首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mucus hypersecretion and persistent airway inflammation are common features of various airway diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. One key question is: does the associated airway inflammation in these diseases affect mucus production? If so, what is the underlying mechanism? It appears that increased mucus secretion results from increased mucin gene expression and is also frequently accompanied by an increased number of mucous cells (goblet cell hyperplasia/metaplasia) in the airway epithelium. Many studies on mucin gene expression have been directed toward Th2 cytokines such as interleukin (IL)-4, IL-9, and IL-13 because of their known pathophysiological role in allergic airway diseases such as asthma. However, the effect of these cytokines has not been definitely linked to their direct interaction with airway epithelial cells. In our study, we treated highly differentiated cultures of primary human tracheobronchial epithelial (TBE) cells with a panel of cytokines (interleukin-1alpha, 1beta, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, and tumor necrosis factor alpha). We found that IL-6 and IL-17 could stimulate the mucin genes, MUC5B and MUC5AC. The Th2 cytokines IL-4, IL-9, and IL-13 did not stimulate MUC5AC or MUC5B in our experiments. A similar stimulation of MUC5B/Muc5b expression by IL-6 and IL-17 was demonstrated in primary monkey and mouse TBE cells. Further investigation of MUC5B expression demonstrated that IL-17's effect is at least partly mediated through IL-6 by a JAK2-dependent autocrine/paracrine loop. Finally, evidence is presented to show that both IL-6 and IL-17 mediate MUC5B expression through the ERK signaling pathway.  相似文献   

3.
Dendritic cells play an important role in determining whether naïve T cells mature into either Th1 or Th2 cells. We determined whether heat-shock protein X (HspX) purified from Mycobacterium tuberculosis regulates the Th1/Th2 immune response in an ovalbumin (OVA)-induced murine model of asthma. HspX increased interferon-gamma, IL-17A, -12 and transforming growth factor (TGF)-β production and T-bet gene expression but reduced IL-13 production and GATA-3 gene expression. HspX also inhibited asthmatic reactions as demonstrated by an increase in the number of eosinophils in bronchoalveolar lavage fluid, inflammatory cell infiltration in lung tissues, airway luminal narrowing, and airway hyper-responsiveness. Furthermore, HspX enhanced OVA-induced decrease of regulatory T cells in the mediastinal lymph nodes. This study provides evidence that HspX plays critical roles in the amelioration of asthmatic inflammation in mice. These findings provide new insights into the immunotherapeutic role of HspX with respect to its effects on a murine model of asthma. BMB Reports 2015; 48(3): 178-183]  相似文献   

4.
Allergic asthma is an inflammatory disease of the airways characterized by eosinophilic inflammation and airway hyper-reactivity. Cytokines and chemokines specific for Th2-type inflammation predominate in asthma and in animal models of this disease. The role of Th1-type inflammatory mediators in asthma remains controversial. IFN-gamma-inducible protein 10 (IP-10; CXCL10) is an IFN-gamma-inducible chemokine that preferentially attracts activated Th1 lymphocytes. IP-10 is up-regulated in the airways of asthmatics, but its function in asthma is unclear. To investigate the role of IP-10 in allergic airway disease, we examined the expression of IP-10 in a murine model of asthma and the effects of overexpression and deletion of IP-10 in this model using IP-10-transgenic and IP-10-deficient mice. Our experiments demonstrate that IP-10 is up-regulated in the lung after allergen challenge. Mice that overexpress IP-10 in the lung exhibited significantly increased airway hyperreactivity, eosinophilia, IL-4 levels, and CD8(+) lymphocyte recruitment compared with wild-type controls. In addition, there was an increase in the percentage of IL-4-secreting T lymphocytes in the lungs of IP-10-transgenic mice. In contrast, mice deficient in IP-10 demonstrated the opposite results compared with wild-type controls, with a significant reduction in these measures of Th2-type allergic airway inflammation. Our results demonstrate that IP-10, a Th1-type chemokine, is up-regulated in allergic pulmonary inflammation and that this contributes to the airway hyperreactivity and Th2-type inflammation seen in this model of asthma.  相似文献   

5.
We previously demonstrated inhibition of ovalbumin-induced allergic airway hyper-responsiveness in the mouse using ES-62, a phosphorylcholine-containing glycoprotein secreted by the filarial nematode, Acanthocheilonema viteae. This inhibition correlated with ES-62-induced mast cell desensitisation, although the degree to which this reflected direct targeting of mast cells remained unclear as suppression of the Th2 phenotype of the inflammatory response, as measured by eosinophilia and IL-4 levels in the lungs, was also observed. We now show that inhibition of the lung Th2 phenotype is reflected in ex vivo analyses of draining lymph node recall cultures and accompanied by a decrease in the serum levels of total and ovalbumin-specific IgE. Moreover, ES-62 also suppresses the lung infiltration by neutrophils that is associated with severe asthma and is generally refractory to conventional anti-inflammatory therapies, including steroids. Protection against Th2-associated airway inflammation does not reflect induction of regulatory T cell responses (there is no increased IL-10 or Foxp3 expression) but rather a switch in polarisation towards increased Tbet expression and IFNγ production. This ES-62-driven switch in the Th1/Th2 balance is accompanied by decreased IL-17 responses, a finding in line with reports that IFNγ and IL-17 are counter-regulatory. Consistent with ES-62 mediating its effects via IFNγ-mediated suppression of pathogenic Th2/Th17 responses, we found that neutralising anti-IFNγ antibodies blocked protection against airway inflammation in terms of pro-inflammatory cell infiltration, particularly by neutrophils, and lung pathology. Collectively, these studies indicate that ES-62, or more likely small molecule analogues, could have therapeutic potential in asthma, in particular for those subtypes of patients (e.g. smokers, steroid-resistant) who are refractory to current treatments.  相似文献   

6.
Asthma is a chronic inflammatory disorder, previous studies have shown that IL-17A contributes to the development of asthma, and there is a positive correlation between the level of IL-17A and the severity of disease. Here, we constructed recombinant Mycobacterium smegmatis expressing fusion protein Ag85A-IL-17A (rMS-Ag85a-IL-17a) and evaluated whether it could attenuate allergic airway inflammation, and further investigated the underlying mechanism. In this work, the murine model of asthma was established with ovalbumin, and mice were intranasally vaccinated with rMS-Ag85a-IL-17a. Autoantibody of IL-17A in sera was detected, and the airway inflammatory cells infiltration, the local cytokines and chemokines production and the histopathological changes of lung tissue were investigated. We found that the administration of rMS-Ag85a-IL-17a induced the autoantibody of IL-17A in sera. The vaccination of rMS-Ag85a-IL-17a remarkably reduced the infiltration of inflammatory cells and the secretion of mucus in lung tissue and significantly decreased the numbers of the total cells, eosinophils and neutrophils in BALF. Th1 cells count in spleen, Th1 cytokine levels in BALF and supernatant of splenocytes and mediastinal lymph nodes, and T-bet mRNA in lung tissue were significantly increased with rMS-Ag85a-IL-17a administration. Meanwhile, rMS-Ag85a-IL-17a vaccination markedly decreased Th2 cells count, Th2 cytokine and Th17 cytokine levels in BALF and supernatant of splenocytes and mediastinal lymph nodes, and chemokines mRNA expression in lung tissue. These data confirmed that recombinant Mycobacterium smegmatis in vivo could induce autoantibody of IL-17A, which attenuated asthmatic airway inflammation.  相似文献   

7.
Allergic asthma is characterized by infiltration of eosinophils, elevated Th2 cytokine levels, airway hyperresponsiveness, and IgE. In addition to eosinophils, mast cells, and basophils, a variety of cytokines are also involved in the development of allergic asthma. The pivotal role of eosinophils in the progression of the disease has been a subject of controversy. To determine the role of eosinophils in the progression of airway inflammation, we sensitized and challenged BALB/c wild-type (WT) mice and eosinophil-deficient ΔdblGATA mice with ovalbumin (OVA) and analyzed different aspects of inflammation. We observed increased eosinophil levels and a Th2-dominant response in OVA-challenged WT mice. In contrast, eosinophil-deficient ΔdblGATA mice displayed an increased proportion of mast cells and a Th17-biased response following OVA inhalation. Notably, the levels of IL-33, an important cytokine responsible for Th2 immune deviation, were not different between WT and eosinophil-deficient mice. We also demonstrated that mast cells induced Th17-differentiation via IL-33/ST2 stimulation in vitro. These results indicate that eosinophils are not essential for the development of allergic asthma and that mast cells can skew the immune reaction predominantly toward Th17 responses via IL-33 stimulation.  相似文献   

8.
9.
Allergic inflammation in the airway is generally considered a Th2-type immune response. However, Th17-type immune responses also play important roles in this process, especially in the pathogenesis of severe asthma. IL-22 is a Th17-type cytokine and thus might play roles in the development of allergic airway inflammation. There is increasing evidence that IL-22 can act as a proinflammatory or anti-inflammatory cytokine depending on the inflammatory context. However, its role in Ag-induced immune responses is not well understood. This study examined whether IL-22 could suppress allergic airway inflammation and its mechanism of action. BALB/c mice were sensitized and challenged with OVA-Ag to induce airway inflammation. An IL-22-producing plasmid vector was delivered before the systemic sensitization or immediately before the airway challenge. Delivery of the IL-22 gene before sensitization, but not immediately before challenge, suppressed eosinophilic airway inflammation. IL-22 gene delivery suppressed Ag-induced proliferation and overall cytokine production in CD4(+) T cells, indicating that it could suppress Ag-induced T cell priming. Antagonism of IL-22 by IL-22-binding protein abolished IL-22-induced immune suppression, suggesting that IL-22 protein itself played an essential role. IL-22 gene delivery neither increased regulatory T cells nor suppressed dendritic cell functions. The suppression by IL-22 was abolished by deletion of the IL-10 gene or neutralization of the IL-10 protein. Finally, IL-22 gene delivery increased IL-10 production in draining lymph nodes. These findings suggested that IL-22 could have an immunosuppressive effect during the early stage of an immune response. Furthermore, IL-10 plays an important role in the immune suppression by IL-22.  相似文献   

10.
Allergic asthma, an inflammatory disease characterized by the infiltration and activation of various leukocytes, the production of Th2 cytokines and leukotrienes, and atopy, also affects the function of other cell types, causing goblet cell hyperplasia/hypertrophy, increased mucus production/secretion, and airway hyperreactivity. Eosinophilic inflammation is a characteristic feature of human asthma, and recent evidence suggests that eosinophils also play a critical role in T cell trafficking in animal models of asthma. Nicotine is an anti-inflammatory, but the association between smoking and asthma is highly contentious and some report that smoking cessation increases the risk of asthma in ex-smokers. To ascertain the effects of nicotine on allergy/asthma, Brown Norway rats were treated with nicotine and sensitized and challenged with allergens. The results unequivocally show that, even after multiple allergen sensitizations, nicotine dramatically suppresses inflammatory/allergic parameters in the lung including the following: eosinophilic/lymphocytic emigration; mRNA and/or protein expression of the Th2 cytokines/chemokines IL-4, IL-5, IL-13, IL-25, and eotaxin; leukotriene C(4); and total as well as allergen-specific IgE. Although nicotine did not significantly affect hexosaminidase release, IgG, or methacholine-induced airway resistance, it significantly decreased mucus content in bronchoalveolar lavage; interestingly, however, despite the strong suppression of IL-4/IL-13, nicotine significantly increased the intraepithelial-stored mucosubstances and Muc5ac mRNA expression. These results suggest that nicotine modulates allergy/asthma primarily by suppressing eosinophil trafficking and suppressing Th2 cytokine/chemokine responses without reducing goblet cell metaplasia or mucous production and may explain the lower risk of allergic diseases in smokers. To our knowledge this is the first direct evidence that nicotine modulates allergic responses.  相似文献   

11.
IL-17 is a pivotal proinflammatory molecule in asthmatics. However, the cellular source of IL-17 in asthma has not been identified to date. In this study, we report that macrophages rather than Th17 cells are the main producer of IL-17 in allergic inflammation related to asthma. After OVA challenge in a mouse model mimicking allergic asthma, the increased IL-17(+) cells in the lung were mainly CD11b(+)F4/80(+) macrophages, instead of T cells or others. Importantly, IL-17(+) alveolar macrophages (AMs), but not IL-17(+) interstitial macrophages, were significantly increased after allergen challenge. The increase of IL-17(+) AMs was not due to the influx of IL-17(+) macrophages from circulation or other tissues, but ascribed to the activation of AMs by mediator(s) secreted by IgE/OVA-activated mast cells. Depleting alveolar macrophages or neutralizing IL-17 prevented the initiation of OVA-induced asthma-related inflammation by inhibiting the increase of inflammatory cells and inflammatory factors in bronchoalveolar lavage fluid. Th2 cytokine IL-10 could down-regulate IL-17 expression in alveolar macrophages. The increased IL-17 and the decreased IL-10 in bronchoalveolar lavage fluid were further confirmed in asthmatic patients. These findings suggest that IL-17 is mainly produced by macrophages but not Th17 cells in allergic inflammation related to asthma. Mast cell-released mediators up-regulate the expression of IL-17 by macrophages, whereas IL-10 down-regulates IL-17 expression.  相似文献   

12.
IL-22 is a Th17/Th22 cytokine that is increased in asthma. However, recent animal studies showed controversial findings in the effects of IL-22 in allergic asthma. To determine the role of IL-22 in ovalbumin-induced allergic inflammation we generated inducible lung-specific IL-22 transgenic mice. Transgenic IL-22 expression and signaling activity in the lung were determined. Ovalbumin (OVA)-induced pulmonary inflammation, immune responses, and airway hyperresponsiveness (AHR) were examined and compared between IL-22 transgenic mice and wild type controls. Following doxycycline (Dox) induction, IL-22 protein was readily detected in the large (CC10 promoter) and small (SPC promoter) airway epithelial cells. IL-22 signaling was evidenced by phosphorylated STAT3. After OVA sensitization and challenge, compared to wild type littermates, IL-22 transgenic mice showed decreased eosinophils in the bronchoalveolar lavage (BAL), and in lung tissue, decreased mucus metaplasia in the airways, and reduced AHR. Among the cytokines and chemokines examined, IL-13 levels were reduced in the BAL fluid as well as in lymphocytes from local draining lymph nodes of IL-22 transgenic mice. No effect was seen on the levels of serum total or OVA-specific IgE or IgG. These findings indicate that IL-22 has immune modulatory effects on pulmonary inflammatory responses in allergen-induced asthma.  相似文献   

13.
Chronic allergic asthma is characterized by Th2-typed inflammation, and contributes to airway remodeling and the deterioration of lung function. Viticis Fructus (VF) has long been used in China and Korea as a traditional herbal remedy for treating various inflammatory diseases. Previously, we have isolated a novel phytochemical, pyranopyran-1, 8-dione (PPY), from VF. This study was conducted to evaluate the ability of PPY to prevent airway inflammation and to attenuate airway responses in a cockroach allergen-induced asthma model in mice. The mice sensitized to and challenged with cockroach allergen were treated with oral administration of PPY. The infiltration of total cells, eosinophils and lymphocytes into the BAL fluid was significantly inhibited in cockroach allergen-induced asthma mice treated with PPY (1, 2, or 10 mg/kg). Th2 cytokines and chemokine, such as IL-4, IL-5, IL-13 and eotaxin in BAL fluid were also reduced to normal levels following treatment with PPY. In addition, the levels of IgE were also markedly suppressed after PPY treatment. Histopathological examination demonstrated that PPY substantially inhibited eosinophil infiltration into the airway, goblet cell hyperplasia and smooth muscle hypertrophy. Taken together, these results demonstrate that PPY possesses a potent efficacy on controlling allergic asthma response such as airway inflammation and remodeling.  相似文献   

14.
ABSTRACT

The current study aimed to study the effects of Bulleyaconitine A (BLA) on asthma. Asthmatic mice model was established by ovalbumin (OVA) stimulation, and the model mice were treated by BLA. After BLA treatment, the changes in lung and airway resistances, total and differential leukocytes in the bronchoalveolar lavage fluid (BALF) were detected, and the changes in lung inflammation and airway remodeling were observed. Moreover, the secretion of IgE, Th1/Th2-type and IL-17A cytokines in BALF and serum of the asthmatic mice were determined. The resuts showed that BLA attenuated OVA-induced lung and airway resistances, inhibited the inflammatory cell recruitment in BALF and the inflammation and airway remodeling of the asthmatic mice. In addition, BLA suppressed the secretion of IgE, Th2-type cytokines, and IL-17A, but enhanced secretions of Th1-type cytokines in BALF and serum. The current study discovered that BLA inhibited the lung inflammation and airway remodeling via restoring the Th1/Th2 balance in asthmatic mice.  相似文献   

15.
Resistin-like molecule alpha (Retnla), also known as ‘Found in inflammatory zone 1’, is a secreted protein that has been found in bronchoalveolar lavage (BAL) fluid of ovalbumin (OVA)-induced asthmatic mice and plays a role as a regulator of T helper (Th)2-driven inflammation. However, the role of Retnla in the progress of Th2-driven airway inflammation is not yet clear. To better understand the function of Retnla in Th2-driven airway inflammation, we generated Retnla-overexpressing (Retnla-Tg) mice. Retnla-Tg mice showed increased expression of Retnla protein in BAL fluid and airway epithelial cells. Retnla overexpression itself did not induce any alteration in lung histology or lung function compared to non-Tg controls. However, OVA-sensitized/challenged Retnla-Tg mice had decreased numbers of cells in BAL and inflammatory cells accumulating in the lung. They also showed a reduction in mucus production in the airway epithelium, concomitant with a decreased Muc5ac level. These results were accompanied by reduced levels of Th2 cytokines, including interleukin (IL)-4, IL-5, and IL-13, with no effect on levels of OVA-specific immunoglobulin isotypes. Furthermore, phosphorylation of ERK was markedly reduced in the lungs of OVA-challenged Retnla-Tg mice. Taken together, these results indicates that Retnla protects against Th2-mediated inflammation in an experimental mouse model of asthma, suggesting that therapeutic approaches to enhance the production of Retnla or Retnla-like molecules could be valuable for preventing allergic lung inflammation.  相似文献   

16.
IL-11 is a pleiotropic cytokine that induces tissue remodeling with subepithelial fibrosis when expressed in the airway. Its effects on the Th2-dominated airway inflammation that is characteristic of asthma, however, are poorly understood. To characterize the effects of IL-11 on Th2 tissue inflammation, we compared the inflammatory responses elicited by OVA in sensitized mice in which IL-11 is overexpressed in a lung-specific fashion (CC10-IL-11) with that in transgene- wild-type littermate controls. Transgene- and CC10-IL-11 transgene+ mice had comparable levels of circulating Ag-specific IgE after sensitization. OVA challenge of sensitized transgene- mice caused airway and parenchymal eosinophilic inflammation, Th2 cell accumulation, and mucus hypersecretion with mucus metaplasia. Exaggerated levels of immunoreactive endothelial cell VCAM-1, mucin (Muc) 5ac gene expression and bronchoalveolar lavage and lung IL-4, IL-5, and IL-13 protein and mRNA were also noted. In contrast, OVA challenge in CC10-IL-11 animals elicited impressively lower levels of tissue and bronchoalveolar lavage inflammation, eosinophilia, and Th2 cell accumulation, and significantly lower levels of VCAM-1 and IL-4, IL-5, and IL-13 mRNA and protein. IL-11 did not cause a comparable decrease in mucus hypersecretion, Muc 5ac gene expression, or the level of expression of RANTES, monocyte chemoattractant protein-2, or monocyte chemoattractant protein-3. In addition, IL-11 did not augment IFN-gamma production demonstrating that the inhibitory effects of IL-11 were not due to a shift toward Th1 inflammation. These studies demonstrate that IL-11 selectively inhibits Ag-induced eosinophilia, Th2 inflammation, and VCAM-1 gene expression in pulmonary tissues.  相似文献   

17.
变应性哮喘是一种由辅助性T细胞(T helper cell,Th cell)调节的慢性炎症性疾病。Th1/Th2的失衡一直被认为是变应性哮喘的发病机制,Th2细胞及其分泌的细胞因子白介素4(interleukin 4,IL-4)、IL-5以及IL-13在变应性哮喘特异性症状的发病中发挥重要作用。最近研究发现Th17细胞及其分泌的IL-17参与变应性哮喘的发展过程,IL-23在Th17细胞维持生存和功能成熟中发挥重要作用,并参与抗原诱导的气道炎症反应。该文对目前IL-23/Th17轴在变应性气道炎症反应中的研究进展作一综述。  相似文献   

18.

Background

Th2 immune responses are linked primarily to mild and moderate asthma, while Th17 cells, Interleukin-17A (IL-17) and neutrophilia have been implicated in more severe forms of disease. How Th2-dependent allergic reactions are influenced by Th17 and IL-17-γδ T cells is poorly understood. In murine models, under some conditions, IL-17 promotes Th2-biased airway inflammatory responses. However, IL-17-γδ T cells have been implicated in the inhibition and resolution of allergic airway inflammation and hyperresponsiveness (AHR).

Methods

We compared airway responses in Balb/c mice sensitized to OVA with (and without) a Th2-skewing aluminum-based adjuvant and the IL-17 skewing, complete Freund’s adjuvant (CFA). AHR was measured invasively by flexiVent, while serum OVA-IgE was quantified by an enzyme immunoassay. Airway inflammatory and cytokine profiles, and cellular sources of IL-17 were assessed from bronchoalveolar lavage and/or lungs. The role of γδ T cells in these responses was addressed in OVA/CFA sensitized mice using a γδ T cell antibody.

Results

Following OVA challenge, all mice exhibited mixed eosinophilic/neutrophilic airway inflammatory profiles and elevated serum OVA-IgE. Whereas OVA/alum sensitized mice had moderate inflammation and AHR, OVA/CFA sensitized mice had significantly greater inflammation but lacked AHR. This correlated with a shift in IL-17 production from CD4+ to γδ T cells. Additionally, OVA/CFA sensitized mice, given a γδ TCR stimulatory antibody, showed increased frequencies of IL-17-γδ T cells and diminished airway reactivity and eosinophilia.

Conclusions

Thus, the conditions of antigen sensitization influence the profile of cells that produce IL-17, the balance of which may then modulate the airway inflammatory responses, including AHR. The possibility for IL-17-γδ T cells to reduce AHR and robust eosinophilic inflammation provides evidence that therapeutic approaches focused on stimulating and increasing airway IL-17-γδ T cells may be an effective alternative in treating steroid resistant, severe asthma.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0090-5) contains supplementary material, which is available to authorized users.  相似文献   

19.
支气管哮喘是一种气道慢性炎症性疾病。越来越多的事实表明,哮喘的发生与内源性IL-12生成不足有关。IL-12无论单独应用还是作为免疫佐剂,均可逆转哮喘动物模型体内Th1/Th2失衡和抑制气道变态反应性炎症。该文综述了IL-12的生物学效应、IL-12与哮喘的关系、IL-12在哮喘治疗中的作用及其应用。  相似文献   

20.
BackgroundAsthma is one of the most common chronic inflammatory conditions of the lungs in modern society. Asthma is associated with airway hyperresponsiveness and remodeling of the airways, with typical symptoms of cough, wheezing, shortness of breath and chest tightness. Interleukins (IL) play an integral role in its inflammatory pathogenesis. Medicinal herbs and secondary metabolites are gaining considerable attention due to their potential therapeutic role and pharmacological mechanisms as adjunct tools to synthetic bronchodilator drugs.PurposeTo systematically review the literature on the use of single or mixed plants extracts therapy in vivo experimental systems for asthma, emphasizing their regulations on IL production to improve lung.MethodsLiterature searches were performed on PubMed, EMBASE, Scopus and Web of Science databases. All articles in English were extracted from 1999 up to September 2019, assessed critically for data extraction. Studies investigating the effectiveness and safety of plant extracts administered; inflammatory cell count, immunoglobulin E (IgE) production and regulation of pro-inflammatory cytokine and T helper (Th) 1 and Th2-driven cytokine expression in bronchoalveolar lavage fluid (BALF) and lung of asthmatic animals were included.ResultsFour hundred and eighteen publications were identified and 51 met the inclusion criteria. Twenty-six studies described bioactive compounds from plant extracts. The most frequent immunopharmacological mechanisms described included reduction in IgE and eosinophilic recruitment, decreased mucus hypersecretion and airway hyperreactivity, enhancement of the balance of Th1/Th2 cytokine ratio, suppression of matrix metallopeptidase 9 (MMP-9) and reversal of structural alterations.ConclusionPlant extract therapies have potential control activities on asthma symptoms by modulating the secretion of pro-inflammatory (IL-1β, IL-8), Th17 (IL-17), anti-inflammatory (IL-10, IL-23, IL-31, IL-33), Th1 (IL-2, IL-12) and Th2 (IL-4, IL-5, IL-6, IL-13) cytokines, reducing the level of biomarkers of airway inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号