首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toll-like receptors (TLRs) associate with adaptor molecules (MyD88, Mal/TIRAP, TRAM, and TRIF) to mediate signaling of host-microbial interaction. For instance, TLR4 utilizes the combination of both Mal/TIRAP-MyD88 (MyD88-dependent pathway) and TRAM-TRIF (MyD88-independent pathway). However, TLR5, the specific receptor for flagellin, is known to utilize only MyD88 to elicit inflammatory responses, and an involvement of other adaptor molecules has not been suggested in TLR5-dependent signaling. Here, we found that TRIF is involved in mediating TLR5-induced nuclear factor κB (NFκB) and mitogen-activated protein kinases (MAPKs), specifically JNK1/2 and ERK1/2, activation in intestinal epithelial cells. TLR5 activation by flagellin permits the physical interaction between TLR5 and TRIF in human colonic epithelial cells (NCM460), whereas TLR5 does not interact with TRAM upon flagellin stimulation. Both primary intestinal epithelial cells from TRIF-KO mice and TRIF-silenced NCM460 cells significantly reduced flagellin-induced NFκB (p105 and p65), JNK1/2, and ERK1/2 activation compared with control cells. However, p38 activation by flagellin was preserved in these TRIF-deficient cells. TRIF-KO intestinal epithelial cells exhibited substantially reduced inflammatory cytokine (keratinocyte-derived cytokine, macrophage inflammatory protein 3α, and IL-6) expression upon flagellin, whereas control cells from TRIF-WT mice showed robust cytokine expression by flagellin. Compare with TRIF-WT mice, TRIF-KO mice were resistant to in vivo intestinal inflammatory responses: flagellin-mediated exacerbation of colonic inflammation and dextran sulfate sodium-induced experimental colitis. We conclude that in addition to MyD88, TRIF mediates TLR5-dependent responses and, thereby regulates inflammatory responses elicited by flagellin/TLR5 engagement. Our findings suggest an important role of TRIF in regulating host-microbial communication via TLR5 in the gut epithelium.  相似文献   

2.
Toll-like receptors (TLRs) are pattern recognition receptors that sense a variety of pathogens, initiate innate immune responses, and direct adaptive immunity. All TLRs except TLR3 recruit the adaptor MyD88 to ultimately elicit inflammatory gene expression, whereas TLR3 and internalized TLR4 use TIR-domain-containing adaptor TRIF for the induction of type I interferon and inflammatory cytokines. Here, we identify the WD repeat and FYVE-domain-containing protein WDFY1 as a crucial adaptor protein in the TLR3/4 signaling pathway. Overexpression of WDFY1 potentiates TLR3- and TLR4-mediated activation of NF-κB, interferon regulatory factor 3 (IRF3), and production of type I interferons and inflammatory cytokines. WDFY1 depletion has the opposite effect. WDFY1 interacts with TLR3 and TLR4 and mediates the recruitment of TRIF to these receptors. Our findings suggest a crucial role for WDFY1 in bridging the TLR–TRIF interaction, which is necessary for TLR signaling.  相似文献   

3.
Toll-like receptors (TLRs) mediated immune response is crucial for combating pathogens and must be tightly controlled. Tripartite motif (TRIM) proteins are a family of proteins that is involved in a variety of biological and physiological processes. Some members of the TRIM family are important in the regulation of innate immunity. Although it has been shown that TRIM38 negatively regulates innate immunity, the mechanisms by which it does so have not been fully addressed. In this study, we demonstrated that TRIM38 negatively regulates Toll-like receptor 3 (TLR3)-mediated type I interferon signaling by targeting TIR domain-containing adaptor inducing IFN-β (TRIF). We found that overexpression of TRIM38 inhibits TLR3-mediated type I interferon signaling, whereas knockdown of TRIM38 has the reverse effects. We further showed that TRIM38 targets TRIF, a critical adaptor protein downstream of TLR3. TRIF is co-immunoprecipitated with TRIM38, and domain mapping experiments show that PRYSPRY of TRIM38 interacts with the N-terminus of TRIF. Overexpression of TRIM38 decreased expression of overexpressed and endogenous TRIF. This effect could be inhibited by MG132 treatment. Furthermore, the RING/B-box domain of TRIM38 is critical for K48-linked polyubiquitination and proteasomal degradation of TRIF. Collectively, our results suggest that TRIM38 may act as a novel negative regulator for TLR3-mediated type I interferon signaling by targeting TRIF for degradation.  相似文献   

4.
TLRs detect specific molecular features of microorganisms and subsequently engage distinct signaling networks through the differential use of Toll/IL-1R (TIR)-domain-containing adapter proteins. In this study, we investigated the control of apoptosis by the TIR domain-containing adapter proteins MyD88, TIR-domain containing adapter protein (TIRAP), TIR-domain-containing adapter-inducing IFN-beta (TRIF), TRIF-related adapter molecule (TRAM), and sterile alpha motifs and beta-catenin/armadillo repeats (SARM). Upon overexpression, TRIF was the sole TIR-adapter to potently engage mammalian cell death signaling pathways. TRIF-induced cell death required caspase activity initiated by the Fas/Apo-1-associated DD protein-caspase-8 axis and was unaffected by inhibitors of the intrinsic apoptotic machinery. The proapoptotic potential of TRIF mapped to the C-terminal region that was found to harbor a receptor interacting protein (RIP) homotypic interaction motif (RHIM). TRIF physically interacted with the RHIM-containing proteins RIP1 and RIP3, and deletion and mutational analyses revealed that the RHIM in TRIF was essential for TRIF-induced apoptosis and contributed to TRIF-induced NF-kappa B activation. The domain that was required for induction of apoptosis could activate NF-kappa B but not IFN regulatory factor-3, yet the activation of NF-kappa B could be blocked by superrepressor I kappa B alpha without blocking apoptosis. Thus, the ability of TRIF to induce apoptosis was not dependent on its ability to activate either IFN regulatory factor-3 or NF-kappa B but was dependent on the presence of an intact RHIM. TRIF serves as an adaptor for both TLR3 and TLR4, receptors that are activated by dsRNA and LPS, respectively. These molecular motifs are encountered during viral and bacterial infection, and the apoptosis that occurs when TRIF is engaged represents an important host defense to limit the spread of infection.  相似文献   

5.
6.
Transforming growth factor-beta1 (TGF-beta1) is a multifunctional, potent anti-inflammatory cytokine produced by many cell types that regulates cell proliferation, apoptosis, and immune responses. Toll-like receptors (TLRs) recognize various pathogen-associated molecular patterns and are therefore a pivotal component of the innate immune system. In this study we show that TGF-beta1 blocks the NF-kappaB activation and cytokine release that is stimulated by ligands for TLRs 2, 4, and 5. We further show that TGF-beta1 can specifically interfere with TLR2, -4, or -5 ligand-induced responses involving the adaptor molecule MyD88 (myeloid differentiation factor 88) but not the TRAM/TRIF signaling pathway by decreasing MyD88 protein levels in a dose- and time-dependent manner without altering its mRNA expression. The proteasome inhibitor epoxomicin abolished the MyD88 degradation induced by TGF-beta1. Furthermore, TGF-beta1 resulted in ubiquitination of MyD88 protein, suggesting that TGF-beta1 facilitates ubiquitination and proteasomal degradation of MyD88 and thereby attenuates MyD88-dependent signaling by decreasing cellular levels of MyD88 protein. These findings importantly contribute to our understanding of molecular mechanisms mediating anti-inflammatory modulation of immune responses by TGF-beta1.  相似文献   

7.
Toll-like receptors (TLRs) recognize microbial components and trigger the signaling cascade that activates the innate and adaptive immunity. TLR adaptor molecules play a central role in this cascade; thus, we hypothesized that overexpression of TLR adaptor molecules could mimic infection without any microbial components. Dual-promoter plasmids that carry an antigen and a TLR adaptor molecule such as the Toll-interleukin-1 receptor domain-containing adaptor-inducing beta interferon (TRIF) or myeloid differentiation factor 88 (MyD88) were constructed and administered to mice to determine if these molecules can act as an adjuvant. A DNA vaccine incorporated with the MyD88 genetic adjuvant enhanced antigen-specific humoral immune responses, whereas that with the TRIF genetic adjuvant enhanced cellular immune responses. Incorporating the TRIF genetic adjuvant in a DNA vaccine targeting the influenza HA antigen or the tumor-associated antigen E7 conferred superior protection. These results indicate that TLR adaptor molecules can bridge innate and adaptive immunity and potentiate the effects of DNA vaccines against virus infection and tumors.  相似文献   

8.
9.
Calcineurin negatively regulates TLR-mediated activation pathways   总被引:2,自引:0,他引:2  
In innate immunity, microbial components stimulate macrophages to produce antimicrobial substances, cytokines, other proinflammatory mediators, and IFNs via TLRs, which trigger signaling pathways activating NF-kappaB, MAPKs, and IFN response factors. We show in this study that, in contrast to its activating role in T cells, in macrophages the protein phosphatase calcineurin negatively regulates NF-kappaB, MAPKs, and IFN response factor activation by inhibiting the TLR-mediated signaling pathways. Evidence for this novel role for calcineurin was provided by the findings that these signaling pathways are activated when calcineurin is inhibited either by the inhibitors cyclosporin A or FK506 or by small interfering RNA-targeting calcineurin, and that activation of these pathways by TLR ligands is inhibited by the overexpression of a constitutively active form of calcineurin. We further found that IkappaB-alpha degradation, MAPK activation, and TNF-alpha production by FK506 were reduced in macrophages from mice deficient in MyD88, Toll/IL-1R domain-containing adaptor-inducing IFN-beta (TRIF), TLR2, or TLR4, whereas macrophages from TLR3-deficient or TLR9 mutant mice showed the same responses to FK506 as those of wild-type cells. Biochemical studies indicate that calcineurin interacts with MyD88, TRIF, TLR2, and TLR4, but not with TLR3 or TLR9. Collectively, these results suggest that calcineurin negatively regulates TLR-mediated activation pathways in macrophages by inhibiting the adaptor proteins MyD88 and TRIF, and a subset of TLRs.  相似文献   

10.
11.
TLRs can activate two distinct branches of downstream signaling pathways. MyD88 and Toll/IL-1R domain-containing adaptor inducing IFN-beta (TRIF) pathways lead to the expression of proinflammatory cytokines and type I IFN genes, respectively. Numerous reports have demonstrated that resveratrol, a phytoalexin with anti-inflammatory effects, inhibits NF-kappaB activation and other downstream signaling pathways leading to the suppression of target gene expression. However, the direct targets of resveratrol have not been identified. In this study, we attempted to identify the molecular target for resveratrol in TLR-mediated signaling pathways. Resveratrol suppressed NF-kappaB activation and cyclooxygenase-2 expression in RAW264.7 cells following TLR3 and TLR4 stimulation, but not TLR2 or TLR9. Further, resveratrol inhibited NF-kappaB activation induced by TRIF, but not by MyD88. The activation of IFN regulatory factor 3 and the expression of IFN-beta induced by LPS, poly(I:C), or TRIF were also suppressed by resveratrol. The suppressive effect of resveratrol on LPS-induced NF-kappaB activation was abolished in TRIF-deficient mouse embryonic fibroblasts, whereas LPS-induced degradation of IkappaBalpha and expression of cyclooxygenase-2 and inducible NO synthase were still inhibited in MyD88-deficient macrophages. Furthermore, resveratrol inhibited the kinase activity of TANK-binding kinase 1 and the NF-kappaB activation induced by RIP1 in RAW264.7 cells. Together, these results demonstrate that resveratrol specifically inhibits TRIF signaling in the TLR3 and TLR4 pathway by targeting TANK-binding kinase 1 and RIP1 in TRIF complex. The results raise the possibility that certain dietary phytochemicals can modulate TLR-derived signaling and inflammatory target gene expression and can alter susceptibility to microbial infection and chronic inflammatory diseases.  相似文献   

12.
The Toll/IL-1 receptor (TIR) domain plays a central role in Toll-like receptor (TLR) signalling. All TLRs contain a cytoplasmic TIR domain, which, upon activation, acts as a scaffold to recruit adaptor proteins. The adaptor proteins MyD88, Mal, TRIF, TRAM and SARM are also characterized by the presence of a TIR domain. MyD88, Mal, TRIF and TRAM associate with the TLRs via homophilic TIR domain interactions whereas SARM utilizes its TIR domain to negatively regulate TRIF. It is well established that the differential recruitment of adaptors to TLRs provides a significant amount of specificity to the TLR-signalling pathways. Despite this, the TIR-TIR interface has not been well defined. However, structural studies have indicated the importance of TIR domain surfaces in mediating specific TIR-TIR interactions. Furthermore, recent findings regarding the regulation of adaptors provide further insight into the crucial role of the TIR domain in TLR signalling.  相似文献   

13.
Qu L  Feng Z  Yamane D  Liang Y  Lanford RE  Li K  Lemon SM 《PLoS pathogens》2011,7(9):e1002169
Toll-like receptor 3 (TLR3) and cytosolic RIG-I-like helicases (RIG-I and MDA5) sense viral RNAs and activate innate immune signaling pathways that induce expression of interferon (IFN) through specific adaptor proteins, TIR domain-containing adaptor inducing interferon-β (TRIF), and mitochondrial antiviral signaling protein (MAVS), respectively. Previously, we demonstrated that hepatitis A virus (HAV), a unique hepatotropic human picornavirus, disrupts RIG-I/MDA5 signaling by targeting MAVS for cleavage by 3ABC, a precursor of the sole HAV protease, 3C(pro), that is derived by auto-processing of the P3 (3ABCD) segment of the viral polyprotein. Here, we show that HAV also disrupts TLR3 signaling, inhibiting poly(I:C)-stimulated dimerization of IFN regulatory factor 3 (IRF-3), IRF-3 translocation to the nucleus, and IFN-β promoter activation, by targeting TRIF for degradation by a distinct 3ABCD processing intermediate, the 3CD protease-polymerase precursor. TRIF is proteolytically cleaved by 3CD, but not by the mature 3C(pro) protease or the 3ABC precursor that degrades MAVS. 3CD-mediated degradation of TRIF depends on both the cysteine protease activity of 3C(pro) and downstream 3D(pol) sequence, but not 3D(pol) polymerase activity. Cleavage occurs at two non-canonical 3C(pro) recognition sequences in TRIF, and involves a hierarchical process in which primary cleavage at Gln-554 is a prerequisite for scission at Gln-190. The results of mutational studies indicate that 3D(pol) sequence modulates the substrate specificity of the upstream 3C(pro) protease when fused to it in cis in 3CD, allowing 3CD to target cleavage sites not normally recognized by 3C(pro). HAV thus disrupts both RIG-I/MDA5 and TLR3 signaling pathways through cleavage of essential adaptor proteins by two distinct protease precursors derived from the common 3ABCD polyprotein processing intermediate.  相似文献   

14.
15.
Autophagy contributes to the pathogenesis of cancer, whereas toll-like receptors (TLRs) also play an important role in cancer development and immune escape. However, little is known about the potential interaction between TLR signaling and autophagy in cancer cells. Here we show that autophagy induced by TLR4 or TLR3 activation enhances various cytokine productions through promoting TRAF6 (TNF receptor-associated factor 6, E3 ubiquitin protein ligase) ubiquitination and thus facilitates migration and invasion of lung cancer cells. Stimulation of TLR4 and TLR3 with lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid [poly(I:C)] respectively triggered autophagy in lung cancer cells. This was mediated by the adaptor protein, toll-like receptor adaptor molecule 1 (TICAM1/TRIF), and was required for TLR4- and TLR3-induced increases in the production of IL6, CCL2/MCP-1 [chemokine (C-C motif) ligand 2], CCL20/MIP-3α [chemokine (C-C motif) ligand 20], VEGFA (vascular endothelial growth factor A), and MMP2 [matrix metallopeptidase 2 (gelatinase A, 72 kDa gelatinase, 72 kDa type IV collagenase)]. These cytokines appeared to be necessary for enhanced migration and invasion of lung cancer cells upon TLR activation. Remarkably, inhibition of autophagy by chemical or genetic approaches blocked TLR4- or TLR3-induced Lys63 (K63)-linked ubiquitination of TRAF6 that was essential for activation of MAPK and NFKB (nuclear factor of kappa light polypeptide gene enhancer in B-cells) pathways, both of which were involved in the increased production of the cytokines. Collectively, these results identify induction of autophagy by TLR4 and TLR3 as an important mechanism that drives lung cancer progression, and indicate that inhibition of autophagy may be a useful strategy in the treatment of lung cancer.  相似文献   

16.
17.
18.
Signaling pathways from TLRs are mediated by the Toll/IL-1R (TIR) domain-containing adaptor molecules. TNF receptor-associated factor (TRAF) 6 is thought to activate NF-kappaB and MAPKs downstream of these TIR domain-containing proteins to induce production of inflammatory cytokines. However, the precise role of TRAF6 in signaling from individual TLRs has not been appropriately addressed. We analyzed macrophages from TRAF6-deficient mice and made the following observations. In the absence of TRAF6, 1) ligands for TLR2, TLR5, TLR7, and TLR9 failed to induce activation of NF-kappaB and MAPKs or production of inflammatory cytokines; 2) TLR4 ligand-induced cytokine production was remarkably reduced and activation of NF-kappaB and MAPKs was observed, albeit with delayed kinetics; and 3) in contrast with previously reported findings, TLR3 signaling was not affected. These results indicate that TRAF6 is essential for MyD88-dependent signaling but is not required for TIR domain-containing adaptor-inducing IFN-beta (TRIF)-dependent signaling.  相似文献   

19.
Toll-like receptor 4 (TLR4) activates two distinct signaling pathways inducing production of proinflammatory cytokines or type I interferons (IFNs), respectively. MyD88 and TIRAP/Mal are essential adaptor molecules for the former but not for the latter pathway. In contrast, TRIF/TICAM-1 and TRAM/TICAM-2 are essential for both. TIRAP is a sorting adaptor molecule recruiting MyD88 to activated TLR4 in the plasma membrane. TRAM is thought to bridge between TLR4 and TRIF by physical association. Little is known, however, how TRAM interacts with TLR4 or with TRIF during LPS response. Here, we show that TRAM recruits TRIF to the plasma membrane. Moreover, LPS induces upregulation of TLR4-association with TRAM and their subsequent translocation into endosome/lysosome. The internalized signaling complex consisting of TLR4 and TRAM colocalizes with TRAF3, a signaling molecule downstream of TRIF, in endosome/lysosome. These results suggest that TLR4 activates TRIF-signaling in endosome/lysosome after relocation from the cell surface.  相似文献   

20.
The adaptor molecule MyD88 is necessary for responses to all Toll-like receptors except TLR3 and a subset of TLR4 signaling events, which are mediated by the adaptor molecule TRIF. To determine the role of TRIF in host inflammatory responses, corneal epithelium of C57BL/6, TLR3(-/-), TRIF(-/-), and MyD88(-/-) mice was abraded and stimulated with the synthetic TLR3 ligand poly(I:C). We found that poly(I:C) induced a pronounced cellular infiltration into the corneal stroma, which was TLR3- and TRIF-dependent. Unexpectedly, the inflammatory response was exacerbated in MyD88(-/-) mice, with enhanced neutrophil and F4/80(+) cell infiltration into the corneal stroma and elevated corneal haze, which is an indicator of loss of corneal transparency. To determine whether MyD88-dependent inhibition of TLR3/TRIF responses is a general phenomenon, we examined cytokine production by MyD88(-/-) bone marrow-derived macrophages; however, no significant difference was observed between MyD88(+/+) or MyD88(-/-) macrophages. In contrast, human corneal epithelial cells (HCECs) transfected with MyD88 small interfering RNA had significantly increased (2.5-fold) CCL5/RANTES production compared with control HCECs, demonstrating a negative regulatory role for MyD88 in TLR3/TRIF responses in these cells. Finally, knockdown of MyD88 in HCECs resulted in increased phosphorylation of c-Jun N-terminal kinase (JNK), but not p38, IRF-3, or NF-kappaB. Consistent with this finding, the JNK inhibitor SP600125, but not p38 inhibitor SB203580, ablated this response. Taken together, these findings demonstrate a novel JNK-dependent inhibitory role for MyD88 in the TLR3/TRIF activation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号