首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Proteins misfolded in the endoplasmic reticulum (ER) are cleared by the ubiquitin-dependent proteasome system in the cytosol, a series of events collectively termed ER-associated degradation (ERAD). It was previously shown that SEL1L, a partner protein of the E3 ubiquitin ligase HRD1, is required for degradation of misfolded luminal proteins (ERAD-Ls substrates) but not misfolded transmembrane proteins (ERAD-Lm substrates) in both mammalian and chicken DT40 cells. Here, we analyzed ATF6, a type II transmembrane glycoprotein that serves as a sensor/transducer of the unfolded protein response, as a potential ERAD-Lm substrate in DT40 cells. Unexpectedly, degradation of endogenous ATF6 and exogenously expressed chicken and human ATF6 by the proteasome required SEL1L. Deletion analysis revealed that the luminal region of ATF6 is a determinant for SEL1L-dependent degradation. Chimeric analysis showed that the luminal region of ATF6 confers SEL1L dependence on type I transmembrane protein as well. In contrast, degradation of other known type I ERAD-Lm substrates (BACE457, T-cell receptor-α, CD3-δ, and CD147) did not require SEL1L. Thus, ATF6 represents a novel type of ERAD-Lm substrate requiring SEL1L for degradation despite its transmembrane nature. In addition, endogenous ATF6 was markedly stabilized in wild-type cells treated with kifunensine, an inhibitor of α1,2-mannosidase in the ER, indicating that degradation of ATF6 requires proper mannose trimming. Our further analyses revealed that the five ERAD-Lm substrates examined are classified into three subgroups based on their dependence on mannose trimming and SEL1L. Thus, ERAD-Lm substrates are degraded through much more diversified mechanisms in higher eukaryotes than previously thought.  相似文献   

3.
Metabolic labeling with [35S]cysteine was used to characterize early events in CaSR biosynthesis. [35S]CaSR is relatively stable (half-life ∼8 h), but maturation to the final glycosylated form is slow and incomplete. Incorporation of [35S]cysteine is linear over 60 min, and the rate of [35S]CaSR biosynthesis is significantly increased by the membrane-permeant allosteric agonist NPS R-568, which acts as a cotranslational pharmacochaperone. The [35S]CaSR biosynthetic rate also varies as a function of conformational bias induced by loss- or gain-of-function mutations. In contrast, [35S]CaSR maturation to the plasma membrane was not significantly altered by exposure to the pharmacochaperone NPS R-568, the allosteric agonist neomycin, or the orthosteric agonist Ca2+ (0.5 or 5 mm), suggesting that CaSR does not control its own release from the endoplasmic reticulum. A CaSR chimera containing the mGluR1α carboxyl terminus matures completely (half-time of ∼8 h) and without a lag period, as does the truncation mutant CaSRΔ868 (half-time of ∼16 h). CaSRΔ898 exhibits maturation comparable with full-length CaSR, suggesting that the CaSR carboxyl terminus between residues Thr868 and Arg898 limits maturation. Overall, these results suggest that CaSR is subject to cotranslational quality control, which includes a pharmacochaperone-sensitive conformational checkpoint. The CaSR carboxyl terminus is the chief determinant of intracellular retention of a significant fraction of total CaSR. Intracellular CaSR may reflect a rapidly mobilizable “storage form” of CaSR and/or may subserve distinct intracellular signaling roles that are sensitive to signaling-dependent changes in endoplasmic reticulum Ca2+ and/or glutathione.  相似文献   

4.
Accelerated endoplasmic reticulum (ER)-associated degradation (ERAD) of the cholesterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase results from its sterol-induced binding to ER membrane proteins called Insig-1 and Insig-2. This binding allows for subsequent ubiquitination of reductase by Insig-associated ubiquitin ligases. Once ubiquitinated, reductase becomes dislocated from ER membranes into the cytosol for degradation by 26 S proteasomes through poorly defined reactions mediated by the AAA-ATPase valosin-containing protein (VCP)/p97 and augmented by the nonsterol isoprenoid geranylgeraniol. Here, we report that the oxysterol 25-hydroxycholesterol and geranylgeraniol combine to trigger extraction of reductase across ER membranes prior to its cytosolic release. This conclusion was drawn from studies utilizing a novel assay that measures membrane extraction of reductase by determining susceptibility of a lumenal epitope in the enzyme to in vitro protease digestion. Susceptibility of the lumenal epitope to protease digestion and thus membrane extraction of reductase were tightly regulated by 25-hydroxycholesterol and geranylgeraniol. The reaction was inhibited by RNA interference-mediated knockdown of either Insigs or VCP/p97. In contrast, reductase continued to become membrane-extracted, but not cytosolically dislocated, in cells deficient for AAA-ATPases of the proteasome 19 S regulatory particle. These findings establish sequential roles for VCP/p97 and the 19 S regulatory particle in the sterol-accelerated ERAD of reductase that may be applicable to the ERAD of other substrates.  相似文献   

5.
Endoplasmic reticulum-associated degradation (ERAD) is an important system that eliminates misfolded proteins from the ER. Three derlins have been implicated in this process, but their precise function remains unknown. In this study, we report that although both derlin1 and derlin2 are capable of binding the ERAD-specific ubiquitin ligase HRD1, they associate with the HRD1-containing complex with different affinities. Accordingly, these derlins have nonredundant functions in ERAD with derlin2 being an essential functional partner for HRD1-mediated ERAD of SHH and NHK. We show that derlin2, but not derlin1 or derlin3, is required for ERAD of both glycosylated and nonglycosylated SHH, as well as NHK. Derlin2 appears to act at a post-targeting step for HRD1-dependent retro-translocation. Without derlin2, the assembly of HRD1 into a functional retro-translocation homo-oligomer proceeds normally, and substrate targeting to the HRD1 complex also occurs. However, the ERAD substrate SHH-C is largely trapped inside the ER lumen. These observations raise the possibility that derlin2 may regulate the movement of substrates through the HRD1-containing retro-translocon. Our study is the first to report that derlin2 functions with HRD1 in ERAD of certain substrates independent of their glycosylation status. The mammalian ERAD system may require multiple derlins that each functions with a distinct E3 partner to eliminate a specific subset of substrates. This is different from the model in Saccharomyces cerevisiae, in which Hrd1p alone is sufficient for retro-translocation.  相似文献   

6.
The distribution and morphology of the endoplasmic reticulum (ER) in mammalian cells depend on both dynamic and static interactions of ER membrane proteins with microtubules (MTs). Cytoskeleton-linking membrane protein (CLIMP)-63 is exclusively localized in sheet-like ER membranes, typical structures of the rough ER, and plays a pivotal role in the static interaction with MTs. Our previous study showed that the 42-kDa ER-residing form of syntaxin 5 (Syn5L) regulates ER structure through the interactions with both CLIMP-63 and MTs. Here, we extend our previous study and show that the valosin-containing protein/p97-interacting membrane protein (VIMP)/SelS is also a member of the family of proteins that shape the ER by interacting with MTs. Depletion of VIMP causes the spreading of the ER to the cell periphery and affects an MT-dependent process on the ER. Although VIMP can interact with CLIMP-63 and Syn5L, it does not interact with MT-binding ER proteins (such as Reep1) that shape the tubular smooth ER, suggesting that different sets of MT-binding ER proteins are used to organize different ER subdomains.  相似文献   

7.
Nascent chains are known to be targeted to the endoplasmic reticulum membrane either by a signal recognition particle (SRP)-dependent co-translational or by an SRP-independent post-translational translocation route depending on signal sequences. Using a set of model and cellular proteins carrying an N-terminal signal anchor sequence of controlled hydrophobicity and yeast mutant strains defective in SRP or Sec62 function, the hydrophobicity-dependent targeting efficiency and targeting pathway preference were systematically evaluated. Our results suggest that an SRP-dependent co-translational and an SRP-independent post-translational translocation are not mutually exclusive for signal anchor proteins and that moderately hydrophobic ones require both SRP and Sec62 for proper targeting and translocation to the endoplasmic reticulum. Further, defect in Sec62 selectively reduced signal sequences inserted in an Nin-Cout (type II) membrane topology, implying an undiscovered role of Sec62 in regulating the orientation of the signal sequence in an early stage of translocation.  相似文献   

8.
Localization of mRNAs contributes to the generation and maintenance of cellular asymmetry in a wide range of organisms. In Saccharomyces cerevisiae, the so-called locasome complex with its core components Myo4p, She2p, and She3p localizes more than 30 mRNAs to the yeast bud tip. A significant fraction of these mRNAs encodes membrane or secreted proteins. Their localization requires, besides the locasome, a functional segregation apparatus of the cortical endoplasmic reticulum (ER), including the machinery that is involved in the movement of ER tubules into the bud. Colocalization of RNA-containing particles with these tubules suggests a coordinated transport of localized mRNAs and the cortical ER to the bud. Association of localized mRNAs to the ER requires the presence of the locasome component She2p. Here we report that She2p is not only an RNA-binding protein but can specifically bind to ER-derived membranes in a membrane curvature-dependent manner in vitro. Although it does not contain any known curvature recognizing motifs, the protein shows a binding preference for liposomes with a diameter resembling that of yeast ER tubules. In addition, membrane binding depends on tetramerization of She2p. In an in vivo membrane-tethering assay, She2p can target a viral peptide GFP fusion protein to the cortical ER, indicating that a fraction of She2p associates with the ER in vivo. Combining RNA- and membrane-binding features makes She2p an ideal coordinator of ER tubule and mRNA cotransport.  相似文献   

9.
Sterol-induced binding to Insigs in the endoplasmic reticulum (ER) allows for ubiquitination of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme in cholesterol synthesis. This ubiquitination marks reductase for recognition by the ATPase VCP/p97, which mediates extraction and delivery of reductase from ER membranes to cytosolic 26 S proteasomes for degradation. Here, we report that reductase becomes dislocated from ER membranes into the cytosol of sterol-treated cells. This dislocation exhibits an absolute requirement for the actions of Insigs and VCP/p97. Reductase also appears in a buoyant fraction of sterol-treated cells that co-purifies with lipid droplets, cytosolic organelles traditionally regarded as storage depots for neutral lipids such as triglycerides and cholesteryl esters. Genetic, biochemical, and localization studies suggest a model in which reductase is dislodged into the cytosol from an ER subdomain closely associated with lipid droplets.  相似文献   

10.
Deubiquitinating enzymes (DUBs) regulate various cellular processes ranging from protein degradation to cellular signaling. USP19, the only DUB containing a carboxyl-terminal transmembrane domain, was proposed to function in endoplasmic reticulum-associated degradation (ERAD). Here we characterize the function and regulation of USP19. We identify Hsp90 as a specific partner that binds the catalytic domain of USP19 to promote substrate association. Intriguingly, although overexpressed USP19 interacts with Derlin-1 and other ERAD machinery factors in the membrane, endogenous USP19 is mostly in the cytosol where it binds Hsp90. Accordingly, we detect neither interaction of endogenous USP19 with Derlin-1 nor significant effect on ERAD by USP19 depletion. The USP19 transmembrane domain appears to be partially stabilized in the cytosol by an interaction with its own catalytic domain, resulting in auto-inhibition of its deubiquitinating activity. These results clarify the role of USP19 in ERAD and suggest a novel DUB regulation that involves chaperone association and membrane integration. Moreover, our study indicates that the localization of tail-anchored membrane proteins can be subject to regulation in cells.  相似文献   

11.
The mammalian B-cell receptor-associated proteins of 29 and 31 kDa (BAP29 and BAP31) are conserved integral membrane proteins that have reported roles in endoplasmic reticulum (ER) quality control, ER export of secretory cargo, and programmed cell death. In this study we investigated the yeast homologs of BAP29 and BAP31, known as Yet1p and Yet3p, to gain insight on cellular function. We found that Yet1p forms a complex with Yet3p (Yet complex) and that complex assembly was important for subunit stability and proper ER localization. The Yet complex was not efficiently packaged into ER-derived COPII vesicles and therefore does not appear to act as an ER export receptor. Instead, a fraction of the Yet complex was detected in association with the ER translocation apparatus (Sec complex). Specific mutations in the Sec complex or Yet complex influenced these interactions. Moreover, associations between the Yet complex and Sec complex were increased by ER stress and diminished when protein translocation substrates were depleted. Surprisingly, yet1Δ and yet3Δ mutant strains displayed inositol starvation-related growth defects. In accord with the biochemical data, these growth defects were exacerbated by a combination of certain mutations in the Sec complex with yet1Δ or yet3Δ mutations. We propose a model for the Yet-Sec complex interaction that places Yet1p and Yet3p at the translocation pore to manage biogenesis of specific transmembrane secretory proteins.  相似文献   

12.
Misfolded proteins of the endoplasmic reticulum (ER) are retrotranslocated to the cytosol and degraded by the proteasome via a process termed ER-associated degradation (ERAD). The precise mechanism of retrotranslocation is unclear. Here, we use several lumenal ERAD substrates targeted for degradation by the ubiquitin ligase HRD1 including SHH (sonic hedgehog) and NHK (null Hong Kong α1-antitrypsin) to study the geometry, organization, and regulation of the HRD1-containing ERAD machinery. We report a new HRD1-associated membrane protein named HERP2, which is homologous to the previously identified HRD1 partner HERP1. Despite sequence homology, HERP2 is constitutively expressed in cells, whereas HERP1 is highly induced by ER stress. We find that these proteins are required for efficient degradation of both glycosylated and nonglycosylated SHH proteins as well as NHK. In cells depleted of HERPs, SHH proteins are largely trapped inside the ER with a fraction of the stabilized SHH protein bound to the HRD1-SEL1L ligase complex. Ubiquitination of SHH is significantly attenuated in the absence of HERPs, suggesting a defect in retrotranslocation. Both HERP proteins interact with HRD1 through a region located in the cytosol. However, unlike its homolog in Saccharomyces cerevisiae, HERPs do not regulate HRD1 stability or oligomerization status. Instead, they help recruit DERL2 to the HRD1-SEL1L complex. Additionally, the UBL domain of HERP1 also seems to have a function independent of DERL2 recruitment in ERAD. Our studies have revealed a critical scaffolding function for mammalian HERP proteins that is required for forming an active retrotranslocation complex containing HRD1, SEL1L, and DERL2.  相似文献   

13.
LMAN1 (ERGIC-53) is a key mammalian cargo receptor responsible for the export of a subset of glycoproteins from the endoplasmic reticulum. Together with its soluble coreceptor MCFD2, LMAN1 transports coagulation factors V (FV) and VIII (FVIII). Mutations in LMAN1 or MCFD2 cause the genetic bleeding disorder combined deficiency of FV and FVIII (F5F8D). The LMAN1 carbohydrate recognition domain (CRD) binds to both glycoprotein cargo and MCFD2 in a Ca2+-dependent manner. To understand the biochemical basis and regulation of LMAN1 binding to glycoprotein cargo, we solved crystal structures of the LMAN1-CRD bound to Man-α-1,2-Man, the terminal carbohydrate moiety of high mannose glycans. Our structural data, combined with mutagenesis and in vitro binding assays, define the central mannose-binding site on LMAN1 and pinpoint histidine 178 and glycines 251/252 as critical residues for FV/FVIII binding. We also show that mannobiose binding is relatively independent of pH in the range relevant for endoplasmic reticulum-to-Golgi traffic, but is sensitive to lowered Ca2+ concentrations. The distinct LMAN1/MCFD2 interaction is maintained at these lowered Ca2+ concentrations. Our results suggest that compartmental changes in Ca2+ concentration regulate glycoprotein cargo binding and release from the LMAN1·MCFD2 complex in the early secretory pathway.  相似文献   

14.
Cholera toxin travels from the plasma membrane to the endoplasmic reticulum of host cells, where a portion of the toxin, the A1-chain, is unfolded and targeted to a protein-conducting channel for retrotranslocation to the cytosol. Unlike most retrotranslocation substrates, the A1-chain escapes degradation by the proteasome and refolds in the cytosol to induce disease. How this occurs remains poorly understood. Here, we show that an unstructured peptide appended to the N terminus of the A1-chain renders the toxin functionally inactive. Cleavage of the peptide extension prior to cell entry rescues toxin half-life and function. The loss of toxicity is explained by rapid degradation by the proteasome after retrotranslocation to the cytosol. Degradation of the mutant toxin does not follow the N-end rule but depends on the two Lys residues at positions 4 and 17 of the native A1-chain, consistent with polyubiquitination at these sites. Thus, retrotranslocation and refolding of the wild-type A1-chain must proceed in a way that protects these Lys residues from attack by E3 ligases.  相似文献   

15.
Protein S-palmitoylation is a posttranslational modification in which a palmitoyl group is added to a protein via a thioester linkage on cysteine. Palmitoylation is a reversible modification involved in protein membrane targeting, receptor trafficking and signaling, vesicular biogenesis and trafficking, protein aggregation, and protein degradation. An example of the dynamic nature of this modification is the palmitoylation-depalmitoylation cycle that regulates the subcellular trafficking of Ras family GTPases. The Ras protein acyltransferase (PAT) consists of a complex of Erf2-Erf4 and DHHC9-GCP16 in yeast and mammalian cells, respectively. Both subunits are required for PAT activity, but the function of the Erf4 and Gcp16 subunits has not been established. This study elucidates the function of Erf4 and shows that one role of Erf4 is to regulate Erf2 stability through an ubiquitin-mediated pathway. In addition, Erf4 is required for the stable formation of the palmitoyl-Erf2 intermediate, the first step of palmitoyl transfer to protein substrates. In the absence of Erf4, the rate of hydrolysis of the active site palmitoyl thioester intermediate is increased, resulting in reduced palmitoyl transfer to a Ras2 substrate. This is the first demonstration of regulation of a DHHC PAT enzyme by an associated protein.  相似文献   

16.
17.
Gossypol is a putative BH3 mimetic proposed to inhibit BCL2 and BCLXL based on cell-free assays. We demonstrated previously that gossypol failed to directly inhibit BCL2 in cells or induce apoptosis in chronic lymphocytic leukemia (CLL) cells or platelets, which require BCL2 or BCLXL, respectively, for survival. Here, we demonstrate that gossypol rapidly increased activity of phospholipase A2 (PLA2), which led to an increase in cytoplasmic calcium, endoplasmic reticulum (ER) stress, and up-regulation of the BH3-only protein NOXA. Pretreatment with the PLA2 inhibitor, aristolochic acid, abrogated the increase in calcium, ER stress, and NOXA. Calcium chelation also abrogated the gossypol-induced increase in calcium, ER stress, and NOXA, but not the increase in PLA2 activity, indicating that PLA2 is upstream of these events. In addition, incubating cells with the two products of PLA2 (lysophosphatidic acid and arachidonic acid) mimicked treatment with gossypol. NOXA is a pro-apoptotic protein that functions by binding the BCL2 family proteins MCL1 and BFL1. The BCL2 inhibitor ABT-199 is currently in clinical trials for CLL. Resistance to ABT-199 can occur from up-regulation of other BCL2 family proteins, and this resistance can be mimicked by culturing CLL cells on CD154+ stroma cells. We report here that AT-101, a derivative of gossypol in clinical trials, overcomes stroma-mediated resistance to ABT-199 in primary CLL cells, suggesting that a combination of these drugs may be efficacious in the clinic.  相似文献   

18.
Stresses increasing the load of unfolded proteins that enter the endoplasmic reticulum (ER) trigger a protective response termed the unfolded protein response (UPR). Stromal cell-derived factor2 (SDF2)-type proteins are highly conserved throughout the plant and animal kingdoms. In this study we have characterized AtSDF2 as crucial component of the UPR in Arabidopsis thaliana. Using a combination of biochemical and cell biological methods, we demonstrate that SDF2 is induced in response to ER stress conditions causing the accumulation of unfolded proteins. Transgenic reporter plants confirmed induction of SDF2 during ER stress. Under normal growth conditions SDF2 is highly expressed in fast growing, differentiating cells and meristematic tissues. The increased production of SDF2 due to ER stress and in tissues that require enhanced protein biosynthesis and secretion, and its association with the ER membrane qualifies SDF2 as a downstream target of the UPR. Determination of the SDF2 three-dimensional crystal structure at 1.95 Å resolution revealed the typical β-trefoil fold with potential carbohydrate binding sites. Hence, SDF2 might be involved in the quality control of glycoproteins. Arabidopsis sdf2 mutants display strong defects and morphological phenotypes during seedling development specifically under ER stress conditions, thus establishing that SDF2-type proteins play a key role in the UPR.  相似文献   

19.
Nicastrin and its relative Nicalin (Nicastrin-like protein) are both members of larger protein complexes, namely γ-secretase and the Nicalin-NOMO (Nodal modulator) complex. The γ-secretase complex, which contains Presenilin, APH-1, and PEN-2 in addition to Nicastrin, catalyzes the proteolytic cleavage of the transmembrane domain of various proteins including the β-amyloid precursor protein and Notch. Nicalin and its binding partner NOMO form a complex that was shown to modulate Nodal signaling in developing zebrafish embryos. Because its experimentally determined native size (200–220 kDa) could not be satisfyingly explained by the molecular masses of Nicalin (60 kDa) and NOMO (130 kDa), we searched in affinity-purified complex preparations for additional components in the low molecular mass range. A ∼22-kDa protein was isolated and identified by mass spectrometry as transmembrane protein 147 (TMEM147), a novel, highly conserved membrane protein with a putative topology similar to APH-1. Like Nicalin and NOMO, it localizes to the endoplasmic reticulum and is expressed during early zebrafish development. Overexpression and knockdown experiments in cultured cells demonstrate a close relationship between the three proteins and suggest that they are components of the same complex. We present evidence that, similar to γ-secretase, its assembly is hierarchical starting with the formation of a Nicalin-NOMO intermediate. Nicalin appears to represent the limiting factor regulating the assembly rate by stabilizing the other two components. We conclude that TMEM147 is a novel core component of the Nicalin-NOMO complex, further emphasizing its similarity with γ-secretase.  相似文献   

20.
Target of rapamycin signaling is a conserved, essential pathway integrating nutritional cues with cell growth and proliferation. The target of rapamycin kinase exists in two distinct complexes, TORC1 and TORC2. It has been reported that protein phosphatase 2A (PP2A) and the Far3-7-8-9-10-11 complex (Far complex) negatively regulate TORC2 signaling in yeast. The Far complex, originally identified as factors required for pheromone-induced cell cycle arrest, and PP2A form the yeast counterpart of the STRIPAK complex, which was first isolated in mammals. The cellular localization of the Far complex has yet to be fully characterized. Here, we show that the Far complex localizes to the endoplasmic reticulum (ER) by analyzing functional GFP-tagged Far proteins in vivo. We found that Far9 and Far10, two homologous proteins each with a tail-anchor domain, localize to the ER in mutant cells lacking the other Far complex components. Far3, Far7, and Far8 form a subcomplex, which is recruited to the ER by Far9/10. The Far3-7-8- complex in turn recruits Far11 to the ER. Finally, we show that the tail-anchor domain of Far9 is required for its optimal function in TORC2 signaling. Our study reveals tiered assembly of the yeast Far complex at the ER and a function for Far complex''s ER localization in TORC2 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号