首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
We demonstrate that RecA protein can mediate annealing of complementary DNA strands in vitro by at least two different mechanisms. The first annealing mechanism predominates under conditions where RecA protein causes coaggregation of single-stranded DNA (ssDNA) molecules and where RecA-free ssDNA stretches are present on both reaction partners. Under these conditions annealing can take place between locally concentrated protein-free complementary sequences. Other DNA aggregating agents like histone H1 or ethanol stimulate annealing by the same mechanism. The second mechanism of RecA-mediated annealing of complementary DNA strands is best manifested when preformed saturated RecA-ssDNA complexes interact with protein-free ssDNA. In this case, annealing can occur between the ssDNA strand resident in the complex and the ssDNA strand that interacts with the preformed RecA-ssDNA complex. Here, the action of RecA protein reflects its specific recombination promoting mechanism. This mechanism enables DNA molecules resident in the presynaptic RecA-DNA complexes to be exposed for hydrogen bond formation with DNA molecules contacting the presynaptic RecA-DNA filament.  相似文献   

2.
The single-stranded DNA-binding protein (SSB protein) is required for efficient genetic recombination in vivo. One function for SSB protein in DNA strand exchange in vitro is to remove secondary structure from single-stranded DNA (ssDNA) and thereby aid in the formation of recA protein-saturated presynaptic complexes. In the preceding paper (Lavery, P. E., and Kowalczykowski, S. C. (1992) J. Biol. Chem. 267, 9307-9314) we demonstrated that DNA strand exchange can occur in the presence of volume-occupying agents at low magnesium ion concentration, where secondary structures are reduced. Our results suggest that SSB protein is not acting during presynapsis under these conditions, yet the DNA strand exchange reaction is stimulated by the addition of SSB protein. In this study we present biochemical evidence which suggests that SSB protein stimulates DNA strand exchange by binding to the ssDNA displaced from joint molecules, thereby stabilizing them and allowing branch migration to extend the region of heteroduplex DNA. Therefore, our results indicate dual roles for SSB protein at elevated magnesium ion concentration; it functions during presynapsis, removing secondary structure from ssDNA, as indicated previously, and it also functions postsynaptically, binding to the ssDNA displaced from joint molecules.  相似文献   

3.
DNA helicases are molecular 'motor' enzymes that use the energy of NTP hydrolysis to separate transiently energetically stable duplex DNA into single strands. They are therefore essential in nearly all DNA metabolic transactions. They act as essential molecular tools for the cellular machinery. Since the discovery of the first DNA helicase in Escherichia coli in 1976, several have been isolated from both prokaryotic and eukaryotic systems. DNA helicases generally bind to ssDNA or ssDNA/dsDNA junctions and translocate mainly unidirectionally along the bound strand and disrupt the hydrogen bonds between the duplexes. Most helicases contain conserved motifs which act as an engine to drive DNA unwinding. Crystal structures have revealed an underlying common structural fold for their function. These structures suggest the role of the helicase motifs in catalytic function and offer clues as to how these proteins can translocate and unwind DNA. The genes containing helicase motifs may have evolved from a common ancestor. In this review we cover the conserved motifs, structural information, mechanism of DNA unwinding and translocation, and functional aspects of DNA helicases.  相似文献   

4.
The Saccharomyces cerevisiae RAD51 gene product takes part in genetic recombination and repair of DNA double strand breaks. Rad51, like Escherichia coli RecA, catalyzes strand exchange between homologous circular single-stranded DNA (ssDNA) and linear double-stranded DNA (dsDNA) in the presence of ATP and ssDNA-binding protein. The formation of joint molecules between circular ssDNA and linear dsDNA is initiated at either the 5' or the 3' overhanging end of the complementary strand; joint molecules are formed only if the length of the overhanging end is more than 1 nucleotide. Linear dsDNAs with recessed complementary or blunt ends are not utilized. The polarity of strand exchange depends upon which end is used to initiate the formation of joint molecules. Joint molecules formed via the 5' end are processed by branch migration in the 3'-to-5' direction with respect to ssDNA, and joint molecules formed with a 3' end are processed in the opposite direction.  相似文献   

5.
Rad51, Rad52, and RPA play central roles in homologous DNA recombination. Rad51 mediates DNA strand exchange, a key reaction in DNA recombination. Rad52 has two distinct activities: to recruit Rad51 onto single-strand (ss)DNA that is complexed with the ssDNA-binding protein, RPA, and to anneal complementary ssDNA complexed with RPA. Here, we report that Rad52 promotes annealing of the ssDNA strand that is displaced by DNA strand exchange by Rad51 and RPA, to a second ssDNA strand. An RPA that is recombination-deficient (RPA(rfa1-t11)) failed to support annealing, explaining its in vivo phenotype. Escherichia coli RecO and SSB proteins, which are functional homologues of Rad52 and RPA, also facilitated the same reaction, demonstrating its conserved nature. We also demonstrate that the two activities of Rad52, recruiting Rad51 and annealing DNA, are coordinated in DNA strand exchange and second ssDNA capture.  相似文献   

6.
RecA binds to single-stranded (ss) DNA to form?a helical filament that catalyzes strand exchange with a homologous double-stranded (ds) DNA. The study of strand exchange in ensemble assays is limited by the diffusion limited homology search process, which masks the subsequent strand exchange reaction. We developed a single-molecule fluorescence assay with a few base-pair and millisecond resolution that can separate initial docking from the subsequent propagation of joint molecule formation. Our data suggest that propagation occurs in 3?bp increments with destabilization of the incoming dsDNA and concomitant pairing with the reference ssDNA. Unexpectedly, we discovered the formation of?a dynamic complex between RecA and the displaced DNA that remains bound transiently after joint molecule formation. This finding could have important implications for the irreversibility of strand exchange. Our model for strand exchange links structural models of RecA to its catalytic function.  相似文献   

7.
Cellular functions of the REV1 gene have been conserved in evolution and appear important for maintaining genetic integrity through translesion DNA synthesis. This study documents a novel biochemical activity of human REV1 protein, due to higher affinity for single-stranded DNA (ssDNA) than the primer terminus. Preferential binding to long ssDNA regions of the template strand means that REV1 is targeted specifically to the included primer termini, a property not shared by other DNA polymerases, including human DNA polymerases alpha, beta, and eta. Furthermore, a mutant REV1 lacking N- and C-terminal domains, but catalytically active, lost this function, indicating that control is not due to the catalytic core. The novel activity of REV1 protein might imply a role for ssDNA in the regulation of translesion DNA synthesis.  相似文献   

8.
9.
Rad51, Rad52, and replication protein-A (RPA) play crucial roles in the repair of DNA double-strand breaks in Saccharomyces cerevisiae. Rad51 mediates DNA strand exchange, a key reaction in DNA recombination. Rad52 recruits Rad51 into single-stranded DNAs (ssDNAs) that are saturated with RPA. Rad52 also promotes annealing of ssDNA strands that are complexed with RPA. Specific protein-protein interactions are involved in these reactions. Here we report new biochemical characteristics of these protein interactions. First, Rad52-RPA interaction requires multiple molecules of RPA to be associated with ssDNA, suggesting that multiple contacts between the Rad52 ring and RPA-ssDNA filament are needed for stable binding. Second, RPA-t11, which is a recombination-deficient mutant of RPA, displays a defect in interacting with Rad52 in the presence of salt above 50 mM, explaining the defect in Rad52-mediated ssDNA annealing in the presence of this mutation. Third, ssDNA annealing promoted by Rad52 is preceded by aggregation of multiple RPA-ssDNA complexes with Rad52, and Rad51 inhibits this aggregation. These results suggest a regulatory role for Rad51 that suppresses ssDNA annealing and facilitates DNA strand invasion. Finally, the Rad51-double-stranded DNA complex disrupts Rad52-RPA interaction in ssDNA and titrates Rad52 from RPA. This suggests an additional regulatory role for Rad51 following DNA strand invasion, where Rad51-double-stranded DNA may inhibit illegitimate second-end capture to ensure the error-free repair of a DNA double-strand break.  相似文献   

10.
The Swi5-Sfr1 heterodimer protein stimulates the Rad51-promoted DNA strand exchange reaction, a crucial step in homologous recombination. To clarify how this accessory protein acts on the strand exchange reaction, we have analyzed how the structure of the primary reaction intermediate, the Rad51/single-stranded DNA (ssDNA) complex filament formed in the presence of ATP, is affected by Swi5-Sfr1. Using flow linear dichroism spectroscopy, we observe that the nucleobases of the ssDNA are more perpendicularly aligned to the filament axis in the presence of Swi5-Sfr1, whereas the bases are more randomly oriented in the absence of Swi5-Sfr1. When using a modified version of the natural protein where the N-terminal part of Sfr1 is deleted, which has no affinity for DNA but maintained ability to stimulate the strand exchange reaction, we still observe the improved perpendicular DNA base orientation. This indicates that Swi5-Sfr1 exerts its activating effect through interaction with the Rad51 filament mainly and not with the DNA. We propose that the role of a coplanar alignment of nucleobases induced by Swi5-Sfr1 in the presynaptic Rad51/ssDNA complex is to facilitate the critical matching with an invading double-stranded DNA, hence stimulating the strand exchange reaction.  相似文献   

11.
The human APOBEC3A and APOBEC3B genes (A3A and A3B) encode DNA mutator enzymes that deaminate cytidine and 5-methylcytidine residues in single-stranded DNA (ssDNA). They are important sources of mutations in many cancer genomes which show a preponderance of CG->TA transitions. Although both enzymes can hypermutate chromosomal DNA in an experimental setting, only A3A can induce double strand DNA breaks, even though the catalytic domains of A3B and A3A differ by only 9% at the protein level. Accordingly we sought the molecular basis underlying A3B attenuation through the generation of A3A-A3B chimeras and mutants. It transpires that the N-terminal domain facilitates A3B activity while a handful of substitutions in the catalytic C-terminal domain impacting ssDNA binding serve to attenuate A3B compared to A3A. Interestingly, functional attenuation is also observed for the rhesus monkey rhA3B enzyme compared to rhA3A indicating that this genotoxic dichotomy has been selected for and maintained for some 38 million years. Expression of all human ssDNA cytidine deaminase genes is absent in mature sperm indicating they contribute to somatic mutation and cancer but not human diversity.  相似文献   

12.
Enhancement of Escherichia coli RecA protein enzymatic function by dATP   总被引:1,自引:0,他引:1  
The Escherichia coli recA protein has been shown to hydrolyze several nucleoside triphosphates in the presence of ssDNA. The substitution of dATP for rATP has significant effects on various recA protein biochemical properties. In the presence of dATP, recA protein can invade more secondary structure in native ssDNA than it can in the presence of rATP. The dATP-recA protein complex can compete more effectively with the E. coli ssDNA binding protein (SSB) for ssDNA binding sites compared with the rATP-recA protein complex. Finally, the rate of dATP hydrolysis stimulated by dsDNA is greater than the rate of rATP hydrolysis. These effects, in turn, are observed as alterations in the recA protein catalyzed DNA strand exchange reaction. In the absence of SSB protein, the rate of joint molecule and product formation in the DNA strand exchange reaction is greater in the presence of dATP than in the presence of rATP. The rate of product formation in the dATP-dependent reaction is also faster than the rATP-dependent reaction when SSB protein is added to the ssDNA before recA protein; the rate of rATP-dependent product formation is inhibited 10-fold under these conditions. This nucleotide, dATP, was previously shown to induce an apparent affinity of recA protein for ssDNA which is higher than any other NTP. These results suggest that the observed enhancement of enzymatic activity may be related to the steady-state properties of the high-affinity ssDNA binding state of recA protein. In addition, the data suggest that recA protein functions in NTP hydrolysis as a dimer of protein filaments and that the binding of ssDNA to only one of the recA filaments is sufficient to activate all recA protein molecules in the dimeric filament. The implications of this finding to the enzymatic function of recA protein are discussed.  相似文献   

13.
P Baumann  S C West 《The EMBO journal》1997,16(17):5198-5206
The human Rad51 protein is homologous to the RecA protein and catalyses homologous pairing and strand transfer reactions in vitro. Using single-stranded circular and homologous linear duplex DNA, we show that hRad51 forms stable joint molecules by transfer of the 5' end of the complementary strand of the linear duplex to the ssDNA. The polarity of strand transfer is therefore 3' to 5', defined relative to the ssDNA on which hRad51 initiates filament formation. This polarity is opposite to that observed with RecA. Homologous pairing and strand transfer require stoichiometric amounts of hRad51, corresponding to one hRad51 monomer per three nucleotides of ssDNA. Joint molecules are not observed when the protein is present in limiting or excessive amounts. The human ssDNA binding-protein, hRP-A, stimulates hRad51-mediated reactions. Its effect is consistent with a role in the removal of secondary structures from ssDNA, thereby facilitating the formation of continuous Rad51 filaments.  相似文献   

14.
Genetic evidence suggests that the SPP1-encoded gene 35 product (G35P) is essential for phage DNA replication. Purified G35P binds single-strand DNA (ssDNA) and double-strand (dsDNA) and specifically interacts with SPP1-encoded replicative DNA helicase G40P and SSB protein G36P. G35P promotes joint molecule formation between a circular ssDNA and a homologous linear dsDNA with an ssDNA tail. Joint molecule formation requires a metal ion but is independent of a nucleotide cofactor. Joint molecules formed during these reactions contain a displaced linear ssDNA strand. Electron microscopic analysis shows that G35P forms a multimeric ring structure in ssDNA tails of dsDNA molecules and left-handed filaments on ssDNA. G35P promotes strand annealing at the AT-rich region of SPP1 oriL on a supercoiled template. These results altogether are consistent with the hypothesis that the homologous pairing catalyzed by G35P is an integral part of SPP1 DNA replication. The loading of G40P at a d-loop (ori DNA or at any stalled replication fork) by G35P could lead to replication fork reactivation.  相似文献   

15.
T Horii 《Biochimie》1991,73(2-3):177-185
The RecA protein of E coli promotes a strand exchange reaction in vitro which appears to be similar to homologous genetic recombination in vivo. A model for the mechanism of strand transfer reaction by RecA protein has been proposed by Howard-Flanders et al based on the assumption that the RecA monomer has two distinctive DNA binding sites both of which can bind to ssDNA as well as dsDNA. Here, I propose an alternative model based on the assumption that RecA monomer has a single domain for binding to a polynucleotide chain with a unique polarity. In addition, the model is based on a few mechanical assumptions that, in the presence of ATP, two RecA molecules form a head to head dimer as the basic binding unit to DNA, and that the binding of RecA protein to a polynucleotide chain induces a structural change of RecA protein that causes a higher state of affinity for another RecA molecule that is expressed as cooperativy. The model explains many of the biochemical capabilities of RecA protein including the polar polymerization of RecA protein on single stranded DNA and polar strand transfer of DNA by the protein as well as the formation of a joint DNA molecule in a paranemic configuration. The model also presents the energetics in the strand transfer reaction.  相似文献   

16.
朱冬琴  张云  刘晓玫  张春 《生物工程学报》2014,30(11):1720-1732
AAV-ITR单链DNA微载体是一种基于腺相关病毒(AAV)倒置末端重复序列(ITR)的基因表达载体(AAV-ITR ss DNA mini vector)。前期研究已证明AAV-ITR单链DNA微载体在HEK 293T细胞中具有较高的转染、表达效率。本文中将相同拷贝数的AAV-ITR单链DNA微载体、3?-ITR末端错配的AAV-ITR单链DNA微载体(AAV-ITRmm ss DNA mutant vector)、AAV-ITR双链DNA和质粒分别用Turbo Fect转入小鼠骨骼肌中,比较检测AAV-ITR单链DNA微载体与其他基因表达载体在小鼠体内1周、1个月及3个月的表达效率。组织切片经荧光显微镜观察及荧光灰度值分析表明,相同分子摩尔数的AAV-ITR单链DNA微载体比AAV-ITR双链DNA和质粒在不同时期表达效率都要高且更稳定。提取注射3个月后的肌肉组织的DNA,用荧光定量PCR分析比较各载体的存留分子数。RT-PCR的结果显示AAV-ITR单链DNA微载体在注射3个月后的存留分子数较其他载体高。综合结果显示AAV-ITR单链DNA微载体在动物体内具有表达效率高和长久稳定的优势,有可能开发为基因治疗的一种高效、稳定的新型载体。  相似文献   

17.
The gene mutated in Bloom's syndrome, BLM, encodes a member of the RecQ family of DNA helicases that is needed to suppress genome instability and cancer predisposition. BLM is highly conserved and all BLM orthologs, including budding yeast Sgs1, have a large N‐terminus that binds Top3–Rmi1 but has no known catalytic activity. In this study, we describe a sub‐domain of the Sgs1 N‐terminus that shows in vitro single‐strand DNA (ssDNA) binding, ssDNA annealing and strand‐exchange (SE) activities. These activities are conserved in the human and Drosophila orthologs. SE between duplex DNA and homologous ssDNA requires no cofactors and is inhibited by a single mismatched base pair. The SE domain of Sgs1 is required in vivo for the suppression of hyper‐recombination, suppression of synthetic lethality and heteroduplex rejection. The top3Δ slow‐growth phenotype is also SE dependent. Surprisingly, the highly divergent human SE domain functions in yeast. This work identifies SE as a new molecular function of BLM/Sgs1, and we propose that at least one role of SE is to mediate the strand‐passage events catalysed by Top3–Rmi1.  相似文献   

18.
Rad51-catalyzed DNA strand exchange is greatly enhanced by the single-stranded (ss) DNA binding factor RPA if the latter is introduced after Rad51 has already nucleated onto the initiating ssDNA substrate. Paradoxically, co-addition of RPA with Rad51 to the ssDNA to mimic the in vivo situation diminishes the level of strand exchange, revealing competition between RPA and Rad51 for binding sites on ssDNA. Rad52 promotes strand exchange but only when there is a need for Rad51 to compete with RPA for loading onto ssDNA. Rad52 is multimeric, binds ssDNA, and targets Rad51 to ssDNA. Maximal restoration of pairing and strand exchange requires amounts of Rad52 substoichiometric to Rad51 and involves a stable, equimolar complex between Rad51 and Rad52. The Rad51-Rad52 complex efficiently utilizes a ssDNA template saturated with RPA for homologous pairing but does not appear to be more active than Rad51 when an RPA-free ssDNA template is used. Rad52 does not substitute for RPA in the pairing and strand exchange reaction nor does it lower the dependence of the reaction on Rad51 or RPA.  相似文献   

19.
The replicative helicase for Escherichia coli is DnaB, a hexameric, ring-shaped motor protein that encircles and translocates along ssDNA, unwinding dsDNA in advance of its motion. The microscopic mechanisms of DnaB are unknown; further, prior work has found that DnaB's activity is modified by other replication proteins, indicating some mechanistic flexibility. To investigate these issues, we quantified translocation and unwinding by single DnaB molecules in three tethered DNA geometries held under tension. Our data support the following conclusions: 1), Unwinding by DnaB is enhanced by force-induced destabilization of dsDNA. 2), The magnitude of this stimulation varies with the geometry of the tension applied to the DNA substrate, possibly due to interactions between the helicase and the occluded ssDNA strand. 3), DnaB unwinding and (to a lesser extent) translocation are interrupted by pauses, which are also dependent on force and DNA geometry. 4), DnaB moves slower when a large tension is applied to the helicase-bound strand, indicating that it must perform mechanical work to compact the strand against the applied force. Our results have implications for the molecular mechanisms of translocation and unwinding by DnaB and for the means of modulating DnaB activity.  相似文献   

20.
The RecA protein of Escherichia coli will drive the pairing and exchange of strands between homologous DNA molecules in a reaction stimulated by single-stranded binding protein. Here, reactions utilizing three homologous DNA pairs which can undergo both paranemic and plectonemic joining were examined by electron microscopy: supertwisted double-stranded (ds) DNA and linear single-stranded (ss) DNA, linear dsDNA and circular ssDNA, and linear dsDNA and colinear ssDNA. Several major observations were: (i) with RecA protein bound to the DNA, plectonemic joints were ultrastructurally indistinguishable from paranemic joints; (ii) complexes which appeared to be joined both paranemically and plectonemically were present in these reactions in roughly equal numbers; and (iii) in complexes undergoing strand exchange, both DNA partners were often enveloped within a RecA protein filament consisting of hundreds of RecA protein monomers and several kilobases of DNA. These observations suggest that, following RecA protein-ssDNA filament formation, strand exchange proceeds by a pathway that can be divided structurally into three phases: pairing, envelopment/exchange, and release of the products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号