首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Zaire ebolavirus (ZEBOV), a highly pathogenic zoonotic virus, poses serious public health, ecological and potential bioterrorism threats. Currently no specific therapy or vaccine is available. Virus entry is an attractive target for therapeutic intervention. However, current knowledge of the ZEBOV entry mechanism is limited. While it is known that ZEBOV enters cells through endocytosis, which of the cellular endocytic mechanisms used remains unclear. Previous studies have produced differing outcomes, indicating potential involvement of multiple routes but many of these studies were performed using noninfectious surrogate systems such as pseudotyped retroviral particles, which may not accurately recapitulate the entry characteristics of the morphologically distinct wild type virus. Here we used replication-competent infectious ZEBOV as well as morphologically similar virus-like particles in specific infection and entry assays to demonstrate that in HEK293T and Vero cells internalization of ZEBOV is independent of clathrin, caveolae, and dynamin. Instead the uptake mechanism has features of macropinocytosis. The binding of virus to cells appears to directly stimulate fluid phase uptake as well as localized actin polymerization. Inhibition of key regulators of macropinocytosis including Pak1 and CtBP/BARS as well as treatment with the drug EIPA, which affects macropinosome formation, resulted in significant reduction in ZEBOV entry and infection. It is also shown that following internalization, the virus enters the endolysosomal pathway and is trafficked through early and late endosomes, but the exact site of membrane fusion and nucleocapsid penetration in the cytoplasm remains unclear. This study identifies the route for ZEBOV entry and identifies the key cellular factors required for the uptake of this filamentous virus. The findings greatly expand our understanding of the ZEBOV entry mechanism that can be applied to development of new therapeutics as well as provide potential insight into the trafficking and entry mechanism of other filoviruses.  相似文献   

2.
3.
为监测云南边境地区虫媒库蠓蓝舌病病毒携带情况,本研究对2013年-2017年从云南6个口岸及周边地区采集到的约5 400只库蠓样本,分180组。采用荧光定量RT-PCR检测、鸡胚和细胞分离、目的基因克隆测序分析和间接免疫荧光试验等进行病毒分离与鉴定。结果显示:采集库蠓样本中有20组检出蓝舌病病毒核酸,检出率为11.11%(20/180);接种后有1份样本能导致鸡胚胚体充血出血和死亡以及BHK-21细胞呈现明显的细胞病变;RT-PCR能从感染细胞样本中扩增出蓝舌病病毒VP7基因特异性片段,且该片段序列与国外BTV-1毒株相应序列的相似性达95%~99%;间接免疫荧光试验显示分离病毒能与BTV-1抗体发生特异性结合。结果表明,云南边境地区库蠓携带有蓝舌病病毒,且为BTV-1,因此应加强对云南边境地区蓝舌病的预防与控制。  相似文献   

4.
5.
Hemagglutinin (HA) is essential for Influenza A virus infection, but its diversity of subtypes presents an obstacle to developing broad-spectrum HA inhibitors. In this study, we investigated the molecular mechanisms by which poly-galloyl glucose (pGG) analogs inhibit influenza hemagglutinin (HA) in vitro and in silico. We found that (1) star-shaped pGG analogs exhibit HA-inhibition activity by interacting with the conserved structural elements of the receptor binding domain (RBD); (2) HA inhibition depends on the number of galloyl substituents in a pGG analog; the best number is four; and when PGG binds with two HA trimers at their conserved receptor binding domains (loop 130, loop 220, and 190-α-helix), PGG acts as a molecular glue by aggregating viral particles so as to prevent viral entry into host cells (this was revealed via an in silico simulation on the binding of penta-galloyl-glucose (PGG) with HA). pGGs are also effective on a broad-spectrum influenza A subtypes (including H1, H3, H5, H7); this suggests that pGG analogs can be applied to most influenza A subtypes as a prophylactic against influenza viral infections.  相似文献   

6.
The entry of Kaposi''s sarcoma-associated herpesvirus (KSHV) into human dermal microvascular endothelial cells (HMVEC-d), natural in vivo target cells, via macropinocytosis is initiated through a multistep process involving the binding of KSHV envelope glycoproteins with cell surface α3β1, αVβ3, and αVβ5 integrin molecules and tyrosine kinase ephrin-A2 receptor, followed by the activation of preexisting integrin-associated signaling molecules such as focal adhesion kinase (FAK), Src, c-Cbl, phosphoinositide 3-kinase (PI-3K), and Rho-GTPases. Many viruses, including KSHV, utilize cellular reactive oxygen species (ROS) for viral genomic replication and survival within host cells; however, the role of ROS in early events of viral entry and the induction of signaling has not been elucidated. Here we show that KSHV induced ROS production very early during the infection of HMVEC-d cells and that ROS production was sustained over the observation period (24 h postinfection). ROS induction was dependent on the binding of KSHV to the target cells, since pretreatment of the virus with heparin abolished ROS induction. Pretreatment of HMVEC-d cells with the antioxidant N-acetylcysteine (NAC) significantly inhibited KSHV entry, and consequently gene expression, without affecting virus binding. In contrast, H2O2 treatment increased the levels of KSHV entry and infection. In addition, NAC inhibited KSHV infection-induced translocation of αVβ3 integrin into lipid rafts, actin-dependent membrane perturbations, such as blebs, observed during macropinocytosis, and activation of the signal molecules ephrin-A2 receptor, FAK, Src, and Rac1. In contrast, H2O2 treatment increased the activation of ephrin-A2, FAK, Src, and Rac1. These studies demonstrate that KSHV infection induces ROS very early during infection to amplify the signaling pathways necessary for its efficient entry into HMVEC-d cells via macropinocytosis.  相似文献   

7.
8.
Foot-and-mouth disease virus (FMDV) can use a number of different integrins (αvβ1, αvβ3, αvβ6, and αvβ8) as receptors to initiate infection. Infection mediated by αvβ6 is known to occur by clathrin-mediated endocytosis and is dependent on the acidic pH within endosomes. On internalization, virus is detected rapidly in early endosomes (EE) and subsequently in perinuclear recycling endosomes (PNRE), but not in late endosomal compartments. Due to the extreme sensitivity of FMDV to acidic pH, it is thought that EE can provide a pH low enough for infection to occur; however, definitive proof that infection takes place from within these compartments is still lacking. Here we have investigated the intracellular transport steps required for FMDV infection of IBRS-2 cells, which express αvβ8 as their FMDV receptor. These experiments confirmed that FMDV infection mediated by αvβ8 is also dependent on clathrin-mediate endocytosis and an acidic pH within endosomes. Also, the effect on FMDV infection of dominant-negative (DN) mutants of cellular rab proteins that regulate endosomal traffic was examined. Expression of DN rab5 reduced the number of FMDV-infected cells by 80%, while expression of DN rab4 or DN rab7 had virtually no effect on infection. Expression of DN rab11 inhibited infection by FMDV, albeit to a small extent (∼35%). These results demonstrate that FMDV infection takes place predominantly from within EE and does not require virus trafficking to the late endosomal compartments. However, our results suggest that infection may not be exclusive to EE and that a small amount of infection could occur from within PNRE.Foot-and-mouth disease virus (FMDV) is a member of the Aphthovirus genus of the family Picornaviridae and the etiological agent responsible for FMD, an economically important and severe vesicular condition of cloven-hoofed animals, including cattle, pigs, sheep, and goats (2). The mature virus particle consists of a positive-sense single-stranded RNA genome (vRNA) enclosed within a nonenveloped icosahedral capsid formed from 60 copies each of four virus-encoded proteins, VP1 to VP4 (1).The initial stage of FMDV infection is virus binding to cell surface integrins via a highly conserved RGD motif located on the GH loop of VP1. A number of different species of RGD-binding integrins (αvβ1, αvβ3, αvβ6, and αvβ8) have been reported to serve as receptors for FMDV (5, 23-26). Using pharmacological and dominant-negative (DN) inhibitors of specific endocytic pathways in combination with immunofluorescence confocal microscopy, the cell entry pathway used by FMDV has been determined for αvβ6-expressing cells (6, 36). These studies established that infection occurs by clathrin-mediated endocytosis and is dependent on the acidic pH within endosomes, which serves as the trigger for capsid disassembly and translocation of the vRNA across the endosomal membrane into the cytosol. Internalized virus was detected rapidly in early endosomes (EE) and subsequently in perinuclear recycling endosomes (PNRE), but not in late endosomes (LE) or lysosomes (Lys) (the late endosomal compartments). Due to the extreme sensitivity of FMDV to acidic pH (15), it is thought that EE can provide a pH low enough for virus disassembly to occur; however, definitive proof that infection takes place from within EE is still lacking. For example, the possibility cannot be excluded that a productive infection requires virus transport to late endosomal compartments, where, following capsid disassembly and viral genome transfer into the cytosol, the capsid proteins are rapidly degraded.rab proteins control multiple membrane trafficking events in the cell. They are members of the ras superfamily of small GTP-binding proteins and cycle between active GTP- and inactive GDP-bound states (22, 38, 39, 47, 50). Conversion between these states is regulated by guanine nucleotide exchange factors, which stimulate the binding of GTP, and GTPase-activating proteins that which accelerate GTP hydrolysis. Activated rab proteins are recruited onto membrane-bounded compartments where they regulate many steps of vesicle trafficking, including vesicle budding, movement, tethering, and fusion (35, 61). Each rab is recruited to a specific compartment and functions through interactions with specific effectors that mediate the downstream rab-associated functions (39). In mammalian cells, at least 12 rab proteins that regulate trafficking through the endosomal pathway have been identified (27). Of these, rab4, rab5, rab7, and rab11 play major roles in endocytic vesicle trafficking. rab5 is present on EE and regulates transport of incoming endocytic vesicles from the plasma membrane (PM) to EE and homotypic EE fusion events (3, 8, 10, 20, 30, 44, 52). Both rab4 and rab11 are regulators of receptor recycling from EE back to the PM (34); rab4 is localized primarily to EE and regulates rapid recycling directly back to the PM (16, 45, 48, 51, 56), and rab11 is localized primarily to the PNRE and regulates a slower recycling pathway through these compartments (21, 43, 54, 60). In addition rab11 also regulates membrane traffic from endocytic recycling compartments to the trans-Golgi network (55). rab7 is located primarily on LE and regulates traffic from EE to LE and between LE and Lys (7, 9, 18, 32, 40, 58, 59). The unique targeting of rab proteins to distinct cellular compartments and their specificity as regulators of vesicular trafficking has made them important tools for studying endocytosis. For example, expression of DN or constitutively active mutants of rab proteins that regulate endosomal traffic has been used to identify the intracellular transport steps that are required for infection by a number of different viruses (13, 14, 28, 31, 41, 42, 49, 53, 57, 59).Here we have investigated the intracellular transport steps required for FMDV infection using porcine IBRS-2 cells, which are derived from a natural host of FMDV. IBRS-2 cells use αvβ8, and not αvβ6, as the major FMDV receptor (11). Our initial experiments confirmed that FMDV infection mediated by αvβ8 is dependent on clathrin-mediated endocytosis and on an acidic pH within endosomes. The effect on FMDV infection within IBRS-2 cells of DN mutants of cellular rab proteins that regulate endosomal traffic was examined. These experiments show that rab5 is needed for FMDV infection, as expression of DN rab5 reduced the number of FMDV-infected cells by ∼80%. In contrast, expression of either DN rab4 or DN rab7 had virtually no effect on infection. Expression of DN rab11 inhibited infection by FMDV, albeit to a small extent (∼35%). These results demonstrate that FMDV infection takes place predominantly from within EE and does not require virus trafficking to the late endosomal compartments. However, our results suggest that infection may not be exclusive to EE and that a small amount of infection could occur from within PNRE.  相似文献   

9.
艾滋病(AIDS)是由人类免疫缺陷病毒(HIV)侵染表达CD4表面抗原(CD4+)的T淋巴细胞而引起的.艾滋病病毒进入CD4+T淋巴细胞首先是通过病毒与细胞膜的融合来完成的.该融合过程涉及到病毒表面膜蛋白(gp120和gp41)与细胞表面受体蛋白(CD4和CCR5等)之间的相互作用.根据对这些蛋白质分子结构及作用机制的认识,从破坏病毒与细胞的融合入手,设计新型的抗艾滋药物及疫苗,已成为目前药物开发的新热点.  相似文献   

10.
Infection of the mammary gland with live bacteria elicits a pathogen-specific host inflammatory response. To study these host-pathogen interactions wild type mice, NF-kappaB reporter mice as well as caspase-1 and IL-1beta knockout mice were intramammarily challenged with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The murine mastitis model allowed to compare the kinetics of the induced cytokine protein profiles and their underlying pathways. In vivo and ex vivo imaging showed that E. coli rapidly induced NF-kappaB inflammatory signaling concomitant with high mammary levels of TNF-alpha, IL-1 alpha and MCP-1 as determined by multiplex analysis. In contrast, an equal number of S. aureus bacteria induced a low NF-kappaB activity concomitant with high mammary levels of the classical IL-1beta fragment. These quantitative and qualitative differences in local inflammatory mediators resulted in an earlier neutrophil influx and in a more extensive alveolar damage post-infection with E. coli compared to S. aureus. Western blot analysis revealed that the inactive proIL-1beta precursor was processed into pathogen-specific IL-1beta fragmentation patterns as confirmed with IL-1beta knockout animals. Additionally, caspase-1 knockout animals allowed to investigate whether IL-1beta maturation depended on the conventional inflammasome pathway. The lack of caspase-1 did not prevent extensive proIL-1beta fragmentation by either of S. aureus or E. coli. These non-classical IL-1beta patterns were likely caused by different proteases and suggest a sentinel function of IL-1beta during mammary gland infection. Thus, a key signaling nodule can be defined in the differential host innate immune defense upon E. coli versus S. aureus mammary gland infection, which is independent of caspase-1.  相似文献   

11.
12.
13.
Seaton G  Lee K  Rohozinski J 《Plant physiology》1995,108(4):1431-1438
The effects of the algal virus Paramecium bursaria Chlorella virus-1 on the photosynthetic physiology of its host, Chlorella NC64A, was studied by observing changes in Chl fluorescence quenching and O2 exchange. Metabolic changes were calibrated against electron microscopic analysis of the morphological changes that occur during the infection cycle. It takes approximately 10 h from attachment of the virus to final lysis of the host cell, so a complete infection cycle can be observed continuously in one experiment. During the early stages of the infection cycle many rapid changes occurred in the host cell's metabolism and these were reflected in changes of photosynthetic and respiratory rates. The dramatic inhibition of photosynthesis in Chlorella NC64A cells by P. bursaria Chlorella virus-1 has facilitated the use of fluorescence quenching as an accurate measure of the first phase of viral infection (attachment and penetration of the host cell) and the extent to which a population of host cells is infected. Effects of temperature and cation requirement of the infection cycle are described. The relevance of our observations to the events observed during viral infection of higher plants is discussed.  相似文献   

14.
Neutrophil elastase (NE) is a neutrophil-derived serine proteinase with broad substrate specificity. We have recently demonstrated that NE is capable of entering tumor cell endosomes and processing novel intracellular substrates. In the current study, we sought to determine the mechanism by which NE enters tumor cells. Our results show that NE enters into early endosomal antigen-1+ endosomes in a dynamin- and clathrin-dependent but flotillin-1- and caveolin-1-independent fashion. Cathepsin G (but not proteinase-3) also enters tumor endosomes via the same mechanism. We utilized 125I-labeled NE to demonstrate that NE binds to the surface of cancer cells. Incubation of radiolabeled NE with lung cancer cells displays a dissociation constant (Kd) of 284 nm. Because NE is known to bind to heparan sulfate- and chondroitin sulfate-containing proteoglycans, we treated cells with glycanases to remove these confounding factors, which did not significantly diminish cell surface binding or endosomal entry. Thus, NE and CG bind to the surface of cancer cells, presumably to a cell surface receptor, and subsequently undergo clathrin pit-mediated endocytosis.  相似文献   

15.
We have studied the effects of CC-chemokines on human immunodeficiency virus type 1 (HIV-1) infection, focusing on the infectivity enhancement caused by RANTES. High RANTES concentrations increase the infectivity of HIV-1 isolates that use CXC-chemokine receptor 4 for entry. However, RANTES can have a similar enhancing effect on macrophagetropic viruses that enter via CC-chemokine receptor 5 (CCR5), despite binding to the same receptor as the virus. Furthermore, RANTES enhances the infectivity of HIV-1 pseudotyped with the envelope glycoprotein of murine leukemia virus or vesicular stomatitis virus, showing that the mechanism of enhancement is independent of the route of virus-cell fusion. The enhancing effects of RANTES are not mediated via CCR5 or other known chemokine receptors and are not mimicked by MIP-1α or MIP-1β. The N-terminally modified derivative aminooxypentane RANTES (AOP-RANTES) efficiently inhibits HIV-1 infection via CCR5 but otherwise mimics RANTES by enhancing viral infectivity. There are two mechanisms of enhancement: one apparent when target cells are pretreated with RANTES (or AOP-RANTES) for several hours, and the other apparent when RANTES (or AOP-RANTES) is added during virus-cell absorption. We believe that the first mechanism is related to cellular activation by RANTES, whereas the second is an increase in virion attachment to target cells.  相似文献   

16.
Human papillomavirus type 16 (HPV16) has been identified as being the most common etiological agent leading to cervical cancer. Despite having a clear understanding of the role of HPV16 in oncogenesis, details of how HPV16 traffics during infection are poorly understood. HPV16 has been determined to enter via clathrin-mediated endocytosis, but the subsequent steps of HPV16 infection remain unclear. There is emerging evidence that several viruses take advantage of cross talk between routes of endocytosis. Specifically, JCV and bovine papillomavirus type 1 have been shown to enter cells by clathrin-dependent endocytosis and then require caveolin-1-mediated trafficking for infection. In this paper, we show that HPV16 is dependent on caveolin-1 after clathrin-mediated endocytosis. We provide evidence for the first time that HPV16 infection is dependent on trafficking to the endoplasmic reticulum (ER). This novel trafficking may explain the requirement for the caveolar pathway in HPV16 infection because clathrin-mediated endocytosis typically does not lead to the ER. Our data indicate that the infectious route for HPV16 following clathrin-mediated entry is caveolin-1 and COPI dependent. An understanding of the steps involved in HPV16 sorting and trafficking opens up the possibility of developing novel approaches to interfere with HPV16 infection and reduce the burden of papillomavirus diseases including cervical cancer.Human papillomavirus (PV) type 16 (HPV16) is a member of the family Papillomaviridae, a group of double-stranded DNA (dsDNA) viruses with a tropism for squamous epithelia (70). Most PV infections result in benign lesions, although a subset of high-risk HPVs are capable of malignant transformation, resulting in various cancers including cervical carcinoma (21, 38). Infection with HPV16 is responsible for causing approximately half of the cases of invasive cervical cancer (7). In spite of the link between HPV16 and cervical cancer, the intracellular movement of HPV16 through target keratinocyte cells during infection has not been defined in detail.Viruses can enter into target cells by taking advantage of the cell''s natural endocytosis machinery (60). One of the best-characterized modes of internalization is by receptor-mediated, clathrin-dependent endocytosis. In this mode of entry, clathrin-coated pits internalize cargo into clathrin-coated vesicles, which are pinched from the plasma membrane by dynamin-2 in order to internalize (68). The process of clathrin-mediated endocytosis occurs rapidly, resulting in the delivery of cargo to early/sorting endosomes within seconds to minutes (23, 31). From the sorting endosome, most clathrin-dependent ligands are trafficked back to the plasma membrane in recycling endosomes or to lysosomes for degradation (35, 56). Another well-studied model of ligand entry is caveolin-1-mediated endocytosis. The caveolar pathway typically involves entry via cholesterol-rich caveolae at the plasma membrane, which deliver their contents to pH-neutral organelles known as caveosomes (44, 65). The delivery of cargo from caveosomes to the Golgi apparatus and the endoplasmic reticulum (ER) was demonstrated previously (44, 46, 50). The traffickings of cargo internalized via clathrin- and caveolin-1-mediated endocytosis were once thought to be separate; however, it is becoming evident that viruses including bovine PV type 1 (BPV1), JCV, HPV31, and BKV rely on both pathways depending on the stage of infection (29, 32, 50, 63).PV internalization is preceded by virion attachment to the extracellular matrix, followed by binding to heparan sulfate (14, 15, 25). The involvement of a secondary receptor has been suggested, putatively an alpha-6 integrin (24, 37). Postbinding, a conformational change in the PV capsid results in a furin cleavage event at the N terminus of the minor capsid protein L2, which has been suggested to play a role in the endosomal escape of the viral genome (19, 30, 52). An increasing body of evidence supports the entry of HPV16 by clathrin-mediated endocytosis (9, 27, 62). Electron microscopy of HPV16 infection in COS-7 cells demonstrated HPV16 pseudovirions in clathrin-coated vesicles 20 min after entry and within structures resembling endosomes by 1 h postentry (9). HPV16 infection of HaCaT keratinocyte, COS-7, and 293TT cells has been blocked by chlorpromazine, an inhibitor of the formation of clathrin-coated pits (9, 27, 62, 67). Importantly, those studies showed that two inhibitors of caveolin-1-mediated internalization, filipin and nystatin, did not interfere with HPV16 infection (9, 27, 62). Our laboratory demonstrated the importance of dynamin in HPV16 infection, presumably in the scission of clathrin-coated vesicles from the plasma membrane (1). Recently, a clathrin-, caveolin-, and dynamin-independent endocytosis of HPV16 was suggested, although the use of the HPV18-positive, heteroploid HeLa cell line calls into question the relevance of this finding to natural infection (64).In a previous study, we described the postentry trafficking of BPV1 from endosomes to caveolin-1-positive vesicles, similarly to a related nonenveloped dsDNA virus, JCV (32, 50). Our data demonstrated that the infectious route of BPV1 involved entry by clathrin-mediated endocytosis followed by transport to the caveolar pathway in order to traffic to the ER (32). We found that BPV1 infection was neutralized by an antibody that prevented viral particle transport to the ER (33). The movement of BPV1 from the endosome to the caveosome provides a possible explanation for why BPV1 trafficking is so slow compared to those of other ligands of clathrin-mediated endocytosis (20, 26). The kinetics of BPV1 and HPV16 entry were previously reported to be identical, and the coincident internalization of HPV16 and BPV1 virus-like particles (VLPs) showed colocalization between the VLPs during infection (20, 62). These data suggest that HPV16 and BPV1 infection may be occurring by a similar mechanism.Our goal in the present study was to determine the intracellular trafficking events leading to HPV16 infection. The use of reporter virion technology has allowed the production of high-titer HPV16 virions by a method previously shown to yield virions that are infectious in vivo (16). In this study, we used HPV16 reporter virions to study HPV16 infection in the spontaneously immortalized human HaCaT keratinocyte cell line. Our data show that the infectious route of HPV16 is from early endosomes to caveolin-1-positive vesicles and then to the ER. Using immunofluorescence and short hairpin RNA (shRNA) against caveolin-1, we demonstrate the importance of the caveolar pathway after HPV16 has been internalized. We show that HPV16 infection was blocked by inhibiting the formation of COPI transport vesicles, which function in trafficking between the ER and the Golgi apparatus and from caveosomes to the ER (5, 39). We provide evidence that after reaching the caveosome, HPV16 requires passage to the ER for successful infection, a trafficking event made possible by COPI vesicle-mediated movement from the caveosome to the ER.  相似文献   

17.
为了构建表达人胰高血糖素样肽-1受体(GLP-1R)基因的BHK细胞株,并利用该重组细胞对GLP-1等相关肽进行活性测定,首先通过酶切、连接方式将人GLP-1R基因克隆至真核表达载体pCDNA3.(1 )中,然后用脂质体转染法将重组质粒转染至BHK-21细胞,转染后的细胞经G418加压筛选、细胞有限稀释等方法获得克隆细胞株。经过该细胞株RT-PCR验证,结果证实目的基因已整合至BHK-21细胞基因组中,并获得成功转录和表达。活性检测实验表明该重组细胞株经过GLP-1的刺激后,其细胞中的cAMP含量得到明显提升。该细胞株的构建为GLP-1及相关肽的活性测定奠定了基础。  相似文献   

18.
19.
20.
Polysomes were prepared from Sindbis virus-infected BHK cells. The major species of RNA in these polysomes was identified as 26S RNA (interjacent RNA) by (i) disrupting the polysomes with EDTA; (ii) treating the infected cells with puromycin; and (iii) isolating polysomes from cells infected with a temperature-sensitive mutant that does not form nucleocapsids. Small amounts of 42S RNA and 33S RNA were also found in polysomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号