival and adaptation and might contribute to genome plasticity and the spread and development of antimicrobial resistance in C. jejuni. These findings highlight the potential of PPK1 as a novel target for therapeutic interventions.Campylobacter jejuni, a gram-negative, microaerophilic bacterium, occurs as a commensal among the intestinal microflora of various animals, especially chickens and cattle (6, 73). However, C. jejuni can infect human hosts, invading the intestinal mucosa and causing watery and/or bloody diarrhea (9). C. jejuni is transmitted to humans primarily through the consumption of contaminated chicken products, raw milk, or water (2, 3). Currently, C. jejuni is considered a leading bacterial cause of human food-borne gastroenteritis (3, 61) and has also been associated with a plethora of symptoms, including acute neuromuscular paralysis (Guillain-Barré syndrome) (26). Since an appropriate vaccine for human campylobacteriosis has yet to be introduced, it has been suggested that C. jejuni infections might be alternatively controlled by reducing colonization in food animals (73). Consequently, determining the physiological and genetic properties that allow the survival of C. jejuni and its colonization of animal hosts, pathogenicity, and adaptation to various stresses is of critical importance.The mechanisms underlying C. jejuni adaptation and survival under stresses imposed by its environment and host are not well understood. High variability between different C. jejuni strains and the unavailability of appropriate genetic tools and animal models have contributed to the lack of knowledge regarding its stress tolerance and pathogenicity. However, it is suggested that the capacity of C. jejuni to form viable-but-nonculturable (VBNC) cells under stress (14) and its readiness for natural transformation (68) and acquiring resistance to antibiotics (39) are among the strategies that promote stress adaptation and survival. Although little is known about the genetics underlying these processes, recent advances in C. jejuni genomics show that this bacterium carries several important genes that might play key roles in mediating stress adaptation and survival. Of particular interest are genes encoding polyphosphate (poly-P) kinases, ppk1 (CJJ81176_1361) and ppk2 (CJJ81176_0633), that were predicted to be involved in the metabolism of poly-P (22, 25, 47), an intracellular granule that impacts several physiological properties in many bacterial species, including pathogenicity, host colonization, adaptation to different environments, and survival (28, 31, 46).Poly-P kinase 1 (PPK1) is encoded by ppk1, which mediates the synthesis of all or most of the poly-P in the cell (33), while ppk2 encodes an enzyme (PPK2) that synthesizes GTP from poly-P (27). Both ppk genes have been associated with the metabolism of poly-P, which consists of phosphate residues that are linked by high-energy phosphoanhydride bonds and is widely distributed in bacterial species (60). Previous reports showed that poly-P plays important roles in bacterial survival and stress tolerance, including ATP production (8), entry of DNA through membrane channels (13, 54), capsule composition (67), maintaining nutritional requirements during starvation (34), motility, biofilm formation, and resistance to oxidative, osmotic, heat, acid and alkaline stresses, and stationary-phase survival (28, 31, 46, 48, 50, 52, 65). Because of their importance in many bacterial species, it is not surprising to assume a role for PPK and poly-P in C. jejuni survival, colonization, and stress tolerance (8).Interestingly, PPK1 has been shown to be important for C. jejuni stress responses and pathogenicity (10). However, the role of ppk1 in key metabolic and physiological responses of C. jejuni still needs further analysis. For instance, it has been proposed that during starvation, poly-P might act as a reservoir for phosphorus and energy (7). Subsequently, poly-P would be crucial for maintaining viability/metabolism in stressed cells. This has been observed in H. pylori, where the occurrence of poly-P correlated with culturability and structurally intact cells (45). Poly-P-containing nonculturable H. pylori showed a capacity for ATP and mRNA synthesis after a nutrient stimulus (45). Consequently, poly-P might be an important factor for the formation of VBNC cells by stressed bacteria, including C. jejuni. Furthermore, natural transformation is perhaps one of the most important mechanisms in the adaptation of C. jejuni, and poly-P has been reported to play a role in the entry of DNA through membrane channels (13, 54). It follows that poly-P might be important for natural transformation, adaptation, and acquisition of antibiotic resistance genes in C. jejuni. Poly-P can further impact the survival and adaptation in C. jejuni by modulating antibiotic resistance properties. For example, poly-P interacted with Escherichia coli ribosomes (42), which are known targets of several antibiotics. These observations suggest that ppk1 might be linked to important physiology and functions such as VBNC cell formation, natural transformation, and antimicrobial resistance in C. jejuni. Therefore, in the present study, we determined the contribution of PPK1 to C. jejuni stress responses and adaptation, including the ability to form VBNC cells under acid stress, natural transformation, and antimicrobial resistance. Furthermore, we assessed the impact of ppk1 deletion on in vivo chicken colonization. Our findings highlight the importance of PPK1 in C. jejuni survival, adaptation to different environmental stresses, and in vivo colonization. These findings also indicate the suitability of PPK1 as a potential target for controlling the proliferation of this pathogen.  相似文献   

7.
A substantial sampling among domestic human campylobacter cases, chicken process lots, and cattle at slaughter was performed during the seasonal peak of human infections. Campylobacter jejuni isolates (n = 419) were subtyped using pulsed-field gel electrophoresis with SmaI, and isolates representing overlapping types (n = 212) were further subtyped using KpnI for restriction. The SmaI/KpnI profiles of 55.4% (97/175) of the human isolates were indistinguishable from those of the chicken or cattle isolates. The overlapping SmaI/KpnI subtypes accounted for 69.8% (30/43) and 15.9% (32/201) of the chicken and cattle isolates, respectively. The occurrence of identical SmaI/KpnI subtypes with human C. jejuni isolates was significantly associated with animal host species (P < 0.001). A temporal association of isolates from chickens and patients was possible in 31.4% (55/175) of the human infections. Besides chickens as sources of C. jejuni in the sporadic infections, the role of cattle appears notable. New approaches to restrict the occurrence of campylobacters in other farm animals may be needed in addition to hygienic measures in chicken production. However, only about half of the human infections were attributable to these sources.The incidence of human enteric infections caused by campylobacters is highest in the summer months, showing a consistent peak at the end of July in Finland (www.ktl.fi/attachments/suomi/julkaisut/julkaisusarja_b/2008/2008b09.pdf), as well as in other Nordic countries (16, 33). Almost 70% of campylobacter infections detected in July and August in Finland are domestically acquired, whereas the annual average proportion of domestic cases is about 30%, and most of them are caused by Campylobacter jejuni (30). The prevalence of campylobacters in Finnish broiler flocks peaks simultaneously with the human cases (7), and similar sero- and genotypes have been reported among human and poultry strains isolated in Finland and in other countries (5, 8, 21-23). Several epidemiological studies have identified the handling and consumption of raw or undercooked poultry meat as a major risk factor for campylobacter enteritis (for example, see references 18, 20, and 41), whereas opposite conclusions about the significance of the consumption of chicken meat were drawn from the Swedish case-control study among young children (2) and an extensive Danish register-based study (6).Data derived from the genotyping studies of C. jejuni isolates from human infections and animals support the current suggestion that poultry is the most important single source of sporadic campylobacteriosis (12, 22, 29). However, several reports on genotype comparisons suggest that poultry may be a less significant source of campylobacters than generally thought, and other animal reservoirs should also be considered notable sources of campylobacters pathogenic to humans (3, 8, 17, 27, 31). Studies of the temporal occurrence of campylobacters in human infections and poultry flocks have revealed that the peak in prevalence, as well as some of the overlapping sero- and genotypes, is detected in humans prior to being detected in poultry (21, 28).Although cattle are well-known carriers of campylobacters, the survival of these fragile organisms in beef is poor (39, 42). In recent years, some authors (1, 4, 10) have raised the question of an indirect association between cattle and human cases. In a Finnish study combining data from the multilocus sequence typing of campylobacters isolated from production animals and from epidemiological studies of human cases, significant associations emerged between certain sequence-type complexes from human infections and contact with cattle, the consumption of unpasteurized milk, or the tasting or consumption of raw minced meat (23).The aim of this study was to investigate the contributions of poultry and cattle as sources of human C. jejuni infections in Finland by comparing over a limited time frame the macrorestriction profiles obtained from pulsed-field gel electrophoresis (PFGE) analysis of a geographically representative collection of C. jejuni isolates from domestically acquired sporadic human infections, chicken process lots, and cattle.  相似文献   

8.
The presence and functionality of DNA repair mechanisms in Campylobacter jejuni are largely unknown. In silico analysis of the complete translated genome of C. jejuni NCTC 11168 suggests the presence of genes involved in methyl-directed mismatch repair (MMR), nucleotide excision repair, base excision repair (BER), and recombinational repair. To assess the functionality of these putative repair mechanisms in C. jejuni, mutS, uvrB, ung, and recA knockout mutants were constructed and analyzed for their ability to repair spontaneous point mutations, UV irradiation-induced DNA damage, and nicked DNA. Inactivation of the different putative DNA repair genes did not alter the spontaneous mutation frequency. Disruption of the UvrB and RecA orthologues, but not the putative MutS or Ung proteins, resulted in a significant reduction in viability after exposure to UV irradiation. Assays performed with uracil-containing plasmid DNA showed that the putative uracil-DNA glycosylase (Ung) protein, important for initiation of the BER pathway, is also functional in C. jejuni. Inactivation of recA also resulted in a loss of natural transformation. Overall, the data indicate that C. jejuni has multiple functional DNA repair systems that may protect against DNA damage and limit the generation of genetic diversity. On the other hand, the apparent absence of a functional MMR pathway may enhance the frequency of on-and-off switching of phase variable genes typical for C. jejuni and may contribute to the genetic heterogeneity of the C. jejuni population.The gram-negative, microaerophilic bacterium Campylobacter jejuni is one of the most frequent causes of human bacterial gastroenteritis worldwide (7). Infections with C. jejuni are also associated with the development of a paralyzing neuropathy, the Guillain-Barré syndrome (64). C. jejuni can be isolated from various sources, including the chicken intestine and surface water (38). At the population level, C. jejuni is genetically highly diverse (11, 60, 62), which may facilitate bacterial environmental adaptation. Genetic diversity in C. jejuni is generated via horizontal gene transfer (9, 10, 51), intragenomic rearrangements (9), and the presence of numerous stretches of nucleotide repeats that are prone to mispairing during DNA replication (26, 41, 42, 46). In addition, the genomic DNA is probably subject to various types of damage caused by a range of endogenous and environmental factors which may cause single- or double-strand breaks, nucleotide modifications, abasic sites, bulky adducts, and mismatches (14). Virtually all bacteria have evolved more or less sophisticated DNA repair mechanisms to limit the detrimental effects of DNA damage and to maintain the structure and genetic integrity of their DNA (16). The importance of DNA repair for the survival and genetic diversity of C. jejuni, however, is still largely unknown.Bacterial DNA repair mechanisms can be divided into three classes, namely, direct repair, excision repair, and recombinational repair (14). Direct repair involves the reversal of the mutagenic event without the need for synthesis of a new phosphodiester bond. During excision repair, DNA abnormalities are removed and repaired using the intact strand as a template. Recombinational repair involves the reversal of DNA abnormalities via homologous recombination. In contrast to direct repair, DNA repair by excision and recombination does require synthesis of new phosphodiester bonds (56). The focus of the current work is on the presence of the latter two repair mechanisms in C. jejuni.Most knowledge of excision and recombinational DNA repair processes comes from studies of Escherichia coli. In E. coli, methyl-directed mismatch repair (MMR) is operating at the level of excision repair. MMR repairs replication errors that arise from misincorporations (mismatches) and strand slippage (frameshift errors). In addition, MMR inhibits recombination between homologous sequences (47). During MMR, MutS recognizes and binds to replication errors and, together with MutL, activates MutH. This protein cleaves the unmethylated daughter strand at hemimethylated GATC sequences. Part of the daughter strand with the mutation is excised by single-strand nucleases, and the gap is repaired (25, 37). A second excision repair mechanism of E. coli is nucleotide excision repair (NER). NER detects and repairs conformational changes present in DNA. Major components of the NER pathway are the UvrABC proteins. The UvrA and UvrB proteins form the damage recognition complex. After binding to the DNA, UvrB forms a stable complex with the damaged DNA (UvrB-DNA) and UvrA dissociates. UvrC binds to the UvrB-DNA complex, and incisions are made, thereby excising the damaged DNA as a 12- or 13-nucleotide-long oligomer. The resulting gap is repaired using the undamaged strand as a template (55). The third excision repair mechanism of E. coli is base excision repair (BER). This system detects and repairs modified bases. Different glycosylases, such as the uracil-DNA glycosylase Ung, are involved in the recognition of specific DNA alterations. These enzymes remove damaged bases from the DNA by cleavage of N-glycosylic bonds, leaving an apurinic or apyrimidinic site (AP site). An AP endonuclease (XthA) is necessary for cleavage of the phosphodiester bond, and the remaining deoxyribose phosphate moiety is removed by a deoxyribose phosphodiesterase (RecJ) after which the gap in the DNA is repaired (49). The recombinational repair mechanism of E. coli is involved in the repair of stalled or collapsed replication forks caused by conformational changes resulting from unrepaired mutations (8). When nicks or other lesions are present in the DNA, E. coli RecA binds to the damaged DNA and catalyzes recombinational repair via double-strand break repair or daughter strand gap repair (35).The subset and specificity of DNA repair mechanisms differ between species (1). The goal of this study was to decipher the presence and functionality of three excision repair mechanisms (MMR, NER, and BER) and RecA-dependent recombinational repair in C. jejuni. Using a set of genetically defined mutants, we present evidence that recombinational repair and the NER system, but not the MMR pathway, are functional in C. jejuni. In addition, proof was obtained that C. jejuni has a functional Ung protein involved in the BER pathway.  相似文献   

9.
The purpose of this work was to evaluate the evolutionary history of Campylobacter coli isolates derived from multiple host sources and to use microarray comparative genomic hybridization to assess whether there are particular genes comprising the dispensable portion of the genome that are more commonly associated with certain host species. Genotyping and ClonalFrame analyses of an expanded 16-gene multilocus sequence typing (MLST) data set involving 85 isolates from 4 different hosts species tentatively supported the development of C. coli host-preferred groups and suggested that recombination has played various roles in their diversification; however, geography could not be excluded as a contributing factor underlying the history of some of the groups. Population genetic analyses of the C. coli pubMLST database by use of STRUCTURE suggested that isolates from swine form a relatively homogeneous genetic group, that chicken and human isolates show considerable genetic overlap, that isolates from ducks and wild birds have similarity with environmental water samples and that turkey isolates have a connection with human infection similar to that observed for chickens. Analysis of molecular variance (AMOVA) was performed on these same data and suggested that host species was a significant factor in explaining genetic variation and that macrogeography (North America, Europe, and the United Kingdom) was not. The microarray comparative genomic hybridization data suggested that there were combinations of genes more commonly associated with isolates derived from particular hosts and, combined with the results on evolutionary history, suggest that this is due to a combination of common ancestry in some cases and lateral gene transfer in others.Campylobacter species are a leading bacterial cause of gastroenteritis within the United States and throughout much of the rest of the developed world. According to the CDC, there are an estimated 2 million to 4 million cases of Campylobacter illness each year in the United States (37). Campylobacter jejuni is generally recognized as the predominant cause of campylobacteriosis, responsible for approximately 90% of reported cases, while the majority of the remainder are caused by the closely related sister species Campylobacter coli (27). Not surprisingly, therefore, the majority of research on Campylobacter has centered on C. jejuni, and C. coli is a less studied organism.A multilocus sequence typing (MLST) scheme of C. jejuni was first developed by Dingle et al. (13) on the basis of the genome sequence of C. jejuni NCTC 11168. There have also been a number of studies using the genome sequence data to develop microarrays for gene presence/absence determination across strains of C. jejuni and to identify the core genome components for the species (6, 15, 32, 33, 42, 43, 53, 57). Although C. coli is responsible for fewer food-borne illnesses than C. jejuni, the impact of C. coli is still substantial, and there is also evidence that C. coli may carry higher levels of resistance to some antibiotics (1). C. coli and C. jejuni also tend to differ in their relative prevalences in animal host species and various environmental sources (4, 48, 58), and there is some evidence that both taxa may include groups of host-specific putative ecotype strains (7, 36, 38, 39, 52, 56). At present, there is only a single draft genome sequence available for C. coli, and there are no microarray comparative genomic hybridization data for C. coli strains. Thus, there is no information on intraspecies variability in gene presence/absence in C. coli and how such variability might correlate with host species.The purpose of this work was to develop and apply an expanded 16-locus MLST genotyping scheme to evaluate the evolutionary history of Campylobacter coli isolates derived from multiple host sources and to use microarray comparative genomic hybridization to assess whether there are particular genes comprising the dispensable portion of the genome that are more commonly associated with isolates derived from different host species.  相似文献   

10.
Source attribution using molecular subtypes has implicated cattle and sheep as sources of human Campylobacter infection. Whether the Campylobacter subtypes associated with cattle and sheep vary spatiotemporally remains poorly known, especially at national levels. Here we describe spatiotemporal patterns of prevalence, bacterial enumeration, and subtype composition in Campylobacter isolates from cattle and sheep feces from northeastern (63 farms, 414 samples) and southwestern (71 farms, 449 samples) Scotland during 2005 to 2006. Isolates (201) were categorized as sequence type (ST), as clonal complex (CC), and as Campylobacter jejuni or Campylobacter coli using multilocus sequence typing (MLST). No significant difference in average prevalence (cattle, 22%; sheep, 25%) or average enumeration (cattle, 2.7 × 104 CFU/g; sheep, 2.0 × 105 CFU/g) was found between hosts or regions. The four most common STs (C. jejuni ST-19, ST-42, and ST-61 and C. coli ST-827) occurred in both hosts, whereas STs of the C. coli ST-828 clonal complex were more common in sheep. Neither host yielded evidence for regional differences in ST, CC, or MLST allele composition. Isolates from the two hosts combined, categorized as ST or CC, were more similar within than between farms but showed no further spatiotemporal trends up to 330 km and 50 weeks between farm samples. In contrast, both regions yielded evidence for significant differences in ST, CC, and allele composition between hosts, such that 65% of isolates could be attributed to a known host. These results suggest that cattle and sheep within the spatiotemporal scales analyzed are each capable of contributing homogeneous Campylobacter strains to human infections.Campylobacter species are the largest cause of bacterial intestinal infection in the developed and developing world (3). Almost all reported human Campylobacter infections in the United Kingdom are caused by Campylobacter jejuni, which accounts for approximately 92% of cases, and Campylobacter coli, which accounts for most of the rest (8). Campylobacter species are carried asymptomatically in a wide range of host animals and excreted into the environment in feces (23). Humans can be infected by several routes including consumption of contaminated water (14) or food (23); indeed, case control studies indicate that consumption of poultry meat is a risk factor (11, 12, 28), but other foods including unpasteurized milk (33) and meat from cattle and sheep contaminated at the abattoir might be important (30).Cattle and sheep on farms are major hosts of Campylobacter, with up to 89% of cattle herds (31) and up to 55% of sheep flocks (26) being infected. The prevalence of C. jejuni and C. coli combined, estimated at the level of individual animals from fecal specimens, is 23 to 54% in cattle (22, 25) and up to 20% in sheep (37). Campylobacter enumeration in feces shed from individual animals ranges from <102 to 107 CFU/g in both hosts (31), and the concentration shed varies with time. Meat products of cattle and sheep, by contrast, have generally lower levels of Campylobacter contamination. Prevalence values are 0.5 to 4.9% in surveys of retail beef (11a, 17, 36) and 6.9 to 12.6% in surveys of retail lamb and mutton (17, 35).Clinical Campylobacter strains can be attributed to infection sources in animals by comparing subtype frequencies in clinical cases with those in different candidate sources, including cattle, sheep, pigs, and the physical environment. Campylobacter subtype data sets are most transferable when subtypes are defined as sequence type (ST) using multilocus sequence typing (MLST). Three recent MLST-based studies based in northwestern England (34), mainland Scotland (29), northeastern Scotland (32), and New Zealand (24) have used source attribution models to infer the source of human clinical infection. The results suggest that retail chicken is the source with the highest (55 to 80%) attribution while cattle and sheep combined are ranked second (20 to 40%). These attribution models require further empirical validation but appear to be showing broadly similar results.Attribution of human Campylobacter infections to cattle and sheep raises the question of whether Campylobacter subtypes infecting farm cattle and sheep are generally homogeneous or tend to have spatiotemporal structure. Regarding spatial differences, isolates of C. jejuni from a 100-km2 study of farmland area with dairy cattle and sheep in northwestern England displayed increased genetic similarity up to 1 km apart but no further trend over distances of 1 to 14 km apart (7), and isolates from three dairy cattle farms 2 or 5 km apart in the same area demonstrated differences in the frequencies of strains of clonal complexes (CCs) ST-42 and ST-61 (15). Regarding temporal differences, isolates of C. jejuni from five dairy cattle farms in the same area demonstrated differences in the frequency of strains of CC ST-61 between the spring and summer of 2003 (15). Lastly, regarding host-associated strains, STs of CCs ST-21, ST-42, and ST-61 are associated with cattle, and the more limited data for STs from sheep also show the presence of ST-21 and ST-61 (7, 15).The larger-scale spatiotemporal structure of Campylobacter strains from cattle and sheep is poorly known. The main aims of the present study were (i) to characterize C. jejuni and C. coli from cattle and sheep from two distinct geographical Scottish regions in terms of Campylobacter prevalence and enumeration and C. jejuni and C. coli ST composition and (ii) to estimate the extent of host association of C. jejuni and C. coli STs from cattle versus sheep.  相似文献   

11.
FlhF proteins are putative GTPases that are often necessary for one or more steps in flagellar organelle development in polarly flagellated bacteria. In Campylobacter jejuni, FlhF is required for σ54-dependent flagellar gene expression and flagellar biosynthesis, but how FlhF influences these processes is unknown. Furthermore, the GTPase activity of any FlhF protein and the requirement of this speculated activity for steps in flagellar biosynthesis remain uncharacterized. We show here that C. jejuni FlhF hydrolyzes GTP, indicating that these proteins are GTPases. C. jejuni mutants producing FlhF proteins with reduced GTPase activity were not severely defective for σ54-dependent flagellar gene expression, unlike a mutant lacking FlhF. Instead, these mutants had a propensity to lack flagella or produce flagella in improper numbers or at nonpolar locations, indicating that GTP hydrolysis by FlhF is required for proper flagellar biosynthesis. Additional studies focused on elucidating a possible role for FlhF in σ54-dependent flagellar gene expression were conducted. These studies revealed that FlhF does not influence production of or signaling between the flagellar export apparatus and the FlgSR two-component regulatory system to activate σ54. Instead, our data suggest that FlhF functions in an independent pathway that converges with or works downstream of the flagellar export apparatus-FlgSR pathway to influence σ54-dependent gene expression. This study provides corroborative biochemical and genetic analyses suggesting that different activities of the C. jejuni FlhF GTPase are required for distinct steps in flagellar gene expression and biosynthesis. Our findings are likely applicable to many polarly flagellated bacteria that utilize FlhF in flagellar biosynthesis processes.Flagellar biosynthesis in bacteria is a complex process that requires expression of more than 50 genes in a sequential manner to ensure that the encoded proteins are secreted and interact in a proper order to construct a flagellar organelle (8). Formation of a flagellum to impart swimming motility is often an essential determinant for many bacteria to infect hosts or reside in an environmental niche. As such, flagella and flagellar motility are required for Campylobacter jejuni to initiate and maintain a harmless intestinal colonization in many wild and agriculturally important animals (16, 17, 19, 35, 47, 49), which leads to large reservoirs of the bacterium in the environment and the human food supply (13). In addition, flagellar motility is essential for the bacterium to infect human hosts to cause a diarrheal disease, which can range from a mild, watery enteritis to a severe, bloody diarrheal syndrome (4). Due to its prevalence in nature and in the food supply, C. jejuni is a leading cause of enteritis in humans throughout the world (7).C. jejuni belongs to a subset of motile bacteria that produce polarly localized flagella, which includes important pathogens of humans, such as Helicobacter, Vibrio, and Pseudomonas species. These bacteria have some commonalities in mechanisms for flagellar gene expression and biosynthesis, such as using both alternative σ factors, σ28 and σ54, for expression of distinct sets of flagellar genes (1, 6, 9, 11, 18, 20-22, 26, 36, 40, 44, 45, 49). In addition, these bacteria produce the putative FlhF GTPase, which is required in each bacterium for at least one of the following: expression of a subset of flagellar genes, biosynthesis of flagella, or the polar placement of the flagella. For instance, FlhF is required for expression of some σ54- and σ28-dependent flagellar genes and for production of flagella in the classical biotype of Vibrio cholerae (10). However, V. cholerae flhF mutants of another biotype can produce a flagellum in a minority of cells, but the flagellum is at a lateral site (14). Similar lateral flagella were found in flhF mutants of Pseudomonas aeruginosa and Pseudomonas putida (34, 37). FlhF of Vibrio alginolyticus may also be involved in the polar formation of flagella and may possibly influence the number of flagella produced (28, 29). Demonstration that FlhF is polarly localized in some of these species and the fact that FlhF has been observed to assist the early flagellar MS ring protein, FliF, in localizing to the old pole in one biotype of V. cholerae give credence that FlhF may be involved in the polar placement of flagella in the respective organisms (14, 29, 34).Bioinformatic analysis indicates that the FlhF proteins belong to the SIMIBI class of NTP-binding proteins (30). More specifically, the GTPase domains of FlhF proteins are most similar to those of the signal recognition particle (SRP) pathway GTPases, such as Ffh and FtsY. Because of the homology of the GTPase domains, these three proteins may form a unique subset within the SIMIBI proteins. Whereas the GTPase activities of the interacting Ffh and FtsY proteins have been extensively characterized (32, 38, 39, 42), little is known about the GTP hydrolysis activity of FlhF. Structural determination of FlhF of Bacillus subtilis indicates that the potential GTPase activity of FlhF is likely varied relative to those of Ffh and FtsY (2). However, no biochemical analysis has been performed to verify or characterize the ability of an FlhF protein to hydrolyze GTP. As such, no studies have correlated the biochemical activity of FlhF in relation to GTP hydrolysis with the role that FlhF performs in flagellar gene expression or biosynthesis.Through previous work, we have delineated the regulatory cascades governing flagellar gene expression in C. jejuni. We have found that formation of the flagellar export apparatus (FEA), a multiprotein inner membrane complex (consisting of the proteins FlhA, FlhB, FliF, FliO, FliP, FliQ, and FliR) that secretes most of the flagellar proteins out of the cytoplasm to form the flagellum, is required to activate the FlgS sensor kinase to begin a phosphorelay to the cognate FlgR response regulator (23, 24). Once activated by phosphorylation, FlgR likely interacts with σ54 in RNA polymerase to initiate expression of many flagellar genes encoding components of the flagellar basal body, rod, and hook (20, 24). After formation of the hook, flaA, encoding the major flagellin, is expressed via σ28 and RNA polymerase to generate the flagellar filament and complete flagellar biosynthesis (6, 18, 20, 21, 49). In two separate genetic analyses, we found that flhF mutants of C. jejuni are nonmotile and show a more than 10-fold reduction in expression of σ54-dependent flagellar genes, indicating that FlhF is required for both flagellar gene expression and biosynthesis (20). However, it is unclear how FlhF influences expression of σ54-dependent flagellar genes. Furthermore, it is unknown if the GTPase activity of FlhF is required for flagellar gene expression or biosynthesis in C. jejuni.We have performed experiments to determine that C. jejuni FlhF specifically hydrolyzes GTP, confirming that FlhF is a GTPase. Whereas the FlhF protein is required for motility, flagellar biosynthesis, and expression of σ54-dependent flagellar genes, the GTPase activity of the protein significantly influences only proper biosynthesis of flagella. These results suggest that multiple biochemical activities of FlhF (including GTPase activity and likely other, as yet uncharacterized activities mediated by other domains) are required at distinct steps in flagellar gene expression and biosynthesis. In addition, we provide biochemical and genetic evidence that FlhF likely functions in a pathway separate from the FEA-FlgSR pathway in C. jejuni to influence expression of σ54-dependent flagellar genes. This study provides corroborative genetic and biochemical analysis of FlhF to indicate that FlhF has multiple inherent activities that function at different steps in development of the flagellar organelle, which may be applicable to many polarly flagellated bacteria.  相似文献   

12.
Campylobacter jejuni is widely distributed in the environment, and river water has been shown to carry high levels of the organism. In this study, 244 C. jejuni isolates from three river catchment areas in New Zealand were characterized using multilocus sequence typing. Forty-nine of the 88 sequence types identified were new. The most common sequence types identified were ST-2381 (30 isolates), ST-45 (25 isolates), and ST-1225 (23 isolates). The majority of the sequence types identified in the river water could be attributed to wild bird fecal contamination. Two novel clonal complexes (CC) were identified, namely, CC ST-2381 (11 sequence types, 46 isolates) and CC ST-3640 (6 sequence types, 12 isolates), in which all of the sequence types were new. CC ST-2381 was the largest complex identified among the isolates and was present in two of the three rivers. None of the sequence types associated with the novel complexes has been identified among human isolates. The ST-2381 complex is not related to complexes associated with cattle, sheep, or poultry. The source of the novel complexes has yet to be identified.Contamination of the environment by bacterial pathogens is a significant health concern, as it provides a continuous source of organisms for the infection and reinfection of humans and animals. Enteric pathogens gain entry into the environment through the discharge of sewage into water and via contamination from animal feces (22). Fecal contamination is responsible for the continued presence and spread of a range of pathogenic organisms, including Campylobacter, norovirus, and Escherichia coli O157. Determining the roles of various environmental sources in human enteric disease requires an understanding of the distribution, survival, population structure, and pathogenic potential of the pathogens in the environment.Campylobacter is the most common cause of gastrointestinal illness in the industrialized world (17), imposing significant economic costs on health systems, and is associated with a number of neurological sequelae (32, 33). The majority of human campylobacter infections are caused by Campylobacter jejuni (90%), with Campylobacter coli mostly responsible for the remainder. Although Campylobacter has been isolated from a wide range of animals (41) and birds (47, 48), contaminated poultry and poultry products remain the most significant sources of human infections (10, 38, 50, 51). Campylobacter is a spiral gram-negative organism that grows best under low-oxygen conditions at 42°C. The organism is unable to grow outside an animal host, and survival in the environment is dependent on ambient temperature, oxygen levels, and sunlight.Studies worldwide examining rivers and waterways show that there is significant contamination by Campylobacter, with the sources being sewage outflow, direct fecal deposition, and pasture runoff (12, 22, 34, 37, 39). Similarly, coastal waters and estuaries can be contaminated by either sewage or bird fecal deposition (23, 35). The inability of Campylobacter to grow in the environment and its sensitivity to sunlight are thought to ensure that the organism is eventually purged from the system. However, the high levels of the organism identified in water systems have been highlighted as a risk for human infection.The characterization of campylobacter populations by multilocus sequence typing (MLST) has shown that the organism is weakly clonal and that certain clonal complexes are associated with particular animals (5, 9, 26). Isolates from human cases of infection show a wide variety of sequence types and many clonal complexes. Source attribution studies using MLST have identified poultry as causing approximately 60% of human infections (14, 38, 50). Cattle have been identified as a potential source of infection due to the high level of similarity between bovine and human strains (18, 19). There remains, however, a significant number of infections for which the source is not certain.New Zealand has one of the highest rates of campylobacteriosis in the developed world. This is due to the significant quantity of fresh chicken consumed coupled with high levels of contamination found in poultry products (1, 10, 51, 52). Campylobacter has been isolated from a range of environmental sources within New Zealand, including its rivers and streams (12, 37). Isolation rates for rivers in New Zealand range from 55 to 90%, comparable to results of studies overseas, and show the same seasonal variation as that seen elsewhere in the world (20). Pulsed-field gel electrophoresis (PFGE) analysis identified indistinguishable macrorestriction profiles for cattle, human, and river isolates, suggesting river water as a potential source of infection (8). In this study, C. jejuni isolates from three rivers in New Zealand, two on the South Island and one on the North Island, were characterized using MLST.  相似文献   

13.
14.
15.
In New Zealand the number of campylobacteriosis notifications increased markedly between 2000 and 2007. Notably, this country''s poultry supply is different than that of many developed countries as the fresh and frozen poultry available at retail are exclusively of domestic origin. To examine the possible link between human cases and poultry, a sentinel surveillance site was established to study the molecular epidemiology of Campylobacter jejuni over a 3-year period from 2005 to 2008 using multilocus sequence typing. Studies showed that 60.1 to 81.4% of retail poultry carcasses from the major suppliers were contaminated with C. jejuni. Differences were detected in the probability and level of contamination and the relative frequency of genotypes for individual poultry suppliers and humans. Some carcasses were contaminated with isolates belonging to more than one sequence type (ST), and there was evidence of both ubiquitous and supplier-associated strains, an epidemiological pattern not recognized yet in other countries. The common poultry STs were also common in human clinical cases, providing evidence that poultry is a major contributor to human infection. Both internationally rare genotypes, such as ST-3069 and ST-474, and common genotypes, such as ST-45 and ST-48, were identified in this study. The dominant human sequence type in New Zealand, ST-474, was found almost exclusively in isolates from one poultry supplier, which provided evidence that C. jejuni has a distinctive molecular epidemiology in this country. These results may be due in part to New Zealand''s geographical isolation and its uniquely structured poultry industry.Campylobacteriosis is a leading enteric zoonosis in the developed world, and the majority of cases are caused by Campylobacter jejuni (22). Poultry sources are suspected to be the major source of human infection with C. jejuni (22, 43, 49), and this conclusion is supported by high levels of contamination of poultry and the detection of identical C. jejuni genotypes in human cases and poultry samples (25). However, C. jejuni can be isolated from a variety of sources, including ruminants (17) and environmental water (41). Due to the complex epidemiology of this pathogen, there is still uncertainty about the relative contributions of individual pathways to the human disease burden (8). In New Zealand the number of notified campylobacteriosis cases increased markedly in the last decade, peaking in 2006 at a total of 15,873 notified cases (422.4 cases per 100,000 population) (1) and costing the economy an estimated US$32 million annually (42). Although there are a number of factors that may have contributed to this increase, it has been noted that the rise in campylobacteriosis cases coincided with a marked increase in the sale and consumption of fresh poultry between 1992 and 2005, while the sale of frozen poultry remained relatively static (1).New Zealand has one of the highest enteric infectious disease rates in industrialized countries (26), and the high ratio of domestic production animals to humans and the frequent use of rural water supplies in New Zealand have been postulated to be underlying causes (9). In addition, this country''s poultry industry is uniquely structured; it is almost entirely focused on the domestic market, and no raw, fresh or frozen, poultry products are imported because of biosecurity threats. Due to its geographical isolation and tight border controls, New Zealand has remained free of poultry diseases endemic in other countries, such as diseases caused by Salmonella enterica serovar Enteritidis PT4 and S. enterica serovar Typhimurium DT 104, Newcastle disease, and infectious bursal disease.The production of poultry meat in New Zealand is highly integrated; only three companies supply 90% of the chicken meat, which represents 95% of the poultry meat consumed. The remaining 5% of poultry meat consumed includes species such as turkey and duck. The chicken processors own or control most stages of production, processing, and distribution. One of the three dominant companies has one processing plant that distributes nationwide, and one company has multiple plants that tend to be more localized in their distribution, except when they make specialty products, which are distributed nationally. The other companies distribute primarily locally. The broilers are commonly barn raised, not free range, and animal welfare standards require a maximum stocking density of 38 kg (live weight) of broiler chickens per m2. There are approximately 160 broiler farms in a number of specific areas of New Zealand. These farms are usually located near the slaughterhouses that they supply.To enable regulators to implement food safety programs to reduce human campylobacteriosis, there has been great interest in understanding the importance and epidemiology of C. jejuni in the New Zealand poultry production system. A sentinel surveillance site was therefore established in the Manawatu region to quantify the contributions of different sources, including poultry suppliers, to the human disease burden and to study the molecular epidemiology of C. jejuni (33, 34). Isolates were typed using multilocus sequence typing (MLST), a method that has major advantages over other methods of genotyping when the long-term epidemiology of a disease is studied. However, other methods may be more appropriate in other settings, such as outbreak investigations (21), where a higher degree of discrimination may be required. MLST offers a large web-based archive of isolates from many sources and countries: the Campylobacter PubMLST database (10). Sequence typing by MLST is now internationally recognized as a valuable approach for national and international epidemiological characterization and source tracking of major pathogenic microorganisms, such as C. jejuni (46, 48).The use of integrated surveillance across human, domestic animal, and wildlife populations has been identified as a key component of strategies aimed at prevention and control of emerging pathogens, particularly when the population dynamics of multihost pathogens are poorly understood (52). At the Manawatu surveillance site, samples from human clinical cases, animal-derived food products, and the environment were gathered in a defined geographical area of New Zealand over a 3-year period (19, 34) and genotyped using MLST (11). The resulting data set contained a total of 969 typed samples, 502 of which were from human cases. The temporal and spatial scale of the data allowed us to obtain a more in-depth understanding of local transmission dynamics compared with the results of previous research (43, 50). The application of novel risk attribution approaches to these data previously identified poultry as the major contributor to the human disease burden, with widely varying contributions from different suppliers (33).In this study we extended the findings of risk attribution and epidemiological studies of human cases (33, 34). Data from the sentinel surveillance site were used to study the epidemiology of C. jejuni for the individual producers that comprise the poultry sector in New Zealand and to better understand the contributions of the producers to the human campylobacteriosis burden. Our study included an investigation of both the probability of contamination and the level of contamination of poultry carcasses and a study of human and poultry MLST sequence types (STs). The resulting data were compared to make inferences about the epidemiology of C. jejuni in the New Zealand poultry industry and to identify determinants for the high number of human cases attributed to this food source.  相似文献   

16.
The species Campylobacter jejuni is naturally competent for DNA uptake; nevertheless, nonnaturally transformable strains do exist. For a subset of strains we previously showed that a periplasmic DNase, encoded by dns, inhibits natural transformation in C. jejuni. In the present study, genetic factors coding for DNase activity in the absence of dns were identified. DNA arrays indicated that nonnaturally transformable dns-negative strains contain putative DNA/RNA nonspecific endonucleases encoded by CJE0566 and CJE1441 of strain RM1221. These genes are located on C. jejuni integrated elements 2 and 4. Expression of CJE0566 and CJE1441 from strain RM1221 and a homologous gene from strain 07479 in DNase-negative Escherichia coli and C. jejuni strains indicated that these genes code for DNases. Genetic transfer of the genes to a naturally transformable C. jejuni strain resulted in a decreased efficiency of natural transformation. Modeling suggests that the C. jejuni DNases belong to the Serratia nuclease family. Overall, the data indicate that the acquisition of prophage-encoded DNA/RNA nonspecific endonucleases inhibits the natural transformability of C. jejuni through hydrolysis of DNA.Bacterial species display genetic diversity that can contribute to their capacity to adapt and survive in changing environments. One of the processes contributing to genetic diversity is horizontal gene transfer. This involves the acquisition of genetic material, ultimately resulting in insertion of the acquired DNA and/or deletion of existing genetic material (9). The ability to take up exogenous DNA is present in many bacteria (4, 30). In general, uptake of DNA during natural transformation involves binding of double-stranded DNA to bacterial surface components, followed by transport through the cytoplasmic membrane (5). Upon transport, one of the DNA strands is degraded into nucleotides, whereas the other strand enters the cytoplasm and may provide new characteristics to the host genome.One of the bacterial species naturally competent for DNA uptake is the human pathogen Campylobacter jejuni (32). Worldwide, C. jejuni is one of the most frequent causes of human bacterial gastroenteritis (3). In C. jejuni horizontal gene transfer can occur within a host, as witnessed in chickens infected with two C. jejuni strains carrying distinct genetic markers (7). The ability to acquire exogenous DNA contributes to the generation of genetic diversity in C. jejuni, which is reflected by the genotypic variation seen among strains (8, 29, 33).Thus far, several genes have been implicated in the process of natural transformation of C. jejuni (35). Yet not all C. jejuni strains are equally competent, since differences in natural transformation frequencies have been noted, and even nonnaturally transformable strains do exist (32, 34). Previously, we demonstrated that DNA-hydrolyzing activity inhibits natural transformation of C. jejuni and identified Dns as one of the responsible nucleases (13). Dns is encoded by a putative prophage present in C. jejuni strain RM1221, namely, C. jejuni integrated element 1 (CJIE1).The presence of DNase activity in C. jejuni has long been known and was in fact one of the criteria for Lior''s extended biotyping scheme for thermophilic campylobacters (21). Through identification of dns a genetic basis for DNase activity by a subset of C. jejuni strains has been provided, but the genetic factors responsible for DNase activity in dns-negative nonnaturally transformable C. jejuni strains are not yet known.In this study, we attempted to identify and functionally characterize an additional DNase-encoding gene(s) present in a subset of nonnaturally transformable DNase+ C. jejuni strains. Comparative genomic hybridization for DNase+/dns+ and DNase+/ dns-negative C. jejuni strains revealed three highly homologous genes encoded by the putative phage-related integrated elements CJIE2 and CJIE4. Functional analysis showed that these genes encode DNases that reduce the natural transformability of C. jejuni through hydrolysis of exogenous DNA.  相似文献   

17.
The first bacterial N-linked glycosylation system was discovered in Campylobacter jejuni, and the key enzyme involved in the coupling of glycan to asparagine residues within the acceptor sequon of the glycoprotein is the oligosaccharyltransferase PglB. Emerging genome sequence data have revealed that pglB orthologues are present in a subset of species from the Deltaproteobacteria and Epsilonproteobacteria, including three Helicobacter species: H. pullorum, H. canadensis, and H. winghamensis. In contrast to C. jejuni, in which a single pglB gene is located within a larger gene cluster encoding the enzymes required for the biosynthesis of the N-linked glycan, these Helicobacter species contain two unrelated pglB genes (pglB1 and pglB2), neither of which is located within a larger locus involved in protein glycosylation. In complementation experiments, the H. pullorum PglB1 protein, but not PglB2, was able to transfer C. jejuni N-linked glycan onto an acceptor protein in Escherichia coli. Analysis of the characterized C. jejuni N-glycosylation system with an in vitro oligosaccharyltransferase assay followed by matrix-assisted laser desorption ionization (MALDI) mass spectrometry demonstrated the utility of this approach, and when applied to H. pullorum, PglB1-dependent N glycosylation with a linear pentasaccharide was observed. This reaction required an acidic residue at the −2 position of the N-glycosylation sequon, as for C. jejuni. Attempted insertional knockout mutagenesis of the H. pullorum pglB2 gene was unsuccessful, suggesting that it is essential. These first data on N-linked glycosylation in a second bacterial species demonstrate the similarities to, and fundamental differences from, the well-studied C. jejuni system.Glycosylation is one of the most common protein modifications, and eukaryotes glycosylate many of their secreted proteins with asparagine or N-linked glycans. This process is thought to have diverse roles in protein folding, quality control, protein secretion, and sorting (13). Eukaryotic glycosylation takes place at the luminal side of the endoplasmic reticulum (ER) membrane, where a preassembled oligosaccharide is transferred from a lipid carrier to asparagine residues within an N-X-S/T consensus sequence, where X can be any amino acid except proline (19). The coupling of glycan to the protein takes place cotranslationally as nascent polypeptide chains cross the ER membrane via a translocon apparatus (5). This reaction involves a protein complex of at least eight subunits (49), with the STT3 protein (50, 52) apparently acting as the central enzyme in the process of N-linked protein glycosylation (29, 48). The STT3 protein consists of an amino terminus with multiple membrane-spanning domains and a carboxy-terminal region containing the highly conserved WWDYG amino acid sequence motif (15).The first prokaryotic glycoproteins were described for archaeal species over 30 years ago (26), and for some time it was thought that protein glycosylation was a eukaryotic and archaeal, but not a bacterial, trait. However, there are now many examples of protein glycosylation in species from the domain Bacteria. For example, general O-linked protein glycosylation systems in which functionally diverse sets of proteins are glycosylated via a single pathway have recently been identified in Neisseria and Bacteroides spp. (8, 21, 44). The most-well-characterized bacterial species with respect to protein glycosylation is the enteropathogen Campylobacter jejuni, which encodes an O-linked system that glycosylates the flagellin protein of the flagellar filament along with the first described bacterial N-linked glycosylation system (39).The C. jejuni N-linked glycosylation pathway is encoded by genes from a single protein glycosylation, or pgl, locus (38). The glycosylation reaction is thought to occur at the periplasmic face of the bacterial inner membrane mediated by the product of the STT3 orthologue pglB (46). The C. jejuni heptasaccharide glycan is assembled on a lipid carrier in the cytoplasm through the action of glycosyltransferases encoded by the pglA, pglC, pglH, pglJ, and pglI genes (11, 12, 24, 31). This lipid-linked oligosaccharide (LLO) is then “flipped” into the periplasm by the pglK gene product, or “flippase” (1), and transferred by PglB onto an asparagine residue within an extended D/E-X-N-X-S/T sequon (19). Many C. jejuni periplasmic and surface proteins of diverse function are N glycosylated (51), yet the function of glycosylation remains elusive. Unlike in eukaryotes, this process occurs posttranslationally, and the surface location of the sequon in folded proteins appears to be required for glycosylation (20).The C. jejuni pgl gene locus can be transferred into Escherichia coli, and the corresponding gene products will function to transfer the heptasaccharide onto asparagine residues of coexpressed C. jejuni glycoproteins as well as non-C. jejuni proteins containing the appropriately located acceptor sequon (19, 46). When alternative lipid-linked glycans are present, such as those involved in lipopolysaccharide biosynthesis, glycans with diverse structure can also be transferred onto proteins (7). Although there are limitations, particularly with regard to the apparent structural requirement for an acetamido group on the C-2 carbon of the reducing end sugar (7, 47), this is still a significant advance toward tractable in vivo systems for glycoconjugate synthesis. The identification and characterization of further bacterial PglB proteins with potentially diverse properties would considerably expand the utility of such systems. Data from genome sequencing indicate that pglB orthologues are found in species closely related to C. jejuni, such as Campylobacter coli, Campylobacter lari, and Campylobacter upsaliensis (40), as well as in the more distantly related species Wolinella succinogenes (2). These species are members of the phylogenetic grouping known as the epsilon subdivision of the Proteobacteria, or Epsilonproteobacteria, consisting of the well-established genera Campylobacter, Helicobacter, Arcobacter, and Wolinella, which are often associated with human and animal hosts, as well as a number of newly recognized groupings of environmental bacteria often found in sulfidic environments (3). However, not all species of Epsilonproteobacteria contain pglB orthologues, and until recently, all characterized Helicobacter species lacked pglB genes.Given the considerable interest in exploiting bacterial protein glycosylation, especially the C. jejuni N-linked glycosylation system, for generating glycoconjugates of biotechnological and therapeutic potential, the functional characterization of newly discovered pglB orthologues is a priority. In this report we describe the application of an in vitro oligosaccharyltransferase assay to investigate N-linked glycosylation initially in C. jejuni, where the utility of this approach was demonstrated, and then in Helicobacter pullorum, demonstrating that one of the two H. pullorum PglB enzymes is responsible for N-linked protein glycosylation with a pentasaccharide glycan.  相似文献   

18.
19.
The ferric enterobactin (FeEnt) receptor CfrA is present in the majority of Campylobacter jejuni isolates and is responsible for high-affinity iron acquisition. Our recent work and that of others strongly suggested the existence of another FeEnt uptake system in Campylobacter. Here we have identified and characterized a new FeEnt receptor (designated CfrB) using both in vitro and in vivo systems. CfrB, a homolog of C. jejuni NCTC 11168 Cj0444, shares approximately 34% of amino acid identity with CfrA. Alignment of complete CfrB sequences showed that the CfrB is highly conserved in Campylobacter. Immunoblotting analysis using CfrB-specific antiserum demonstrated that CfrB was dramatically induced under iron-restricted conditions and was produced in the majority of Campylobacter coli (41 out of 45) and in some C. jejuni (8 out of 32) primary strains from various sources and from geographically diverse areas. All of the CfrB-producing C. coli strains also produced CfrA, which was rarely observed in the tested C. jejuni strains. Isogenic cfrB, cfrA, and cfrA cfrB double mutants were constructed in 43 diverse Campylobacter strains. Growth promotion assays using these mutants demonstrated that CfrB has a major role in FeEnt iron acquisition in C. coli. Chicken colonization experiments indicated that inactivation of the cfrB gene alone greatly reduced and even abolished Campylobacter colonization of the intestines. A growth assay using CfrB-specific antiserum strongly suggested that specific CfrB antibodies could block the function of CfrB and diminish FeEnt-mediated growth promotion under iron-restricted conditions. Together, this work reveals the complexity of FeEnt systems in the two closely related Campylobacter species and demonstrates the important role of the new FeEnt receptor CfrB in Campylobacter iron acquisition and in vivo colonization.Campylobacter species have emerged as the leading bacterial cause of food-borne human diseases in many industrialized countries since the late 1970s (25). Two major Campylobacter species, Campylobacter jejuni and Campylobacter coli, cause watery diarrhea and/or hemorrhagic colitis in humans and are also associated with Guillain-Barré syndrome, an acute flaccid paralysis that may compromise respiratory muscle function, resulting in death (24). In parallel to their increased prevalence, members of Campylobacter have become increasingly resistant to antibiotics, including fluoroquinolones and macrolides, the major drugs of choice for treating human campylobacteriosis (10). Therefore, development of new strategies to prevent and control Campylobacter infections in humans and animal reservoirs is urgently needed, which greatly relies on the better understanding of Campylobacter pathogenesis.Despite recent advances in understanding of the pathobiology of C. jejuni (9, 39), the virulence mechanisms of Campylobacter remain poorly understood. Iron is the most abundant transition metal in living organisms, with critical roles in many diverse biological systems (2); thus, iron acquisition is essential for survival and virulence of pathogenic bacteria in the host (5, 31). Examination of iron uptake in Campylobacter began in the 1980s (12), but iron uptake systems, and the associated regulatory systems, in Campylobacter species are now just beginning to be elucidated (reviewed by Miller et al. [22], Stintzi et al. [34], and Wooldridge and van Vliet [37]). Genomic data have shown a large number of genes implicated in iron scavenging, metabolism, storage, and regulation in C. jejuni (22, 34, 37). Several iron uptake systems have been identified and characterized (22, 34); among these, the ferric enterobactin (FeEnt) iron acquisition system is of particular interest because enterobactin (Ent) has the highest affinity for ferric iron of any natural siderophore compound tested (35). Furthermore, Ent is produced by a wide variety of commensal bacteria in the intestines, and this compound is likely to be produced in significant amounts by the resident microflora in the gut (37). Thus, FeEnt may be a significant source of iron for Campylobacter species during intestinal colonization even though Campylobacter species do not appear have the capacity to synthesize Ent (34).A FeEnt acquisition system in C. jejuni was identified which comprises an outer membrane receptor, CfrA, and cognate components, including a TonB-ExbB-ExbD protein complex and an ABC transporter system CeuBCDE (22, 34). The FeEnt receptor CfrA is induced under iron-restricted conditions and plays a critical role in iron acquisition and in vivo colonization by C. jejuni (27). A recent report (40) provides further molecular, antigenic, and functional evidence suggesting that CfrA is a promising subunit vaccine for preventing and controlling C. jejuni infection in humans and animal reservoirs. Interestingly, in this study one C. jejuni strain (JL11), which does not have a gene highly homologous to cfrA, could efficiently utilize FeEnt as a sole iron source for growth (40). An early study also showed that an isogenic cfrA mutant of a human C. coli strain was still fully capable of utilizing FeEnt as a sole iron source for growth (15). These studies strongly suggest that Campylobacter species possess an additional system for FeEnt-mediated iron acquisition.In this study, we demonstrate that a homolog of the C. jejuni NCTC 11168 protein Cj0444 (28) is a FeEnt receptor, designated CfrB, in Campylobacter. CfrB is highly conserved among members of Campylobacter and plays an important role in the colonization of the intestine by both C. jejuni and C. coli.  相似文献   

20.
The major flagellin of Campylobacter jejuni strain 81-176, FlaA, has been shown to be glycosylated at 19 serine or threonine sites, and this glycosylation is required for flagellar filament formation. Some enzymatic components of the glycosylation machinery of C. jejuni 81-176 are localized to the poles of the cell in an FlhF-independent manner. Flagellin glycosylation could be detected in flagellar mutants at multiple levels of the regulatory hierarchy, indicating that glycosylation occurs independently of the flagellar regulon. Mutants were constructed in which each of the 19 serine or threonines that are glycosylated in FlaA was converted to an alanine. Eleven of the 19 mutants displayed no observable phenotype, but the remaining 8 mutants had two distinct phenotypes. Five mutants (mutations S417A, S436A, S440A, S457A, and T481A) were fully motile but defective in autoagglutination (AAG). Three other mutants (mutations S425A, S454A, and S460A) were reduced in motility and synthesized truncated flagellar filaments. The data implicate certain glycans in mediating filament-filament interactions resulting in AAG and other glycans appear to be critical for structural subunit-subunit interactions within the filament.Flagellins from many polarly flagellated bacteria are glycosylated (reviewed in reference 22). The best-characterized examples are the flagellins from Campylobacter spp. that are decorated with as many as 19 O-linked glycans that can contribute ∼10% to the weight of flagellin (38). The genes encoding the enzymes for biosynthesis of the glycans found on Campylobacter flagellins and the respective glycosyltransferases are located adjacent to the flagellin structural genes in one of the more hypervariable regions of the Campylobacter genome (3, 16, 28, 37). Most strains appear to carry the genes for synthesis of two distinct nine-carbon sugars that decorate flagellin: pseudaminic acid (PseAc) and an acetamidino form of legionaminic acid (LegAm) (23). In contrast, Campylobacter jejuni strain 81-176 contains only the pathway for synthesis of PseAc (9) and derivatives of PseAc that include an acetylated form (PseAcOAc), an acetamidino form (PseAm), and a form of PseAm with a glutamic acid moiety attached (PseAmOGln) (25, 34, 38). The flagellins of C. jejuni strain NCTC 11168 have recently been shown to be glycosylated with PseAc and LegAm, as well as two novel derivatives of PseAc, a di-O-methylglyceric acid and a related acetamidino form (24). Thus, although all of the flagellar glycans appear to be based on either PseAc and/or LegAm, there are variations among strains that contribute to serospecificity and reflect the heterogeneity of the flagellin glycosylation loci (23, 24).The function of the glycosyl modifications to flagellar structure and to the biology of campylobacters is not fully understood. Although most polarly flagellated bacteria appear to glycosylate flagellin, mutation of the genes involved in glycosylation does not generally result in loss of motility (22). However, flagella from C. jejuni, Campylobacter coli, and Helicobacter pylori, all members of the epsilon division of Proteobacteria, are unable to assemble a filament in the absence of a functional glycosylation system (7, 33). Also, changes in the glycans on campylobacter flagellins have been shown to affect autoagglutination (AAG) and microcolony formation on intestinal epithelial cells in vitro (5, 9). Thus, a mutant of C. jejuni 81-176 that was unable to synthesize PseAm assembled a flagellar filament, but the sites on the flagellin subunits that were normally glycosylated with PseAm were instead glycosylated with PseAc. This mutant was reduced in AAG, adherence, and invasion of INT407 cells and was also attenuated in a ferret diarrheal disease model (9). C. coli VC167 has both PseAc and LegAm pathways. Mutants that were defective in either pathway could still assemble flagellar filaments composed of subunits that were modified with the alternate sugar, but these mutants showed defects in AAG (7). A VC167 double mutant, defective in both PseAc and LegAm synthesis, was nonflagellated (7). Collectively, these data suggest that some glycosylation is required for either secretion of flagellin or for interactions between subunits within the filament.Flagellar biogenesis in C. jejuni is a complex process that is highly controlled by the alternate sigma factors σ28 and σ54, a two-component regulatory system composed of the sensor kinase FlgS and the σ54-response regulator FlgR, and the flagellar export apparatus (15, 39). Both flgR and flgS genes undergo slip strand mismatch repair in C. jejuni strain 81-176, resulting in an on/off-phase variation of flagellar expression (13, 14). The major flagellin gene, flaA, and some other late flagellar genes are regulated by σ28; the genes encoding the minor flagellin, flaB, and the hook and rod structures are regulated by σ54. Here, we examine several aspects of glycosylation to flagellar function in C. jejuni 81-176. We demonstrate that some components of the flagellar glycosylation machinery are localized to the poles of the cell, but independently of the signal recognition particle-like flagellar protein, FlhF, and that flagellin glycosylation occurs independently of the flagellar regulon. We also show that the glycans on some amino acids appear to play a structural role in subunit interactions in the filament, while others affect interactions with adjacent filaments that result in AAG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号