首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Pea encodes eukaryotic translation initiation factor eIF4E (eIF4ES), which supports the multiplication of Pea seed-borne mosaic virus (PSbMV). In common with hosts for other potyviruses, some pea lines contain a recessive allele (sbm1) encoding a mutant eIF4E (eIF4ER) that fails to interact functionally with the PSbMV avirulence protein, VPg, giving genetic resistance to infection.

Methodology/Principal Findings

To study structure-function relationships between pea eIF4E and PSbMV VPg, we obtained an X-ray structure for eIF4ES bound to m7GTP. The crystallographic asymmetric unit contained eight independent copies of the protein, providing insights into the structurally conserved and flexible regions of eIF4E. To assess indirectly the importance of key residues in binding to VPg and/or m7GTP, an extensive range of point mutants in eIF4E was tested for their ability to complement PSbMV multiplication in resistant pea tissues and for complementation of protein translation, and hence growth, in an eIF4E-defective yeast strain conditionally dependent upon ectopic expression of eIF4E. The mutants also dissected individual contributions from polymorphisms present in eIF4ER and compared the impact of individual residues altered in orthologous resistance alleles from other crop species. The data showed that essential resistance determinants in eIF4E differed for different viruses although the critical region involved (possibly in VPg-binding) was conserved and partially overlapped with the m7GTP-binding region. This overlap resulted in coupled inhibition of virus multiplication and translation in the majority of cases, although the existence of a few mutants that uncoupled the two processes supported the view that the specific role of eIF4E in potyvirus infection may not be restricted to translation.

Conclusions/Significance

The work describes the most extensive structural analysis of eIF4E in relation to potyvirus resistance. In addition to defining functional domains within the eIF4E structure, we identified eIF4E alleles with the potential to convey novel virus resistance phenotypes.  相似文献   

2.

Background

Translation initiation factors of the 4E and 4G protein families mediate resistance to several RNA plant viruses in the natural diversity of crops. Particularly, a single point mutation in melon eukaryotic translation initiation factor 4E (eIF4E) controls resistance to Melon necrotic spot virus (MNSV) in melon. Identification of allelic variants within natural populations by EcoTILLING has become a rapid genotype discovery method.

Results

A collection of Cucumis spp. was characterised for susceptibility to MNSV and Cucumber vein yellowing virus (CVYV) and used for the implementation of EcoTILLING to identify new allelic variants of eIF4E. A high conservation of eIF4E exonic regions was found, with six polymorphic sites identified out of EcoTILLING 113 accessions. Sequencing of regions surrounding polymorphisms revealed that all of them corresponded to silent nucleotide changes and just one to a non-silent change correlating with MNSV resistance. Except for the MNSV case, no correlation was found between variation of eIF4E and virus resistance, suggesting the implication of different and/or additional genes in previously identified resistance phenotypes. We have also characterized a new allele of eIF4E from Cucumis zeyheri, a wild relative of melon. Functional analyses suggested that this new eIF4E allele might be responsible for resistance to MNSV.

Conclusion

This study shows the applicability of EcoTILLING in Cucumis spp., but given the conservation of eIF4E, new candidate genes should probably be considered to identify new sources of resistance to plant viruses. Part of the methodology described here could alternatively be used in TILLING experiments that serve to generate new eIF4E alleles.  相似文献   

3.

Background

The eukaryotic translation initiation factor eIF4E plays a key role in plant-potyvirus interactions. eIF4E belongs to a small multigenic family and three genes, eIF4E1, eIF4E2 and eIF(iso)4E, have been identified in tomato. It has been demonstrated that eIF4E-mediated natural recessive resistances against potyviruses result from non-synonymous mutations in an eIF4E protein, which impair its direct interaction with the potyviral protein VPg. In tomato, the role of eIF4E proteins in potyvirus resistance is still unclear because natural or induced mutations in eIF4E1 confer only a narrow resistance spectrum against potyviruses. This contrasts with the broad spectrum resistance identified in the natural diversity of tomato. These results suggest that more than one eIF4E protein form is involved in the observed broad spectrum resistance.

Methodology/Principal Findings

To gain insight into the respective contribution of each eIF4E protein in tomato-potyvirus interactions, two tomato lines silenced for both eIF4E1 and eIF4E2 (RNAi-4E) and two lines silenced for eIF(iso)4E (RNAi-iso4E) were obtained and characterized. RNAi-4E lines are slightly impaired in their growth and fertility, whereas no obvious growth defects were observed in RNAi-iso4E lines. The F1 hybrid between RNAi-4E and RNAi-iso4E lines presented a pronounced semi-dwarf phenotype. Interestingly, the RNAi-4E lines silenced for both eIF4E1 and eIF4E2 showed broad spectrum resistance to potyviruses while the RNAi-iso4E lines were fully susceptible to potyviruses. Yeast two-hybrid interaction assays between the three eIF4E proteins and a set of viral VPgs identified two types of VPgs: those that interacted only with eIF4E1 and those that interacted with either eIF4E1 or with eIF4E2.

Conclusion/Significance

These experiments provide evidence for the involvement of both eIF4E1 and eIF4E2 in broad spectrum resistance of tomato against potyviruses and suggest a role for eIF4E2 in tomato-potyvirus interactions.  相似文献   

4.
Genetic resistance to pathogens is important for sustainable maintenance of crop yields. Recent biotechnologies offer alternative approaches to generate resistant plants by compensating for the lack of natural resistance. Tomato (Solanum lycopersicum) and related species offer a model in which natural and TILLING‐induced potyvirus resistance alleles may be compared. For resistance based on translation initiation factor eIF4E1, we confirm that the natural allele Sh–eIF4E1PI24–pot1, isolated from the wild tomato species Solanum habrochaites, is associated with a wide spectrum of resistance to both potato virus Y and tobacco etch virus isolates. In contrast, a null allele of the same gene, isolated through a TILLING strategy in cultivated tomato S. lycopersicum, is associated with a much narrower resistance spectrum. Introgressing the null allele into S. habrochaites did not extend its resistance spectrum, indicating that the genetic background is not responsible for the broad resistance. Instead, the different types of eIF4E1 mutations affect the levels of eIF4E2 differently, suggesting that eIF4E2 is also involved in potyvirus resistance. Indeed, combining two null mutations affecting eIF4E1 and eIF4E2 re‐establishes a wide resistance spectrum in cultivated tomato, but to the detriment of plant development. These results highlight redundancy effects within the eIF4E gene family, where regulation of expression alters susceptibility or resistance to potyviruses. For crop improvement, using loss‐of‐function alleles to generate resistance may be counter‐productive if they narrow the resistance spectrum and limit growth. It may be more effective to use alleles encoding functional variants similar to those found in natural diversity.  相似文献   

5.

Background

Eukaryotic translation initiation factor 4E (eIF4E) plays an important role in plant virus infection as well as the regulation of gene translation.

Methodology/Principal Findings

Here, we describe the isolation of a cDNA encoding CmeIF(iso)4E (GenBank accession no. JQ904592), an isoform of eIF4E from chrysanthemum, using RACE PCR. We used the CmeIF(iso)4E cDNA for expression profiling and to analyze the interaction between CmeIF(iso)4E and the Chrysanthemum virus B coat protein (CVBCP). Multiple sequence alignment and phylogenetic tree analysis showed that the sequence similarity of CmeIF(iso)4E with other reported plant eIF(iso)4E sequences varied between 69.12% and 89.18%, indicating that CmeIF(iso)4E belongs to the eIF(iso)4E subfamily of the eIF4E family. CmeIF(iso)4E was present in all chrysanthemum organs, but was particularly abundant in the roots and flowers. Confocal microscopy showed that a transiently transfected CmeIF(iso)4E-GFP fusion protein distributed throughout the whole cell in onion epidermis cells. A yeast two hybrid assay showed CVBCP interacted with CmeIF(iso)4E but not with CmeIF4E. BiFC assay further demonstrated the interaction between CmeIF(iso)4E and CVBCP. Luminescence assay showed that CVBCP increased the RLU of Luc-CVB, suggesting CVBCP might participate in the translation of viral proteins.

Conclusions/Significance

These results inferred that CmeIF(iso)4E as the cap-binding subunit eIF(iso)4F may be involved in Chrysanthemum Virus B infection in chrysanthemum through its interaction with CVBCP in spatial.  相似文献   

6.

Background

FUS-DDIT3 is a chimeric protein generated by the most common chromosomal translocation t(12;16)(q13;p11) linked to liposarcomas, which are characterized by the accumulation of early adipocytic precursors. Current studies indicate that FUS-DDIT3- liposarcoma develops from uncommitted progenitors. However, the precise mechanism whereby FUS-DDIT3 contributes to the differentiation arrest remains to be elucidated.

Methodology/Principal Findings

Here we have characterized the adipocyte regulatory protein network in liposarcomas of FUS-DITT3 transgenic mice and showed that PPARγ2 and C/EBPα expression was altered. Consistent with in vivo data, FUS-DDIT3 MEFs and human liposarcoma cell lines showed a similar downregulation of both PPARγ2 and C/EBPα expression. Complementation studies with PPARγ but not C/EBPα rescued the differentiation block in committed adipocytic precursors expressing FUS-DDIT3. Our results further show that FUS-DDIT3 interferes with the control of initiation of translation by upregulation of the eukaryotic translation initiation factors eIF2 and eIF4E both in FUS-DDIT3 mice and human liposarcomas cell lines, explaining the shift towards the truncated p30 isoform of C/EBPα in liposarcomas. Suppression of the FUS-DDIT3 transgene did rescue this adipocyte differentiation block. Moreover, eIF4E was also strongly upregulated in normal adipose tissue of FUS-DDIT3 transgenic mice, suggesting that overexpression of eIF4E may be a primary event in the initiation of liposarcomas. Reporter assays showed FUS-DDIT3 is involved in the upregulation of eIF4E in liposarcomas and that both domains of the fusion protein are required for affecting eIF4E expression.

Conclusions/Significance

Taken together, this study provides evidence of the molecular mechanisms involve in the disruption of normal adipocyte differentiation program in liposarcoma harbouring the chimeric gene FUS-DDIT3.  相似文献   

7.
8.
The eukaryotic translation initiation factor 4E (eIF4E) (the cap-binding protein) is involved in natural resistance against several potyviruses in plants. In lettuce, the recessive resistance genes mo11 and mo12 against Lettuce mosaic virus (LMV) are alleles coding for forms of eIF4E unable, or less effective, to support virus accumulation. A recombinant LMV expressing the eIF4E of a susceptible lettuce variety from its genome was able to produce symptoms in mo11 or mo12 varieties. In order to identify the eIF4E amino acid residues necessary for viral infection, we constructed recombinant LMV expressing eIF4E with point mutations affecting various amino acids and compared the abilities of these eIF4E mutants to complement LMV infection in resistant plants. Three types of mutations were produced in order to affect different biochemical functions of eIF4E: cap binding, eIF4G binding, and putative interaction with other virus or host proteins. Several mutations severely reduced the ability of eIF4E to complement LMV accumulation in a resistant host and impeded essential eIF4E functions in yeast. However, the ability of eIF4E to bind a cap analogue or to fully interact with eIF4G appeared unlinked to LMV infection. In addition to providing a functional mutational map of a plant eIF4E, this suggests that the role of eIF4E in the LMV cycle might be distinct from its physiological function in cellular mRNA translation.  相似文献   

9.
In recent years, biotechnology has permitted regulation of the expression of endogenous plant genes to improve agronomlcally important traits. Genetic modification of crops has benefited from emerging knowledge of new genes, especially genes that exhibit novel functions, one of which is eukaryotlc initiation factor 4E (eIF4E). eIF4E Is one of the most important translation initiation factors Involved in eukaryotic initiation. Recent research has demonstrated that virus resistance mediated by eIF4E and Its isoform elf (Iso)4E occurs in several plant-virus interactions, thus indicating a potential new role for eIF4E/elF(Iso)4E In resistance strategies against plant viruses. In this review, we briefly describe eIF4E activity In plant translation, its potential role, and functions of the eIF4E subfamily In plant-virus interactions. Other initiation factors such as elF4G could also play a role In plant resistance against viruses. Finally, the potential for developing eIF4E-mediated resistance to plant viruses in the future Is discussed. Future research should focus on elucidation of the resistance mechanism and spectrum mediated by eIF4E. Knowledge of a particu- lar plant-virus interaction will help to deepen our understanding of eIF4E and other eukaryotic Initiation factors, and their involvement in virus disease control.  相似文献   

10.
Resistance to potyviruses in plants has been largely provided by the selection of natural variant alleles of eukaryotic translation initiation factors (eIF) 4E in many crops. However, the sources of such variability for breeding can be limited for certain crop species, while new virus isolates continue to emerge. Different methods of mutagenesis have been applied to inactivate the eIF4E genes to generate virus resistance, but with limited success due to the physiological importance of translation factors and their redundancy. Here, we employed genome editing approaches at the base level to induce non-synonymous mutations in the eIF4E1 gene and create genetic diversity in cherry tomato (Solanum lycopersicum var. cerasiforme). We sequentially edited the genomic sequences coding for two regions of eIF4E1 protein, located around the cap-binding pocket and known to be important for susceptibility to potyviruses. We show that the editing of only one of the two regions, by gene knock-in and base editing, respectively, is not sufficient to provide resistance. However, combining amino acid mutations in both regions resulted in resistance to multiple potyviruses without affecting the functionality in translation initiation. Meanwhile, we report that extensive base editing in exonic region can alter RNA splicing pattern, resulting in gene knockout. Altogether our work demonstrates that precision editing allows to design plant factors based on the knowledge on evolutionarily selected alleles and enlarge the gene pool to potentially provide advantageous phenotypes such as pathogen resistance.  相似文献   

11.
12.
Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) technology. This powerful tool allows substantial improvement in plant traits in addition to those provided by classical breeding. Here, we demonstrate the development of virus resistance in cucumber (Cucumis sativus L.) using Cas9/subgenomic RNA (sgRNA) technology to disrupt the function of the recessive eIF4E (eukaryotic translation initiation factor 4E) gene. Cas9/sgRNA constructs were targeted to the N′ and C′ termini of the eIF4E gene. Small deletions and single nucleotide polymorphisms (SNPs) were observed in the eIF4E gene targeted sites of transformed T1 generation cucumber plants, but not in putative off‐target sites. Non‐transgenic heterozygous eif4e mutant plants were selected for the production of non‐transgenic homozygous T3 generation plants. Homozygous T3 progeny following Cas9/sgRNA that had been targeted to both eif4e sites exhibited immunity to Cucumber vein yellowing virus (Ipomovirus) infection and resistance to the potyviruses Zucchini yellow mosaic virus and Papaya ring spot mosaic virus‐W. In contrast, heterozygous mutant and non‐mutant plants were highly susceptible to these viruses. For the first time, virus resistance has been developed in cucumber, non‐transgenically, not visibly affecting plant development and without long‐term backcrossing, via a new technology that can be expected to be applicable to a wide range of crop plants.  相似文献   

13.

Background

Mutations in several subunits of eukaryotic translation initiation factor 3 (eIF3) cause male transmission defects in Arabidopsis thaliana. To identify the stage of pollen development at which eIF3 becomes essential it is desirable to examine viable pollen and distinguish mutant from wild type. To accomplish this we have developed a broadly applicable method to track mutant alleles that are not already tagged by a visible marker gene through the male lineage of Arabidopsis.

Methodology/Principal Findings

Fluorescence tagged lines (FTLs) harbor a transgenic fluorescent protein gene (XFP) expressed by the pollen-specific LAT52 promoter at a defined chromosomal position. In the existing collection of FTLs there are enough XFP marker genes to track nearly every nuclear gene by virtue of its genetic linkage to a transgenic marker gene. Using FTLs in a quartet mutant, which yields mature pollen tetrads, we determined that the pollen transmission defect of the eif3h-1 allele is due to a combination of reduced pollen germination and reduced pollen tube elongation. We also detected reduced pollen germination for eif3e. However, neither eif3h nor eif3e, unlike other known gametophytic mutations, measurably disrupted the early stages of pollen maturation.

Conclusion/Significance

eIF3h and eIF3e both become essential during pollen germination, a stage of vigorous translation of newly transcribed mRNAs. These data delimit the end of the developmental window during which paternal rescue is still possible. Moreover, the FTL collection of mapped fluorescent protein transgenes represents an attractive resource for elucidating the pollen development phenotypes of any fine-mapped mutation in Arabidopsis.  相似文献   

14.
The translation initiation factor 4E (eIF4E) has been implicated in naturally occurring resistance to Potato virus Y (PVY) determined by the pvr2 locus in pepper (Capsicum annuum). Here, the molecular basis of the recessive resistance to PVY and Tobacco etch virus (TEV) controlled by the pot-1 locus in tomato (Lycopersicon esculentum; now Solanum lycopersicum) was investigated. On the basis of genetic mapping data that indicated that pot-1 and pvr2 are located in syntenic regions of the tomato and pepper genomes, the possible involvement of eIF4E in pot-1-mediated resistance was assessed. Genetic mapping of members of the eIF4E multigenic family in tomato introgression lines revealed that an eIF4E locus indeed maps in the same genomic region as pot-1. By comparing eIF4E coding sequences between resistant and susceptible Lycopersicon genotypes, a small number of polymorphisms that co-segregate with the pot-1 locus were identified, suggesting that this gene could be involved in resistance to potyviruses. Functional complementation experiments using Potato virus X-mediated transient expression of eIF4E from a susceptible genotype in a resistant pepper genotype confirmed that a small number of amino acid substitutions in the eIF4E protein indeed account for resistance/susceptibility to both the PVY and TEV, and consequently that pot-1 and pvr2 are orthologues. Taken together, these results support the role of this eIF4E gene as a key component of recessive resistance to potyviruses, and validate the comparative genomic approach for the molecular characterization of recessive resistance genes.  相似文献   

15.
QTLs for partial resistance to Rice yellow mottle virus (RYMV) in rice were mapped in two populations of doubled-haploid lines (DHLs) and recombinant inbred lines (RILs) derived from the same cross but evaluated for different resistance criteria (virus content and symptom severity). An integrative map was used to compare the two genetic maps and a global analysis of both populations was performed. Most of the QTLs previously identified in DHL population were confirmed with increased significance and precision. As many recent studies evidenced the role of eukaryotic translation initiation factors (eIF) of 4E and 4G families in plant susceptibility to RNA viruses, we checked if these genes co-locate with QTLs of resistance to RYMV. Their systematic in silico identification was carried out on the rice genome and their physical locations were compared to QTL positions on the integrative map. In order to confirm or not the co-locations observed, the analysis was completed by evaluation of near-isogenic lines, QTL fine mapping and sequencing of candidate genes. Three members from eIF4G family could be retained as reliable candidates whereas eIF4E genes, commonly found to govern resistances in other plant/virus interactions, were discarded. Together with the recent identification of an eIF(iso)4G as a major resistance gene, data suggests an important role of genes from eIF4G family in rice resistance to RYMV but does not exclude the contribution of factors different from the translation initiation complex. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.

Background

Eukaryotic initiation factor 4A (eIF4A) plays a key role in the process of protein translation initiation by facilitating the melting of the 5′ proximal secondary structure of eukaryotic mRNA for ribosomal subunit attachment. It was experimentally postulated that the closed conformation of the eIF4A protein bound by the ATP and RNA substrates is coupled to RNA duplex unwinding to promote protein translation initiation, rather than an open conformation in the absence of ATP and RNA substrates. However, the allosteric process of eIF4A from the open to closed state induced by the ATP and RNA substrates are not yet fully understood.

Methodology

In the present work, we constructed a series of diplex and ternary models of the eIF4A protein bound by the ATP and RNA substrates to carry out molecular dynamics simulations, free energy calculations and conformation analysis and explore the allosteric properties of eIF4A.

Results

The results showed that the eIF4A protein completes the conformational transition from the open to closed state via two allosteric processes of ATP binding followed by RNA and vice versa. Based on cooperative allosteric network analysis, the ATP binding to the eIF4A protein mainly caused the relative rotation of two domains, while the RNA binding caused the proximity of two domains via the migration of RNA bases in the presence of ATP. The cooperative binding of ATP and RNA for the eIF4A protein plays a key role in the allosteric transition.  相似文献   

17.
Zhang  Yu-Yang  Qi  Mei-Fang  Sun  Jin  Zhang  Xiao-Hui  Shi  He-Li  Li  Han-Xia  Ye  Zhi-Biao 《Plant Molecular Biology Reporter》2009,27(3):400-406
The eukaryotic translation initiation factor 4E (eIF4E) and its isoform, eIF(iso)4E, play important roles in protein translation and recently reported to be involved in plant–virus interactions. A cDNA encoding the tomato eIF(iso)4E was cloned based on a tentative consensus (TC170275) in TIGR (), and was designated as SleIF(iso)4E, with an open reading frame of 603 nucleotides encoding a protein of 200 amino acids. The calculated molecular weight of the SleIF(iso)4E protein was 22.85 kD, and the theoretical isoelectric point was 5.76. The amino acid sequence of SleIF(iso)4E showed 66–91% identity with eIF(iso)4Es in pepper, tobacco, pea and maize, and 44–51% identity with eIF4Es from other plants. The phylogenetic relationship and tertiary structure comparisons indicate that SleIF(iso)4E share high homology and strict conserved regions with other members of the eIF4E family, a characteristic of all members of this family. Semi-quantitative RT-PCR showed varying expression levels of SleIF(iso)4E in different tissues. By comparing eIF(iso)4E coding sequences between resistant and susceptible tomato genotypes, correlation between sequence variations and virus resistance was identified. These findings provide good grounds for future research on the role of SleIF(iso)4E in translation initiation and plant–virus interactions. Sequence data of SleIF(iso)4E from this article have been deposited at GenBank under accession number EU119958.  相似文献   

18.
Eukaryotic initiation factor (eIF) 4F binding to mRNA is the first committed step in cap-dependent protein synthesis. Barley yellow dwarf virus (BYDV) employs a cap-independent mechanism of translation initiation that is mediated by a structural BYDV translation element (BTE) located in the 3′-UTR of its mRNA. eIF4F bound the BTE and a translationally inactive mutant with high affinity, thus questioning the role of eIF4F in translation of BYDV. To examine the effects of eIF4F in BYDV translation initiation, BTE mutants with widely different in vitro translation efficiencies ranging from 5 to 164% compared with WT were studied. Using fluorescence anisotropy to obtain quantitative data, we show 1) the equilibrium binding affinity (complex stability) correlated well with translation efficiency, whereas the “on” rate of binding did not; 2) other unidentified proteins or small molecules in wheat germ extract prevented eIF4F binding to mutant BTE but not WT BTE; 3) BTE mutant-eIF4F interactions were found to be both enthalpically and entropically favorable with an enthalpic contribution of 52–90% to ΔG° at 25 °C, suggesting that hydrogen bonding contributes to stability; and 4) in contrast to cap-dependent and tobacco etch virus internal ribosome entry site interaction with eIF4F, poly(A)-binding protein did not increase eIF4F binding. Further, the eIF4F bound to the 3′ BTE with higher affinity than for either m7G cap or tobacco etch virus internal ribosome entry site, suggesting that the 3′ BTE may play a role in sequestering host cell initiation factors and possibly regulating the switch from replication to translation.  相似文献   

19.
20.
Eukaryotic translation initiation factors (eIFs) play a central role in potyviral infection. Accordingly, mutations in the gene encoding eIF4E have been identified as a source of recessive resistance in several plant species. In common bean, Phaseolus vulgaris , four recessive genes, bc-1 , bc-2 , bc-3 and bc-u , have been proposed to control resistance to the potyviruses Bean common mosaic virus (BCMV) and Bean common mosaic necrosis virus . In order to identify molecular entities for these genes, we cloned and sequenced P. vulgaris homologues of genes encoding the eIF proteins eIF4E, eIF(iso)4E and nCBP. Bean genotypes reported to carry bc-3 resistance were found specifically to carry non-silent mutations at codons 53, 65, 76 and 111 in eIF4E . This set of mutations closely resembled a pattern of eIF4E mutations determining potyvirus resistance in other plant species. The segregation of BCMV resistance and eIF4E genotype was subsequently analysed in an F2 population derived from the P. vulgaris all-susceptible genotype and a genotype carrying bc-3 . F2 plants homozygous for the eIF4E mutant allele were found to display at least the same level of resistance to BCMV as the parental resistant genotype. At 6 weeks after inoculation, all F2 plants found to be BCMV negative by enzyme-linked immunosorbent assay were found to be homozygous for the mutant eIF4E allele. In F3 plants homozygous for the mutated allele, virus resistance was subsequently found to be stably maintained. In conclusion, allelic eIF4E appears to be associated with a major component of potyvirus resistance present in bc-3 genotypes of bean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号