首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
3.
4.
5.
The activation of cancer-associated fibroblasts (CAFs) is a key event in tumor progression, and alternative extracellular matrix (ECM) proteins derived from CAFs induce ECM remodeling and cancer cell invasion. Here we found that miR-200 s, which are generally downregulated in activated CAFs in breast cancer tissues and in normal fibroblasts (NFs) activated by breast cancer cells, are direct mediators of NF reprogramming into CAFs and of ECM remodeling. NFs with downregulated miR-200 s displayed the traits of activated CAFs, including accelerated migration and invasion. Ectopic expression of miR-200 s in CAFs at least partially restored the phenotypes of NFs. CAF activation may be governed by the targets of miR-200 s, Fli-1 and TCF12, which are responsible for cell development and differentiation; Fli-1 and TCF12 were obviously elevated in CAFs. Furthermore, miR-200 s and their targets influenced collagen contraction by CAFs. The upregulation of fibronectin and lysyl oxidase directly by miR-200 or indirectly through Fli-1 or TCF12 contributed to ECM remodeling, triggering the invasion and metastasis of breast cancer cells both in vitro and vivo. Thus, these data provide important and novel insights into breast CAF activation and ECM remodeling, which trigger tumor cell invasion.It has been well established that a reactive microenvironment induces cancer cells to proliferate, migrate and become invasive. Cancer-associated fibroblasts (CAFs) are thought to be the main players among the cohabitating stromal cell types, and they favor tumor progression. The cancer-promoting ability of CAFs is dependent on their activation; however, this process has not been fully explored.The extracellular matrix (ECM) is a complex mixture of structural proteins, proteoglycans and glycoproteins that exerts biochemical and mechanical effects on cells. An increasing body of evidence suggests that ECM remodeling has an important role in cell morphogenesis,1 survival,2 migration and invasion.3 CAFs can deposit certain ECM components and facilitate the directional migration and invasion of carcinoma cells through mechanotransduction-triggered architectural remodeling of the microenvironment.4, 5 However, the mechanism by which activated CAFs stimulate the dysregulation of ECM proteins, thus influencing cancer cell invasion, is not well understood.Previously, our team identified a set of dysregulated miRNAs in breast CAFs using a miRNA microarray, and it was found that the levels of miR-200 family members were noticeably suppressed,6 indicating their importance in CAF function. Whether these downregulated miR-200 s in the stroma drive the activated phenotype of CAFs as well as aberrant ECM protein expression to promote cancer cell invasion is an intriguing question.The miR-200 s family can be functionally divided into cluster 1 (miR-200a and miR-141) and cluster 2 (miR-200b and miR-200c) according to their ''seed'' region for binding to mRNA. The effects of the miR-200 s on fibrosis, epithelial cell characteristics, cell differentiation and tumor progression have been discussed. For example, miR-200b is essential for the regulation of renal fibrogenesis7 and the intestinal fibrosis of Crohn''s disease.8 In aggressive carcinoma cells, the maintenance of EMT,9 tumor growth,10 migration,11 invasion,9 anoikis resistance12 and poor response to chemotherapy13 are enhanced by the reduced expression of miR-200 s. Furthermore, miR-200 s are upregulated during mammary differentiation14 but are downregulated in breast cancer stem cells,15 and these molecules support the maintenance of pluripotent stem cells.16 These previous reports indicate that miR-200 s may have a significant role in CAF activation.In the current work, we first determined that miR-200 s were commonly downregulated in breast CAFs, and this result was also demonstrated in normal fibroblasts (NFs) co-cultured with breast cancer cells. miR-200 s induced the conversion of NFs into CAFs by targeting Fli-1 and TCF12. Re-expression of miR-200 s in CAFs attenuated the activation-associated CAF phenotype. In particular, miR-200 s and their targets all contributed to CAF-associated ECM remodeling through two key ECM remodeling proteins, fibronectin (FN) and lysyl oxidase, further fueling cancer cell invasion and metastasis. Therefore, our data provide new information regarding the role of CAF activation and function in the promotion of cancer cell invasion through ECM remodeling and provide a considerable amount of information that will be useful for the development of stromal therapeutic targets.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
MicroRNA miR-155 is expressed at elevated levels in human cancers including cancers of the lung, breast, colon, and a subset of lymphoid malignancies. In B cells, miR-155 is induced by the oncogenic latency gene expression program of the human herpesvirus Epstein-Barr virus (EBV). Two other oncogenic herpesviruses, Kaposi''s sarcoma-associated herpesvirus and Marek''s disease virus, encode functional homologues of miR-155, suggesting a role for this microRNA in the biology and pathogenesis of these viruses. Bone morphogenetic protein (BMP) signaling is involved in an array of cellular processes, including differentiation, growth inhibition, and senescence, through context-dependent interactions with multiple signaling pathways. Alteration of this pathway contributes to a number of disease states including cancer. Here, we show that miR-155 targets the 3′ untranslated region of multiple components of the BMP signaling cascade, including SMAD1, SMAD5, HIVEP2, CEBPB, RUNX2, and MYO10. Targeting of these mediators results in the inhibition of BMP2-, BMP6-, and BMP7-induced ID3 expression as well as BMP-mediated EBV reactivation in the EBV-positive B-cell line, Mutu I. Further, miR-155 inhibits SMAD1 and SMAD5 expression in the lung epithelial cell line A549, it inhibits BMP-mediated induction of the cyclin-dependent kinase inhibitor p21, and it reverses BMP-mediated cell growth inhibition. These results suggest a role for miR-155 in controlling BMP-mediated cellular processes, in regulating BMP-induced EBV reactivation, and in the inhibition of antitumor effects of BMP signaling in normal and virus-infected cells.Despite the limited genetic content of microRNAs, their pervasive role in controlling normal and pathology-associated cellular processes has become firmly established in recent years. The importance of microRNA dysregulation in cancer is well appreciated, and a number of oncomirs and tumor suppressor microRNAs have been identified (15). As a member of the oncomir class of microRNAs, miR-155 is implicated in lymphomagenesis and a wide array of nonlymphoid tumors including breast, colon, and lung (7, 16, 24, 39, 42, 43). Despite strong evidence implicating miR-155 in cancer etiology, the mechanisms through which miR-155 supports the tumor phenotype are unclear, possibly due to limited knowledge of how predicted targets may be involved in the phenotypic properties of cancer. On the other hand, miR-155''s roles in normal immune cell development and the adaptive immune response are much better understood (33, 41). These studies have demonstrated a critical role for miR-155 in immune cell activation and maturation. This evidence and other work (8, 40) have identified critical miR-155 targets whose downregulation is required for these processes.The Epstein-Barr virus (EBV) is a human DNA tumor virus that contributes to lymphoid and epithelial cell malignancies. As a herpesvirus, a unique aspect of the EBV infection cycle is the ability to exist in either a lytic replicative state or in a latent state in which no virus is produced. Depending in part on cell background, EBV utilizes multiple forms of latency gene expression programs. True latency and type I latency are defined by the expression of no protein coding genes or by expression of the episomal replication factor EBNA1 only. Type II latency is defined by the expression of EBNA1 and the latent membrane proteins, LMP1 and/or LMP2, and is the predominant form observed in epithelial tissues. Type III latency refers to expression of the full repertoire of latency genes, which are highly tumorigenic and are capable of growth-transforming naïve resting B cells. While this form of latency is not well tolerated in immunocompetent individuals except during early stages of infection (prior to the development of adaptive immunity to these proteins), type III latency-associated lymphoid malignancies are common in immunocompromised individuals. Expression of type III latency genes in B cells mimics antigen-dependent B-cell activation, and accompanying this activation is a substantial induction of miR-155 expression (17, 20, 23, 29, 44). While it is reasonable to assume that induction of miR-155 by the type III latency program plays a role in EBV-mediated B-cell activation and oncogenesis, little is known regarding the role of miR-155 in the virus life cycle or its tumor-promoting activities.Originally identified as cytokines critically involved in the regulation of osteogenic differentiation, bone morphogenetic proteins (BMPs) are now appreciated as having critical functions in a vast number of developmental processes. Dysregulation of BMP signaling is also implicated in disease states including cancer (1). The canonical signaling pathway stimulated by BMP receptor engagement is the phosphorylation of the SMADs (mothers against decapentaplegic homologs), SMAD1, SMAD5, and SMAD9, which facilitates active transport of these mediators from the cytoplasm to the nucleus, where they bind and activate cellular promoters. While these signaling mediators are considered to have fairly redundant activities, the influence of BMP activation can have widely distinct outcomes on a particular cell depending on cellular context (3, 27). These distinctions arise from the innate low-affinity DNA binding properties of SMADs and the concordant requirement for any of a broad range of cofactors that facilitate high-affinity binding to specific sets of promoters. Using this signaling mechanism, the phenotypic outcome of BMP receptor engagement is controlled by the level of activation of other signaling pathways and SMAD binding cofactors. While activation of BMP signaling appears to contribute to some cancer types, it inhibits other cancer types by promoting growth arrest and differentiation and by inducing senescence (1). In immune cells, BMP signaling has been shown by multiple groups to inhibit lymphocyte activation, maturation, and growth (2, 6, 13, 18, 19, 37). Here, we show that miR-155 inhibits BMP signaling by targeting multiple factors in the BMP signal transduction cascade. This function may be important during immune cell activation by preventing BMP from impeding this process, it may be important for the survival of EBV type III latency associated tumors by preventing BMP-mediated viral reactivation and cell death, and it may be relevant to other cancer types by blocking growth arrest properties of BMPs.  相似文献   

14.
15.
16.
17.
18.
19.
Endothelial cell (EC) migration, cell-cell adhesion, and the formation of branching point structures are considered hallmarks of angiogenesis; however, the underlying mechanisms of these processes are not well understood. Lipid phosphate phosphatase 3 (LPP3) is a recently described p120-catenin-associated integrin ligand localized in adherens junctions (AJs) of ECs. Here, we tested the hypothesis that LPP3 stimulates β-catenin/lymphoid enhancer binding factor 1 (β-catenin/LEF-1) to induce EC migration and formation of branching point structures. In subconfluent ECs, LPP3 induced expression of fibronectin via β-catenin/LEF-1 signaling in a phosphatase and tensin homologue (PTEN)-dependent manner. In confluent ECs, depletion of p120-catenin restored LPP3-mediated β-catenin/LEF-1 signaling. Depletion of LPP3 resulted in destabilization of β-catenin, which in turn reduced fibronectin synthesis and deposition, which resulted in inhibition of EC migration. Accordingly, reexpression of β-catenin but not p120-catenin in LPP3-depleted ECs restored de novo synthesis of fibronectin, which mediated EC migration and formation of branching point structures. In confluent ECs, however, a fraction of p120-catenin associated and colocalized with LPP3 at the plasma membrane, via the C-terminal cytoplasmic domain, thereby limiting the ability of LPP3 to stimulate β-catenin/LEF-1 signaling. Thus, our study identified a key role for LPP3 in orchestrating PTEN-mediated β-catenin/LEF-1 signaling in EC migration, cell-cell adhesion, and formation of branching point structures.Angiogenesis, the formation of new blood vessels, involves several well-coordinated cellular processes, including endothelial cell (EC) migration, synthesis and deposition of extracellular matrix proteins, such as fibronectin, cell-cell adhesion, and formation of branching point structures (1-3, 19, 33); however, less is known about the underlying mechanisms of these processes (6, 8, 12, 14, 16, 17). For example, adherens junctions (AJs), which mediate cell-cell adhesion between ECs, may be involved in limiting the extent of cell migration (2, 14, 38, 40). VE-cadherin, a protein found in AJs, is a single-pass transmembrane polypeptide responsible for calcium-dependent homophilic interactions through its extracellular domains (2, 38, 40). The VE-cadherin cytoplasmic domain interacts with the Armadillo domain-containing proteins, β-catenin, γ-catenin (plakoglobin), and p120-catenin (p120ctn) (2, 15, 38, 40, 43). Genetic and biochemical evidence documents a crucial role of β-catenin in regulating cell adhesion as well as proliferation secondary to the central position of β-catenin in the Wnt signaling pathway (13, 16, 25, 31, 44). In addition, the juxtamembrane protein p120ctn regulates AJ stability via binding to VE-cadherin (2, 7, 9, 15, 21, 28, 32, 43). The absence of regulation or inappropriate regulation of β-catenin and VE-cadherin functions is linked to cardiovascular disease and tumor progression (2, 6).We previously identified lipid phosphate phosphatase 3 (LPP3), also known as phosphatidic acid phosphatase 2b (PAP2b), in a functional assay of angiogenesis (18, 19, 41, 42). LPP3 not only exhibits lipid phosphatase activity but also functions as a cell-associated integrin ligand (18, 19, 35, 41, 42). The known LPPs (LPP1, LPP2, and LPP3) (20-23) are six transmembrane domain-containing plasma membrane-bound enzymes that dephosphorylate sphingosine-1-phosphate (S1P) and its structural homologues, and thus, these phosphatases generate lipid mediators (4, 5, 23, 35, 39). All LPPs, which contain a single N-glycosylation site and a putative lipid phosphatase motif, are situated such that their N and C termini are within the cell (4, 5, 22, 23, 35, 39). Only the LPP3 isoform contains an Arg-Gly-Asp (RGD) sequence in the second extracellular loop, and this RGD sequence enables LPP3 to bind integrins (18, 19, 22). Transfection experiments with green fluorescent protein (GFP)-tagged LPP1 and LPP3 showed that LPP1 is apically sorted, whereas LPP3 colocalized with E-cadherin at cell-cell contact sites with other Madin-Darby canine kidney (MDCK) cells (22). Mutagenesis and domain swapping experiments established that LPP1 contains an apical targeting signal sequence (FDKTRL) in its N-terminal segment. In contrast, LPP3 contains a dityrosine (109Y/110Y) basolateral sorting motif (22). Interestingly, conventional deletion of Lpp3 is embryonic lethal, since the Lpp3 gene plays a critical role in extraembryonic vasculogenesis independent of its lipid phosphatase activity (11). In addition, an LPP3-neutralizing antibody was shown to prevent cell-cell interactions (19, 42) and angiogenesis (42). Here, we addressed the hypothesis that LPP3 plays a key role in EC migration, cell-cell adhesion, and formation of branching point structures by stimulating β-catenin/lymphoid enhancer binding factor 1 (β-catenin/LEF-1) signaling.  相似文献   

20.
The lipid phosphatase PTEN functions as a tumor suppressor by dephosphorylating the D3 position of phosphoinositide-3,4,5-trisphosphate, thereby negatively regulating the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. In mammalian cells, PTEN exists either as a monomer or as a part of a >600-kDa complex (the PTEN-associated complex [PAC]). Previous studies suggest that the antagonism of PI3K/AKT signaling by PTEN may be mediated by a nonphosphorylated form of the protein resident within the multiprotein complex. Here we show that PTEN associates with p85, the regulatory subunit of PI3K. Using newly generated antibodies, we demonstrate that this PTEN-p85 association involves the unphosphorylated form of PTEN engaged within the PAC and also includes the p110β isoform of PI3K. The PTEN-p85 association is enhanced by trastuzumab treatment and linked to a decline in AKT phosphorylation in some ERBB2-amplified breast cancer cell lines. Together, these results suggest that integration of p85 into the PAC may provide a novel means of downregulating the PI3K/AKT pathway.The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway regulates glucose/nutrient homeostasis and cell survival and plays a central role in both normal metabolism and cancer. The PTEN tumor suppressor gene (29, 30, 54) negatively regulates the PI3K/AKT pathway by dephosphorylating the D3 hydroxyl subunit of phosphoinositide-3,4,5-trisphosphate, a key membrane phosphatidylinositol generated by PI3K (34). PTEN undergoes genetic or epigenetic inactivation in many malignancies, including glioblastoma, melanoma, and endometrial, prostate, and breast cancers, among others (6, 13, 22, 23, 47, 49-51, 55, 68). Similarly, germ line mutations of PTEN are associated with the development of hamartomatous neoplasias such as Cowden disease and Bannayan-Zonana syndrome (17, 21, 41).The tumor suppressor function of PTEN undergoes dynamic regulation involving both C-terminal phosphorylation and protein-protein interactions. Phosphorylation of serine and threonine residues at the PTEN C-terminal tail, mediated by kinases such as CK2 and glycogen synthase kinase 3β, alters its conformational structure and association with PDZ domain-containing proteins and attenuates PTEN enzymatic activity (1, 11, 20, 32, 45, 61-63, 66, 67, 71). Conversely, PTEN function is promoted in large part through its stabilization in unphosphorylated form by incorporation into a high-molecular-weight protein complex (the PTEN-associated complex [PAC]) (66). We first demonstrated the existence of the PAC through gel filtration studies of rat liver extracts, which identified PTEN within a high-molecular-mass peak (>600 kDa), as well as a low-molecular-mass peak (40 to 100 kDa) in which PTEN is monomeric and phosphorylated (66). Subsequently, several PDZ domain-containing proteins were shown to interact with PTEN, including MAGI-1b, MAGI-2, MAGI-3, ghDLG, hMAST205, MSP58/MCRS1, NHERF1, and NHERF2, which mediate indirect binding with platelet-derived growth factor (PDGF) receptor β (25, 36, 42, 57, 66). More recently, LKB1, a serine/threonine kinase tumor suppressor (7), was also found to interact with and phosphorylate PTEN in vitro (36). In aggregate, these data suggest that PTEN functional output is controlled by a complex interplay of protein interactions and regulation of C-terminal phosphorylation.Beyond these interactions, there is also evidence to support additional regulatory mechanisms by which the tumor suppressor function of PTEN is mediated. The herpesvirus-associated ubiquitin-specific protease was shown to interact directly with PTEN and promote its nuclear entry (53). Both ubiquitination and relocalization into the nucleus constitute important PTEN regulatory mechanisms (53, 64). In many tumors, PTEN nuclear exclusion has been associated with poor cancer prognosis and more aggressive cancer development (15, 44, 56). Moreover, successful treatment of acute promyelocytic leukemia was shown to be associated with an increase in monoubiquitinylation and relocation of PTEN into the nucleus (53).Like PTEN, the p85 regulatory subunit of PI3K serves as a prominent modulator of PI3K/AKT signaling. p85, which exists in three isoforms (α, β, and γ), targets the catalytic (110-kDa) PI3K subunit to the membrane, which brings it into proximity with membrane-associated phosphatidylinositol lipids. In the steady state, p85 forms a tight association with the catalytic PI3K subunit, usually p110α or p110β in nonhematopoietic cells, with p110δ predominating in leukocytes (19). Consistent with this notion, p85 and p110 exist in equimolar ratios in a wide variety of mammalian cell lines and tissues (19), although some studies have suggested a role for free p85 in cell signaling (33, 65).Several recent lines of evidence have begun to support a possible regulatory relationship between PTEN and p85 (reviewed in references 3 and 53). For example, liver-specific deletion of PIK3R1, which encodes the p85α regulatory subunit, reduces both the activation of PI3K and PTEN enzymatic activity in this context. As a result, p85α-deficient hepatic cells express elevated levels of phosphoinositide trisphosphate and exhibit prolonged AKT activation (60). In addition, both PTEN and p85 are regulated by small GTPase proteins such as RhoA, but PTEN coimmunoprecipitates with the RhoA effector Rock only in the presence of PI3K (18, 31, 37). Although only correlative in nature, these findings may suggest a possible role for PTEN in p85 regulation or vice versa, in addition to its known function as a direct antagonist of the PI3K/AKT pathway (3, 9, 52, 57, 60).In the present study, we demonstrate an endogenous association between p85 and PTEN. Using newly generated antibodies that selectively recognize the PTEN C-terminal tail in its unphosphorylated form, we demonstrate that this PTEN-p85 association preferentially involves the unphosphorylated form of PTEN. The specificity of this interaction was confirmed using multiple antibodies and through studies of both human cancer cells and murine embryonic fibroblasts (MEFs) deficient for specific p85 subunits. This association, which also engages p110β, is enhanced by trastuzumab treatment and correlates with diminished AKT phosphorylation. These results support a functional role for the PTEN-p85 association that may have important biological and therapeutic implications for PI3K/AKT pathway regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号