首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Quality control systems facilitate polypeptide folding and degradation to maintain protein homeostasis. Molecular chaperones promote folding, whereas the ubiquitin/proteasome system mediates degradation. We show here that Saccharomyces cerevisiae Ubr1 and Ubr2 ubiquitin ligases promote degradation of unfolded or misfolded cytosolic polypeptides. Ubr1 also catalyzes ubiquitinylation of denatured but not native luciferase in a purified system. This activity is based on the direct interaction of denatured luciferase with Ubr1, although Hsp70 stimulates polyubiquitinylation of the denatured substrate. We also report that loss of Ubr1 and Ubr2 function suppressed the growth arrest phenotype resulting from chaperone mutation. This correlates with increased protein kinase maturation and indicates partitioning of foldable conformers toward the proteasome. Our findings, based on the efficiency of this quality control system, suggest that the cell trades growth potential to avert the potential toxicity associated with accumulation of unfolded or misfolded proteins. Ubr1 and Ubr2 therefore represent E3 components of a novel quality control pathway for proteins synthesized on cytosolic ribosomes.  相似文献   

2.
This review summarizes materials on the mechanisms of intracellular degradation of proteins whose topogenesis is disturbed at one stage or another. Chaperone and proteolytic systems involved in this process in the endoplasmic reticulum, mitochondria, and chloroplasts of eucaryotic cells as well as those in distinct subcellular compartments of procaryotic cells are considered. The available data suggest that living cells contain numerous systems keeping under control both folding of newly synthesized and newly imported polypeptide chains and their incorporation into heterooligomeric complexes. The point of view is elaborated that organelle formation is controlled not only at the level of individual protein molecules but also at the supermolecular level when whole organelles incapable of carrying out their integral key functions become targets for partial or total elimination. This type of control is realized through an autophagic mechanism involving lysosomes/vacuoles.  相似文献   

3.
4.
5.
Actin requires the chaperonin containing TCP1 (CCT), a hexadecameric ATPase essential for cell viability in eukaryotes, to fold to its native state. Following binding of unfolded actin to CCT, the cavity of the chaperone closes and actin is folded and released in an ATP-dependent folding cycle. In yeast, CCT forms a ternary complex with the phosducin-like protein PLP2p to fold actin, and together they can return nascent or chemically denatured actin to its native state in a pure in vitro folding assay. The complexity of the CCT-actin system makes the study of the actin folding mechanism technically challenging. We have established a novel spectroscopic assay through selectively labeling the C terminus of yeast actin with acrylodan and observe significant changes in the acrylodan fluorescence emission spectrum as actin is chemically unfolded and then refolded by the chaperonin. The variation in the polarity of the environment surrounding the fluorescent probe during the unfolding/folding processes has allowed us to monitor actin as it folds on CCT. The rate of actin folding at a range of temperatures and ATP concentrations has been determined for both wild type CCT and a mutant CCT, CCT4anc2, defective in folding actin in vivo. Binding of the non-hydrolysable ATP analog adenosine 5′-(β,γ-imino)triphosphate to the ternary complex leads to 3-fold faster release of actin from CCT following addition of ATP, suggesting a two-step folding process with a conformational change occurring upon closure of the cavity and a subsequent final folding step involving packing of the C terminus to the native-like state.  相似文献   

6.
A cell-free vesicle fusion assay that reproduces a subreaction in transport of pro-α-factor from the ER to the Golgi complex has been used to fractionate yeast cytosol. Purified Sec18p, Uso1p, and LMA1 in the presence of ATP and GTP satisfies the requirement for cytosol in fusion of ER-derived vesicles with Golgi membranes. Although these purified factors are sufficient for vesicle docking and fusion, overall ER to Golgi transport in yeast semi-intact cells depends on COPII proteins (components of a membrane coat that drive vesicle budding from the ER). Thus, membrane fusion is coupled to vesicle formation in ER to Golgi transport even in the presence of saturating levels of purified fusion factors. Manipulation of the semi-intact cell assay is used to distinguish freely diffusible ER- derived vesicles containing pro-α-factor from docked vesicles and from fused vesicles. Uso1p mediates vesicle docking and produces a dilution resistant intermediate. Sec18p and LMA1 are not required for the docking phase, but are required for efficient fusion of ER- derived vesicles with the Golgi complex. Surprisingly, elevated levels of Sec23p complex (a subunit of the COPII coat) prevent vesicle fusion in a reversible manner, but do not interfere with vesicle docking. Ordering experiments using the dilution resistant intermediate and reversible Sec23p complex inhibition indicate Sec18p action is required before LMA1 function.  相似文献   

7.
Thioredoxin (TRX) is a disulfide reductase present ubiquitously in all taxa and plays an important role as a regulator of cellular redox state. Recently, a redox-independent, chaperone function has also been reported for some thioredoxins. We previously identified nodulin-35, the subunit of soybean uricase, as an interacting target of a cytosolic soybean thioredoxin, GmTRX. Here we report the further characterization of the interaction, which turns out to be independent of the disulfide reductase function and results in the co-localization of GmTRX and nodulin-35 in peroxisomes, suggesting a possible function of GmTRX in peroxisomes. In addition, the chaperone function of GmTRX was demonstrated in in vitro molecular chaperone activity assays including the thermal denaturation assay and malate dehydrogenase aggregation assay. Our results demonstrate that the target of GmTRX is not only confined to the nodulin-35, but many other peroxisomal proteins, including catalase (AtCAT), transthyretin-like protein 1 (AtTTL1), and acyl-coenzyme A oxidase 4 (AtACX4), also interact with the GmTRX. Together with an increased uricase activity of nodulin-35 and reduced ROS accumulation observed in the presence of GmTRX in our results, especially under heat shock and oxidative stress conditions, it appears that GmTRX represents a novel thioredoxin that is co-localized to the peroxisomes, possibly providing functional integrity to peroxisomal proteins.  相似文献   

8.
Eukaryotic organisms employ a variety of mechanisms during meiosis to assess and ensure the quality of their gametes. Defects or delays in successful meiotic recombination activate conserved mechanisms to delay the meiotic divisions, but many multicellular eukaryotes also induce cell death programs to eliminate gametes deemed to have failed during meiosis. It is generally thought that yeasts lack such mechanisms. Here, we show that in the fission yeast Schizosaccharomyces pombe, defects in meiotic recombination lead to the activation of a checkpoint that is linked to ascus wall endolysis – the process by which spores are released in response to nutritional cues for subsequent germination. Defects in meiotic recombination are sensed as unrepaired DNA damage through the canonical ATM and ATR DNA damage response kinases, and this information is communicated to the machinery that stimulates ascus wall breakdown. Viability of spores that undergo endolysis spontaneously is significantly higher than that seen upon chemical endolysis, demonstrating that this checkpoint contributes to a selective mechanism for the germination of high quality progeny. These results provide the first evidence for the existence of a checkpoint linking germination to meiosis and suggest that analysis solely based on artificial, enzymatic endolysis bypasses an important quality control mechanism in this organism and potentially other ascomycota, which are models widely used to study meiosis.  相似文献   

9.
In eukaryotic cells, both lysosomal and nonlysosomal pathways are involved in degradation of cytosolic proteins. The physiological condition of the cell often determines the degradation pathway of a specific protein. In this article, we show that cytosolic proteins can be taken up and degraded by isolated Saccharomyces cerevisiae vacuoles. After starvation of the cells, protein uptake increases. Uptake and degradation are temperature dependent and show biphasic kinetics. Vacuolar protein import is dependent on cytosolic heat shock proteins of the hsp70 family and on protease-sensitive component(s) on the outer surface of vacuoles. Degradation of the imported cytosolic proteins depends on a functional vacuolar ATPase. We show that the cytosolic isoform of yeast glyceraldehyde-3-phosphate dehydrogenase is degraded via this pathway. This import and degradation pathway is reminiscent of the protein transport pathway from the cytosol to lysosomes of mammalian cells.  相似文献   

10.
Abstract: Purified chromaffin granules from bovine adrenal medulla bound a small group of medullary cell cytosol proteins at micromolar levels of Ca2+ and physiological levels of K+, Mg2+, and Mg-ATP. The bound proteins had molecular weights of 33,000-37,000 and 70,000-71,000 on sodium dodecyl sulphate-polyacrylamide gel electrophoresis and did not correspond with any previously reported cytosolic components of chromaffin cells. The new proteins were eluted from intact granules or resealed granule membranes at 0.1 μ M Ca2+; binding was half-maximal at 2.6 μ M . Adsorption and elution in this manner resulted in a high degree of purification of the new proteins that were minor components of the original cytosol. Partially purified fractions enriched in the 33,000-37,000 and 70,000-71,000 proteins bound 45Ca2+ at submicromolar levels in the presence of millimolar Mg2+. Calmodulin was also bound by the granule membranes and was present in trace amounts in cytosol eluates from granules, but it did not bind to the new proteins in the presence of calcium ions. The possible significance of the new proteins to calcium-mediated secretion from chromaffin cells is discussed.  相似文献   

11.
Efflux time courses of endogenous cytosolic proteins were obtained from rabbit psoas muscle fibers skinned in oil and transferred to physiological salt solution. Proteins were separated by gel electrophoresis and compared to load-matched standards for quantitative analysis. A radial diffusion model incorporating the dissociation and dissipation of supramolecular complexes accounts for an initial lag and subsequent efflux of glycolytic and glycogenolytic enzymes. The model includes terms representing protein crowding, myofilament lattice hindrance, and binding to the cytomatrix. Optimization algorithms returned estimates of the apparent diffusion coefficients, D(r,t), that were very low at the onset of diffusion (∼10−10 cm2 s−1) but increased with time as cytosolic protein density, which was initially high, decreased. D(r,t) at later times ranged from 2.11 × 10−7 cm2 s−1 (parvalbumin) to 0.20 × 10−7 cm2 s−1 (phosphofructose kinase), values that are 3.6- to 12.3-fold lower than those predicted in bulk water. The low initial values are consistent with the presence of complexes in situ; the higher later values are consistent with molecular sieving and transient binding of dissociated proteins. Channeling of metabolic intermediates via enzyme complexes may enhance production of adenosine triphosphate at rates beyond that possible with randomly and/or sparsely distributed enzymes, thereby matching supply with demand.  相似文献   

12.
真核生物mRNA的翻译调控,通常发生在起始阶段。异源三聚体复合物eIF4F中的eIF4E与mRNA5'端帽子结构的结合是该阶段的核心,而eIF4E抑制性蛋白正是通过与eIF4E的相互作用而调控着翻译起始过程,进而调控着翻译的速率。eIF4E抑制性蛋白对翻译的这种调控作用对细胞的生长、发育、癌症以及神经生物学方面有巨大影响,现主要就eIF4E抑制性蛋白的翻译调控机制进行综述。  相似文献   

13.
Efflux time courses of endogenous cytosolic proteins were obtained from rabbit psoas muscle fibers skinned in oil and transferred to physiological salt solution. Proteins were separated by gel electrophoresis and compared to load-matched standards for quantitative analysis. A radial diffusion model incorporating the dissociation and dissipation of supramolecular complexes accounts for an initial lag and subsequent efflux of glycolytic and glycogenolytic enzymes. The model includes terms representing protein crowding, myofilament lattice hindrance, and binding to the cytomatrix. Optimization algorithms returned estimates of the apparent diffusion coefficients, D(r,t), that were very low at the onset of diffusion (∼10−10 cm2 s−1) but increased with time as cytosolic protein density, which was initially high, decreased. D(r,t) at later times ranged from 2.11 × 10−7 cm2 s−1 (parvalbumin) to 0.20 × 10−7 cm2 s−1 (phosphofructose kinase), values that are 3.6- to 12.3-fold lower than those predicted in bulk water. The low initial values are consistent with the presence of complexes in situ; the higher later values are consistent with molecular sieving and transient binding of dissociated proteins. Channeling of metabolic intermediates via enzyme complexes may enhance production of adenosine triphosphate at rates beyond that possible with randomly and/or sparsely distributed enzymes, thereby matching supply with demand.  相似文献   

14.
A Novel Intein-Like Autoproteolytic Mechanism in Autotransporter Proteins   总被引:1,自引:0,他引:1  
Many virulence factors secreted by pathogenic Gram-negative bacteria are found to be members of the autotransporter protein family. These proteins share a common mechanism by which they exit the periplasm, involving the formation of a 12-stranded β-barrel domain in the outer membrane. The role of this barrel in the secretion of the N-terminal passenger domain is controversial, and no model currently explains satisfactorily the entire body of experimental data. After secretion, some autotransporter barrels autoproteolytically cleave away the passenger, and one crystal structure is known for a barrel of this type in the postcleavage state. Hbp is an autotransporter of the self-cleaving type, which cuts the polypeptide between two absolutely conserved asparagine residues buried within the barrel lumen. Mutation of the first asparagine residue to isosteric aspartic acid prevents proteolysis. Here we present the crystal structure of a truncated Hbp mutant carrying the C-terminal residues of the passenger domain attached to the barrel. This model mimics the state of the protein immediately prior to separation of the passenger and barrel domains, and shows the role of residues in the so-called “linker” between the passenger and β domains. This high-resolution membrane protein crystal structure also reveals the sites of many water molecules within the barrel. The cleavage mechanism shows similarities to those of inteins and some viral proteins, but with a novel means of promoting nucleophilic attack.  相似文献   

15.
Meiotic chromosome segregation relies on homologous chromosomes being linked by at least one crossover, the obligate crossover. Homolog pairing, synapsis and meiosis specific DNA repair mechanisms are required for crossovers but how they are coordinated to promote the obligate crossover is not well understood. PCH-2 is a highly conserved meiotic AAA+-ATPase that has been assigned a variety of functions; whether these functions reflect its conserved role has been difficult to determine. We show that PCH-2 restrains pairing, synapsis and recombination in C. elegans. Loss of pch-2 results in the acceleration of synapsis and homolog-dependent meiotic DNA repair, producing a subtle increase in meiotic defects, and suppresses pairing, synapsis and recombination defects in some mutant backgrounds. Some defects in pch-2 mutants can be suppressed by incubation at lower temperature and these defects increase in frequency in wildtype worms grown at higher temperature, suggesting that PCH-2 introduces a kinetic barrier to the formation of intermediates that support pairing, synapsis or crossover recombination. We hypothesize that this kinetic barrier contributes to quality control during meiotic prophase. Consistent with this possibility, defects in pch-2 mutants become more severe when another quality control mechanism, germline apoptosis, is abrogated or meiotic DNA repair is mildly disrupted. PCH-2 is expressed in germline nuclei immediately preceding the onset of stable homolog pairing and synapsis. Once chromosomes are synapsed, PCH-2 localizes to the SC and is removed in late pachytene, prior to SC disassembly, correlating with when homolog-dependent DNA repair mechanisms predominate in the germline. Indeed, loss of pch-2 results in premature loss of homolog access. Altogether, our data indicate that PCH-2 coordinates pairing, synapsis and recombination to promote crossover assurance. Specifically, we propose that the conserved function of PCH-2 is to destabilize pairing and/or recombination intermediates to slow their progression and ensure their fidelity during meiotic prophase.  相似文献   

16.
SulA is an Escherichia coli division inhibitor with a short half-life whose accumulation results in filamentation. Here, we show that SulA is thermally unstable and forms aggregates at elevated temperatures. This property enables the selection of isolates with mutated protein quality control systems.  相似文献   

17.
18.
以单克隆抗体药物(monoclonal antibodies,m Abs)为代表的生物制品药物销售在不断扩大,并呈现持续上升势头,m Abs的使用为疾病治疗提供了新策略。随着m Abs使用量增大,对产品质量提出了更高要求,随着宿主细胞表达m Abs水平的不断提高,宿主细胞蛋白(host cell proteins,HCP)含量也随之增加,上下游生产工艺面临不断挑战。HCP所含蛋白质异常复杂,虽然一些HCP可能会被降解,但残留HCP仍会引起药物临床使用中的不良反应,从而影响药物的安全性和有效性。酶联免疫吸附试验(enzyme-linked immunesorbent assays,ELISAs)是目前HCP检测的重要方法之一,ELISAs可以定量检测药物中总HCP含量,但存在局限性。对正在开发的包括LC-MS/MS在内的多种分析方法进行HCP检测,将为药物工艺过程开发和验证提供更多依据。讨论了以CHO(Chinese hamster ovary,中国仓鼠卵巢)细胞系为宿主的m Abs生产中,HCP的质量控制及检测分析方法的研究进展。  相似文献   

19.
The influence of thermal stress on the association between human erythrocyte membranes and cytosolic proteins was studied by exposing erythrocyte suspensions and whole blood to different elevated temperatures. Membranes and cytosolic proteins from unheated and heat-stressed erythrocytes were analyzed by electrophoresis, followed by mass spectrometric identification. Four major (carbonic anhydrase I, carbonic anhydrase II, peroxiredoxin VI, flavin reductase) and some minor (heat shock protein 90α, heat shock protein 70, α-enolase, peptidylprolyl cistrans isomerase A) cytosolic proteins were found to be associated with the erythrocyte membrane in response to in vitro thermal stress. Unlike the above proteins, catalase and peroxiredoxin II were associated with membranes from unheated erythrocytes, and their content increased in the membrane following heat stress. The heat-induced association of cytosolic proteins was restricted to the Triton shells (membrane skeleton/cytoskeleton). Similar results were observed when Triton shells derived from unheated erythrocyte membranes were incubated with an unheated erythrocyte cytosolic fraction at elevated temperatures. This is a first report on the association of cytosolic catalase, α-enolase, peroxiredoxin VI, peroxiredoxin II and peptidylprolyl cistrans isomerase A to the membrane or membrane skeleton of erythrocytes under heat stress. From these results, it is concluded that specific cytosolic proteins are translocated to the membrane in human erythrocytes exposed to heat stress and they may play a novel role as erythrocyte membrane protectors under stress by stabilizing the membrane skeleton through their interactions with skeletal proteins.  相似文献   

20.
G protein-coupled receptors (GPCRs) have critical roles in various physiological and pathophysiological processes, and more than 40% of marketed drugs target GPCRs. Although the canonical downstream target of an agonist-activated GPCR is a G protein heterotrimer; there is a growing body of evidence suggesting that other signaling molecules interact, directly or indirectly, with GPCRs. However, due to the low abundance in the intact cell system and poor solubility of GPCRs, identification of these GPCR-interacting molecules remains challenging. Here, we establish a strategy to overcome these difficulties by using high-density lipoprotein (HDL) particles. We used the β2-adrenergic receptor (β2AR), a GPCR involved in regulating cardiovascular physiology, as a model system. We reconstituted purified β2AR in HDL particles, to mimic the plasma membrane environment, and used the reconstituted receptor as bait to pull-down binding partners from rat heart cytosol. A total of 293 proteins were identified in the full agonist-activated β2AR pull-down, 242 proteins in the inverse agonist-activated β2AR pull-down, and 210 proteins were commonly identified in both pull-downs. A small subset of the β2AR-interacting proteins isolated was confirmed by Western blot; three known β2AR-interacting proteins (Gsα, NHERF-2, and Grb2) and 3 newly identified known β2AR-interacting proteins (AMPKα, acetyl-CoA carboxylase, and UBC-13). Profiling of the identified proteins showed a clear bias toward intracellular signal transduction pathways, which is consistent with the role of β2AR as a cell signaling molecule. This study suggests that HDL particle-reconstituted GPCRs can provide an effective platform method for the identification of GPCR binding partners coupled with a mass spectrometry-based proteomic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号