首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The mechanisms controlling progression of conjugative DNA processing from a preinitiation stage of specific plasmid strand cleavage at the transfer origin to a stage competent for unwinding the DNA strand destined for transfer remain obscure. Linear heteroduplex substrates containing double-stranded DNA binding sites for plasmid R1 relaxosome proteins and various regions of open duplex for TraI helicase loading were constructed to model putative intermediate structures in the initiation pathway. The activity of TraI was compared in steady-state multiple turnover experiments that measured the net production of unwound DNA as well as transesterase-catalyzed cleavage at nic. Helicase efficiency was enhanced by the relaxosome components TraM and integration host factor. The magnitude of stimulation depended on the proximity of the specific protein binding sites to the position of open DNA. The cytoplasmic domain of the R1 coupling protein, TraDΔN130, stimulated helicase efficiency on all substrates in a manner consistent with cooperative interaction and sequence-independent DNA binding. Variation in the position of duplex opening also revealed an unsuspected autoinhibition of the unwinding reaction catalyzed by full-length TraI. The activity reduction was sequence dependent and was not observed with a truncated helicase, TraIΔN308, lacking the site-specific DNA binding transesterase domain. Given that transesterase and helicase domains are physically tethered in the wild-type protein, this observation suggests that an intramolecular switch controls helicase activation. The data support a model where protein-protein and DNA ligand interactions at the coupling protein interface coordinate the transition initiating production and uptake of the nucleoprotein secretion substrate.Controlled duplex DNA unwinding is a crucial prerequisite for the expression and maintenance of genomes. Genome-manipulating and -regulating proteins are central to that biological function in recognizing appropriate DNA targets at initiation sequences and unwinding the complementary strands to provide single-stranded DNA (ssDNA) templates for nucleic acid synthesis and other processing reactions. The protein machineries involved include nucleic acid helicases. DNA helicases are powerful enzymes that convert the energy of nucleoside triphosphate hydrolysis to directional DNA strand translocation and separation of the double helix into its constituent single strands (for reviews, see references 13, 14, 16, 38, 55, and 64). By necessity, these enzymes interact with DNA strands via mechanisms independent of sequence recognition. At replication initiation helicases gain controlled access to the double-stranded genome at positions determined by the DNA binding properties of initiator proteins that comprise an origin recognition complex (1, 9, 17, 31, 45, 66). The mechanisms supporting localized unwinding within the complex include initiator-induced DNA looping, wrapping, and bending and feature regions of low thermodynamic stability. The exposed ssDNA mediates helicase binding followed by directional translocation along that strand until the enzyme engages the duplex for unwinding.In the MOBF family of conjugation systems, the plasmid DNA strand destined for transfer (T strand) is unwound from its complement by a dedicated conjugative helicase, TraI of F-like plasmids or TrwC of the IncW paradigm. These enzymes are remarkable in that the same polypeptides additionally harbor in a distinct domain a DNA transesterase activity. That function is required to recognize and cleave the precise phosphodiester bond, nic, in the T strand where unwinding of the secretion substrate begins. In current models the conjugative helicases are thus targeted to the transfer origin (oriT) of their cognate plasmid by the high-affinity DNA sequence interactions of their N-terminal DNA transesterase domains. In the bacterial cell, recruitment and activation of the conjugative helicase occur not on naked DNA but within an initiator complex called the relaxosome (67). For the F-like plasmid R1, sequence-specific DNA binding properties of the plasmid proteins TraI, TraY, TraM, and the host integration factor (IHF) direct assembly of the relaxosome at oriT (10, 12, 29, 33, 51, 52). Integration of protein TraM confers recognition features to the relaxosome, which permit its selective docking to TraD, the coupling protein associated with the conjugative type IV secretion system (T4CP) (2, 15, 49). In current models, the T4CP forms a hexameric translocation pore at the cytoplasmic membrane that not only governs substrate entry to the envelope spanning type IV secretion machinery but also provides energy for macromolecular transport via ATP hydrolysis (36, 50). These models propose that T4CPs provide not only a physical bridge between the plasmid and the type IV transporter but also a unique control function in distinguishing one plasmid (relaxosome) from another (7, 8). Before the current study (see accompanying report [41]), evidence indicating that regulation of the initiation of conjugative DNA processing also takes place at this interface had not been reported.F plasmid TraI protein, originally named Escherichia coli DNA helicase I, was initially characterized in the Hoffman-Berling laboratory (19). The purified enzyme exhibits properties in vitro consistent with its function in conjugative DNA strand transfer including a very high 1,100-bp/s rate of duplex unwinding, high processivity, and a 5′-to-3′ directional bias (relative to the strand to which it is bound) (34, 54). Together these features should readily support the observed rate of conjugative DNA translocation as well as concomitant replacement synthesis of the mobilized T strand from the 3′ OH product of nic cleavage.Comparatively little is known about the mechanisms of initiating TraI helicase activity. The enzyme requires ssDNA 5′ to the duplex junction (32), and a minimum length of 30 nucleotides (nt) is necessary to promote efficient duplex unwinding on substrates lacking oriT (11, 54). To our knowledge, oriT is the only sequence where the helicase activity is naturally initiated, however. Moreover, the unique fusion of a helicase to the site- and strand-specific DNA transesterase domains within MOBF enzymes is expected to pose intriguing regulatory challenges during initiation. The combination within a single polypeptide of a site-specific DNA binding capacity with a helical motor activity would seem counterproductive. The extraordinary efficiency of these proteins in intercellular DNA strand transfer belies this prediction and instead hints strongly at a coordinated progression of the initiation pathway. Since relaxosome assembly is thus far insufficient to initiate helicase activity on supercoiled oriT substrates in vitro, we have developed a series of heteroduplex DNA substrates which support the unwinding reaction and model possible intermediate structures of R1 plasmid strand transfer initiation (10). In this system linear double-stranded DNA (dsDNA) substrates with a central region of sequence heterogeneity trap defined lengths of R1 oriT sequence in unwound conformation. Unexpectedly, efficient helicase activity initiated from a melted oriT duplex required ssDNA twice as long (60 nt) as that previously observed on substrates lacking this sequence (11).In the current report, we describe an application of these models where variation in the position of duplex opening in the vicinity of nic, as well as the additional presence of auxiliary relaxosome proteins, has revealed novel insights into control of a conjugative helicase involving both DNA and protein interactions. Moreover, we observe a sequence-independent stimulation of the unwinding reaction in the presence of T4CP TraD. These results support a model where docking of the preinitiation relaxosome assembly to the T4CP alters the composition and architecture of the complex in a manner essential to the subsequent initiation of T-strand unwinding.  相似文献   

3.
Homologous recombination is important for the error-free repair of DNA double-strand breaks and for replication fork restart. Recombinases of the RecA/Rad51 family perform the central catalytic role in this process. UvsX recombinase is the RecA/Rad51 ortholog of bacteriophage T4. UvsX and other recombinases form presynaptic filaments on ssDNA that are activated to search for homology in dsDNA and to perform DNA strand exchange. To effectively initiate recombination, UvsX must find and bind to ssDNA within an excess of dsDNA. Here we examine the binding of UvsX to ssDNA and dsDNA in the presence and absence of nucleotide cofactor, ATP. We also examine how the binding of one DNA substrate is affected by simultaneous binding of the other to determine how UvsX might selectively assemble on ssDNA. We show that the two DNA binding sites of UvsX are regulated by the nucleotide cofactor ATP and are coordinated with each other such that in the presence of ssDNA, dsDNA binding is significantly reduced and correlated with its homology to the ssDNA bound to the enzyme. UvsX has high affinity for dsDNA in the absence of ssDNA, which may allow for sequestration of the enzyme in an inactive form prior to ssDNA generation.  相似文献   

4.
Helicases are molecular motors that couple the energy of ATP hydrolysis to the unwinding of structured DNA or RNA and chromatin remodeling. The conversion of energy derived from ATP hydrolysis into unwinding and remodeling is coordinated by seven sequence motifs (I, Ia, II, III, IV, V, and VI). The Q motif, consisting of nine amino acids (GFXXPXPIQ) with an invariant glutamine (Q) residue, has been identified in some, but not all helicases. Compared to the seven well-recognized conserved helicase motifs, the role of the Q motif is less acknowledged. Mutations in the human ChlR1 (DDX11) gene are associated with a unique genetic disorder known as Warsaw Breakage Syndrome, which is characterized by cellular defects in genome maintenance. To examine the roles of the Q motif in ChlR1 helicase, we performed site directed mutagenesis of glutamine to alanine at residue 23 in the Q motif of ChlR1. ChlR1 recombinant protein was overexpressed and purified from HEK293T cells. ChlR1-Q23A mutant abolished the helicase activity of ChlR1 and displayed reduced DNA binding ability. The mutant showed impaired ATPase activity but normal ATP binding. A thermal shift assay revealed that ChlR1-Q23A has a melting point value similar to ChlR1-WT. Partial proteolysis mapping demonstrated that ChlR1-WT and Q23A have a similar globular structure, although some subtle conformational differences in these two proteins are evident. Finally, we found ChlR1 exists and functions as a monomer in solution, which is different from FANCJ, in which the Q motif is involved in protein dimerization. Taken together, our results suggest that the Q motif is involved in DNA binding but not ATP binding in ChlR1 helicase.  相似文献   

5.
Conjugative plasmid transfer between bacteria disseminates antibiotic resistance and diversifies prokaryotic genomes. Relaxases, proteins essential for conjugation, cleave one plasmid strand sequence specifically prior to transfer. Cleavage occurs through a Mg(2+)-dependent transesterification involving a tyrosyl hydroxyl and a DNA phosphate. The structure of the F plasmid TraI relaxase domain, described here, is a five-strand beta sheet flanked by alpha helices. The protein resembles replication initiator protein AAV-5 Rep but is circularly permuted, yielding a different topology. The beta sheet forms a binding cleft lined with neutral, nonaromatic residues, unlike most single-stranded DNA binding proteins which use aromatic and charged residues. The cleft contains depressions, suggesting base recognition occurs in a knob-into-hole fashion. Unlike most nucleases, three histidines but no acidic residues coordinate a Mg(2+) located near the catalytic tyrosine. The full positive charge on the Mg(2+) and the architecture of the active site suggest multiple roles for Mg(2+) in DNA cleavage.  相似文献   

6.
Stern JC  Schildbach JF 《Biochemistry》2001,40(38):11586-11595
The TraI protein has two essential roles in transfer of conjugative plasmid F Factor. As part of a complex of DNA-binding proteins, TraI introduces a site- and strand-specific nick at the plasmid origin of transfer (oriT), cutting the DNA strand that is transferred to the recipient cell. TraI also acts as a helicase, presumably unwinding the plasmid strands prior to transfer. As an essential feature of its nicking activity, TraI is capable of binding and cleaving single-stranded DNA oligonucleotides containing an oriT sequence. The specificity of TraI DNA recognition was examined by measuring the binding of oriT oligonucleotide variants to TraI36, a 36-kD amino-terminal domain of TraI that retains the sequence-specific nucleolytic activity. TraI36 recognition is highly sequence-specific for an 11-base region of oriT, with single base changes reducing affinity by as much as 8000-fold. The binding data correlate with plasmid mobilization efficiencies: plasmids containing sequences bound with lower affinities by TraI36 are transferred between cells at reduced frequencies. In addition to the requirement for high affinity binding to oriT, efficient in vitro nicking and in vivo plasmid mobilization requires a pyrimidine immediately 5' of the nick site. The high sequence specificity of TraI single-stranded DNA recognition suggests that despite its recognition of single-stranded DNA, TraI is capable of playing a major regulatory role in initiation and/or termination of plasmid transfer.  相似文献   

7.
The relaxase of RP4 nicks the double-stranded plasmid at the oriT site and binds covalently to DNA at the 5′ end of the nick. The 80-kDa relaxase (TraI) is encoded on an operon with several overlapping open reading frames (ORFs). The importance in conjugation of a short ORF (traX) with a start site overlapping the 5′ terminus of traI was investigated, as well as the effects of specific mutations in the relaxase. Elimination of TraX reduced the transfer efficiency by approximately 50% in several intergeneric matings, especially when Escherichia coli was the donor. While TraI was essential for transfer to occur, deletion of the C-terminus of TraI decreased, but did not eliminate plasmid transfer. Mutation of the active site tyrosine resulted in residual transfer associated with amino acid misincorporation.  相似文献   

8.
9.
Bacteria encode homooligomeric single-stranded (ss) DNA-binding proteins (SSBs) that coat and protect ssDNA intermediates formed during genome maintenance reactions. The prototypical Escherichia coli SSB tetramer can bind ssDNA using multiple modes that differ by the number of bases bound per tetramer and the magnitude of the binding cooperativity. Our understanding of the mechanisms underlying cooperative ssDNA binding by SSBs has been hampered by the limited amount of structural information available for interfaces that link adjacent SSB proteins on ssDNA. Here we present a crystal structure of Bacillus subtilis SsbA bound to ssDNA. The structure resolves SsbA tetramers joined together by a ssDNA “bridge” and identifies an interface, termed the “bridge interface,” that links adjacent SSB tetramers through an evolutionarily conserved surface near the ssDNA-binding site. E. coli SSB variants with altered bridge interface residues bind ssDNA with reduced cooperativity and with an altered distribution of DNA binding modes. These variants are also more readily displaced from ssDNA by RecA than wild-type SSB. In spite of these biochemical differences, each variant is able to complement deletion of the ssb gene in E. coli. Together our data suggest a model in which the bridge interface contributes to cooperative ssDNA binding and SSB function but that destabilization of the bridge interface is tolerated in cells.  相似文献   

10.
Correct repair of damaged DNA is critical for genomic integrity. Deficiencies in DNA repair are linked with human cancer. Here we report a novel mechanism by which a virus manipulates DNA damage responses. Infection with murine polyomavirus sensitizes cells to DNA damage by UV and etoposide. Polyomavirus large T antigen (LT) alone is sufficient to sensitize cells 100 fold to UV and other kinds of DNA damage. This results in activated stress responses and apoptosis. Genetic analysis shows that LT sensitizes via the binding of its origin-binding domain (OBD) to the single-stranded DNA binding protein replication protein A (RPA). Overexpression of RPA protects cells expressing OBD from damage, and knockdown of RPA mimics the LT phenotype. LT prevents recruitment of RPA to nuclear foci after DNA damage. This leads to failure to recruit repair proteins such as Rad51 or Rad9, explaining why LT prevents repair of double strand DNA breaks by homologous recombination. A targeted intervention directed at RPA based on this viral mechanism could be useful in circumventing the resistance of cancer cells to therapy.  相似文献   

11.
12.
13.
14.
15.
P143 is a DNA helicase that tightly binds both double-stranded and single-stranded DNA. DNA-protein complexes rapidly dissociated in the presence of ATP and Mg(2+). This finding suggests that ATP hydrolysis causes a conformational change in P143 which decreases affinity for DNA. This supports the model of an inchworm mechanism of DNA unwinding.  相似文献   

16.
Genes encoding ribosomal proteins and other components of the translational apparatus are coregulated to efficiently adjust the protein synthetic capacity of the cell. Ssb, a Saccharomyces cerevisiae Hsp70 cytosolic molecular chaperone, is associated with the ribosome-nascent chain complex. To determine whether this chaperone is coregulated with ribosomal proteins, we studied the mRNA regulation of SSB under several environmental conditions. Ssb and the ribosomal protein rpL5 mRNAs were up-regulated upon carbon upshift and down-regulated upon amino acid limitation, unlike the mRNA of another cytosolic Hsp70, Ssa. Ribosomal protein and Ssb mRNAs, like many mRNAs, are down-regulated upon a rapid temperature upshift. The mRNA reduction of several ribosomal protein genes and Ssb was delayed by the presence of an allele, EXA3-1, of the gene encoding the heat shock factor (HSF). However, upon a heat shock the EXA3-1 mutation did not significantly alter the reduction in the mRNA levels of two genes encoding proteins unrelated to the translational apparatus. Analysis of gene fusions indicated that the transcribed region, but not the promoter of SSB, is sufficient for this HSF-dependent regulation. Our studies suggest that Ssb is regulated like a core component of the ribosome and that HSF is required for proper regulation of SSB and ribosomal mRNA after a temperature upshift.  相似文献   

17.
18.
Group I metabotropic glutamate receptors (mGluRs), mGluR1 and mGluR5, play critical functions in forms of activity-dependent synaptic plasticity and synapse remodeling in physiological and pathological states. Importantly, in animal models of fragile X syndrome, group I mGluR activity is abnormally enhanced, a dysfunction that may partly underlie cognitive deficits in the condition. Lipid rafts are cholesterol- and sphingolipid-enriched membrane domains that are thought to form transient signaling platforms for ligand-activated receptors. Many G protein-coupled receptors, including group I mGluRs, are present in lipid rafts, but the mechanisms underlying recruitment to these membrane domains remain incompletely understood. Here, we show that mGluR1 recruitment to lipid rafts is enhanced by agonist binding and is supported at least in part by an intact cholesterol recognition/interaction amino acid consensus (CRAC) motif in the receptor. Substitutions of critical residues in the motif reduce mGluR1 association with lipid rafts and agonist-induced, mGluR1-dependent activation of extracellular-signal-activated kinase1/2 MAP kinase (ERK-MAPK). We find that alteration of membrane cholesterol content or perturbation of lipid rafts regulates agonist-dependent activation of ERK-MAPK by group I mGluRs, suggesting a potential function for cholesterol as a positive allosteric modulator of receptor function(s). Together, these findings suggest that drugs that alter membrane cholesterol levels or directed to the receptor-cholesterol interface could be employed to modulate abnormal group I mGluR activity in neuropsychiatric conditions, including fragile X syndrome.  相似文献   

19.
Chromodomain helicase DNA-binding protein 2 (CHD2) is an ATPase and a member of the SNF2-like family of helicase-related enzymes. Although deletions of CHD2 have been linked to developmental defects in mice and epileptic disorders in humans, little is known about its biochemical and cellular activities. In this study, we investigate the ATP-dependent activity of CHD2 and show that CHD2 catalyzes the assembly of chromatin into periodic arrays. We also show that the N-terminal region of CHD2, which contains tandem chromodomains, serves an auto-inhibitory role in both the DNA-binding and ATPase activities of CHD2. While loss of the N-terminal region leads to enhanced chromatin-stimulated ATPase activity, the N-terminal region is required for ATP-dependent chromatin remodeling by CHD2. In contrast, the C-terminal region, which contains a putative DNA-binding domain, selectively senses double-stranded DNA of at least 40 base pairs in length and enhances the ATPase and chromatin remodeling activities of CHD2. Our study shows that the accessory domains of CHD2 play central roles in both regulating the ATPase domain and conferring selectivity to chromatin substrates.  相似文献   

20.
Recently we showed that the glycine-rich loop in the N-terminal portion of protein kinases and the client-binding site of Cdc37 are both necessary for interaction between Cdc37 and protein kinases. We demonstrate here that the N-terminal portion of Cdc37, distinct from its client-binding site, interacts with the C-terminal portion of Raf-1. This interaction might expose the client-binding site of Cdc37. In addition, we provide evidence indicating that Cdc37 is monomeric in its physiological state, and that it becomes a dimer only when it is complexed with both Hsp90 and protein kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号