首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
The purpose of the present study was to investigate the inhibition of Vibrio by Roseobacter in a combined liquid-surface system. Exposure of Vibrio anguillarum to surface-attached roseobacters (107 CFU/cm2) resulted in significant reduction or complete killing of the pathogen inoculated at 102 to 104 CFU/ml. The effect was likely associated with the production of tropodithietic acid (TDA), as a TDA-negative mutant did not affect survival or growth of V. anguillarum.Antagonistic interactions among marine bacteria are well documented, and secretion of antagonistic compounds is common among bacteria that colonize particles or surfaces (8, 13, 16, 21, 31). These marine bacteria may be interesting as sources for new antimicrobial drugs or as probiotic bacteria for aquaculture.Aquaculture is a rapidly growing sector, but outbreaks of bacterial diseases are a limiting factor and pose a threat, especially to young fish and invertebrates that cannot be vaccinated. Because regular or prophylactic administration of antibiotics must be avoided, probiotic bacteria are considered an alternative (9, 18, 34, 38, 39, 40). Several microorganisms have been able to reduce bacterial diseases in challenge trials with fish or fish larvae (14, 24, 25, 27, 33, 37, 39, 40). One example is Phaeobacter strain 27-4 (17), which inhibits Vibrio anguillarum and reduces mortality in turbot larvae (27). The antagonism of Phaeobacter 27-4 and the closely related Phaeobacter inhibens is due mainly to the sulfur-containing tropolone derivative tropodithietic acid (TDA) (2, 5), which is also produced by other Phaeobacter strains and Ruegeria mobilis (28). Phaeobacter and Ruegeria strains or their DNA has been commonly found in marine larva-rearing sites (6, 17, 28).Phaeobacter and Ruegeria (Alphaproteobacteria, Roseobacter clade) are efficient surface colonizers (7, 11, 31, 36). They are abundant in coastal and eutrophic zones and are often associated with algae (3, 7, 41). Surface-attached Phaeobacter bacteria may play an important role in determining the species composition of an emerging biofilm, as even low densities of attached Phaeobacter strain SK2.10 bacteria can prevent other marine organisms from colonizing solid surfaces (30, 32).In continuation of the previous research on roseobacters as aquaculture probiotics, the purpose of this study was to determine the antagonistic potential of Phaeobacter and Ruegeria against Vibrio anguillarum in liquid systems that mimic a larva-rearing environment. Since production of TDA in liquid marine broth appears to be highest when roseobacters form an air-liquid biofilm (5), we addressed whether they could be applied as biofilms on solid surfaces.  相似文献   

3.
The effects of nitrite and ammonium on cultivated methanotrophic bacteria were investigated. Methylomicrobium album ATCC 33003 outcompeted Methylocystis sp. strain ATCC 49242 in cultures with high nitrite levels, whereas cultures with high ammonium levels allowed Methylocystis sp. to compete more easily. M. album pure cultures and cocultures consumed nitrite and produced nitrous oxide, suggesting a connection between denitrification and nitrite tolerance.The application of ammonium-based fertilizers has been shown to immediately reduce the uptake of methane in a number of diverse ecological systems (3, 5, 7, 8, 11-13, 16, 27, 28), due likely to competitive inhibition of methane monooxygenase enzymes by ammonia and production of nitrite (1). Longer-term inhibition of methane uptake by ammonium has been attributed to changes in methanotrophic community composition, often favoring activity and/or growth of type I Gammaproteobacteria methanotrophs (i.e., Gammaproteobacteria methane-oxidizing bacteria [gamma-MOB]) over type II Alphaproteobacteria methanotrophs (alpha-MOB) (19-23, 25, 26, 30). It has been argued previously that gamma-MOB likely thrive in the presence of high N loads because they rapidly assimilate N and synthesize ribosomes whereas alpha-MOB thrive best under conditions of N limitation and low oxygen levels (10, 21, 23).Findings from studies with rice paddies indicate that N fertilization stimulates methane oxidation through ammonium acting as a nutrient, not as an inhibitor (2). Therefore, the actual effect of ammonium on growth and activity of methanotrophs depends largely on how much ammonia-N is used for assimilation versus cometabolism. Many methanotrophs can also oxidize ammonia into nitrite via hydroxylamine (24, 29). Nitrite was shown previously to inhibit methane consumption by cultivated methanotrophs and by organisms in soils through an uncharacterized mechanism (9, 17, 24), although nitrite inhibits purified formate dehydrogenase from Methylosinus trichosporium OB3b (15). Together, the data from these studies show that ammonium and nitrite have significant effects on methanotroph activity and community composition and reveal the complexity of ammonia as both a nutrient and a competitive inhibitor. The present study demonstrates the differential influences of high ammonium or nitrite loads on the competitive fitness of a gamma-MOB versus an alpha-MOB strain.  相似文献   

4.
The envelope (Env) glycoproteins of HIV and other lentiviruses possess neutralization and other protective epitopes, yet all attempts to induce protective immunity using Env as the only immunogen have either failed or afforded minimal levels of protection. In a novel prime-boost approach, specific-pathogen-free cats were primed with a plasmid expressing Env of feline immunodeficiency virus (FIV) and feline granulocyte-macrophage colony-stimulating factor and then boosted with their own T lymphocytes transduced ex vivo to produce the same Env and interleukin 15 (3 × 106 to 10 × 106 viable cells/cat). After the boost, the vaccinees developed elevated immune responses, including virus-neutralizing antibodies (NA). Challenge with an ex vivo preparation of FIV readily infected all eight control cats (four mock vaccinated and four naïve) and produced a marked decline in the proportion of peripheral CD4 T cells. In contrast, five of seven vaccinees showed little or no traces of infection, and the remaining two had reduced viral loads and underwent no changes in proportions of CD4 T cells. Interestingly, the viral loads of the vaccinees were inversely correlated to the titers of NA. The findings support the concept that Env is a valuable immunogen but needs to be administered in a way that permits the expression of its full protective potential.Despite years of intense research, a truly protective AIDS vaccine is far away. Suboptimal immunogenicity, inadequate antigen presentation, and inappropriate immune system activation are believed to have contributed to these disappointing results. However, several lines of evidence suggest that the control or prevention of infection is possible. For example, despite repeated exposures, some individuals escape infection or delay disease progression after being infected (1, 14, 15). Furthermore, passively infused neutralizing antibodies (NA) (28, 42, 51) or endogenously expressed NA derivatives (29) have been shown to provide protection against intravenous simian immunodeficiency virus challenge. On the other hand, data from several vaccine experiments suggest that cellular immunity is an important factor for protection (6, 32). Therefore, while immune protection against human immunodeficiency virus (HIV) and other lentiviruses appears feasible, the strategies for eliciting it remain elusive.Because of its crucial role in viral replication and infectivity, the HIV envelope (Env) is an attractive immunogen and has been included in nearly all vaccine formulations tested so far (28, 30, 31). Env surface (SU) and transmembrane glycoproteins (gp) are actively targeted by the immune system (9, 10, 47), and Env-specific antibodies and cytotoxic T lymphocytes (CTLs) are produced early in infection. The appearance of these effectors also coincides with the decline of viremia during the acute phase of infection (30, 32). Individuals who control HIV infection in the absence of antiretroviral therapy have Env-specific NA and CTL responses that are effective against a wide spectrum of viral strains (14, 23, 35, 52, 60). At least some of the potentially protective epitopes in Env appear to interact with the cellular receptors during viral entry and are therefore highly conserved among isolates (31, 33, 39, 63). However, these epitopes have complex secondary and tertiary structures and are only transiently exposed by the structural changes that occur during the interaction between Env and its receptors (10, 11, 28). As a consequence, these epitopes are usually concealed from the immune system, and this may explain, at least in part, why Env-based vaccines have failed to show protective efficacy. Indeed, data from previous studies suggested that protection may be most effectively triggered by nascent viral proteins (22, 28, 30, 48, 62).We have conducted a proof-of-concept study to evaluate whether presenting Env to the immune system in a manner as close as possible to what occurs in the context of a natural infection may confer some protective advantage. The study was carried out with feline immunodeficiency virus (FIV), a lentivirus similar to HIV that establishes persistent infections and causes an AIDS-like disease in domestic cats. As far as it is understood, FIV evades immune surveillance through mechanisms similar to those exploited by HIV, and attempts to develop an effective FIV vaccine have met with difficulties similar to those encountered with AIDS vaccines (25, 37, 66). In particular, attempts to use FIV Env as a protective immunogen have repeatedly failed (13, 38, 58). Here we report the result of one experiment in which specific-pathogen-free (SPF) cats primed with a DNA immunogen encoding FIV Env and feline granulocyte-macrophage colony-stimulating factor (GM-CSF) and boosted with viable, autologous T lymphocytes ex vivo that were transduced to express Env and feline interleukin 15 (IL-15) showed a remarkable level of protection against challenge with ex vivo FIV. Consistent with recent findings indicating the importance of NA in controlling lentiviral infections (1, 59, 63), among the immunological parameters investigated, only the titers of NA correlated inversely with protection. Collectively, the findings support the notion that Env is a valuable vaccine immunogen but needs to be administered in a way that permits the expression of its full protective potential.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Cryptosporidium parvum oocysts, which are spread by the fecal-oral route, have a single, multilayered wall that surrounds four sporozoites, the invasive form. The C. parvum oocyst wall is labeled by the Maclura pomifera agglutinin (MPA), which binds GalNAc, and the C. parvum wall contains at least two unique proteins (Cryptosporidium oocyst wall protein 1 [COWP1] and COWP8) identified by monoclonal antibodies. C. parvum sporozoites have on their surface multiple mucin-like glycoproteins with Ser- and Thr-rich repeats (e.g., gp40 and gp900). Here we used ruthenium red staining and electron microscopy to demonstrate fibrils, which appear to attach or tether sporozoites to the inner surface of the C. parvum oocyst wall. When disconnected from the sporozoites, some of these fibrillar tethers appear to collapse into globules on the inner surface of oocyst walls. The most abundant proteins of purified oocyst walls, which are missing the tethers and outer veil, were COWP1, COWP6, and COWP8, while COWP2, COWP3, and COWP4 were present in trace amounts. In contrast, MPA affinity-purified glycoproteins from C. parvum oocysts, which are composed of walls and sporozoites, included previously identified mucin-like glycoproteins, a GalNAc-binding lectin, a Ser protease inhibitor, and several novel glycoproteins (C. parvum MPA affinity-purified glycoprotein 1 [CpMPA1] to CpMPA4). By immunoelectron microscopy (immuno-EM), we localized mucin-like glycoproteins (gp40 and gp900) to the ruthenium red-stained fibrils on the inner surface wall of oocysts, while antibodies to the O-linked GalNAc on glycoproteins were localized to the globules. These results suggest that mucin-like glycoproteins, which are associated with the sporozoite surface, may contribute to fibrils and/or globules that tether sporozoites to the inner surface of oocyst walls.Cryptosporidium parvum and the related species Cryptosporidium hominis are apicomplexan parasites, which are spread by the fecal-oral route in contaminated water and cause diarrhea, particularly in immunocompromised hosts (1, 12, 39, 47). The infectious and diagnostic form of C. parvum is the oocyst, which has a single, multilayered, spherical wall that surrounds four sporozoites, the invasive forms (14, 27, 31). The outermost layer of the C. parvum oocyst wall is most often absent from electron micrographs, as it is labile to bleach used to remove contaminating bacteria from C. parvum oocysts (27). We will refer to this layer as the outer veil, which is the term used for a structure with an identical appearance on the surface of the oocyst wall of another apicomplexan parasite, Toxoplasma gondii (10). At the center of the C. parvum oocyst wall is a protease-resistant and rigid bilayer that contains GalNAc (5, 23, 43). When excysting sporozoites break through the oocyst wall, the broken edges of this bilayer curl in, while the overall shape of the oocyst wall remains spherical.The inner, moderately electron-dense layer of the C. parvum oocyst wall is where the Cryptosporidium oocyst wall proteins (Cryptosporidium oocyst wall protein 1 [COWP1] and COWP8) have been localized with monoclonal antibodies (4, 20, 28, 32). COWPs, which have homologues in Toxoplasma, are a family of nine proteins that contain polymorphic Cys-rich and His-rich repeats (37, 46). Finally, on the inner surface of C. parvum oocyst walls are knob-like structures, which cross-react with an anti-oocyst monoclonal antibody (11).Like other apicomplexa (e.g., Toxoplasma and Plasmodium), sporozoites of C. parvum are slender, move by gliding motility, and release adhesins from apical organelles when they invade host epithelial cells (1, 8, 12, 39). Unlike other apicomplexa, C. parvum parasites are missing a chloroplast-derived organelle called the apicoplast (1, 47, 49). C. parvum sporozoites have on their surface unique mucin-like glycoproteins, which contain Ser- and Thr-rich repeats that are polymorphic and may be modified by O-linked GalNAc (4-7, 21, 25, 26, 30, 32, 34, 35, 43, 45). These C. parvum mucins, which are highly immunogenic and are potentially important vaccine candidates, include gp900 and gp40/gp15 (4, 6, 7, 25, 26). gp40/gp15 is cleaved by furin-like proteases into two peptides (gp40 and gp15), each of which is antigenic (42). gp900, gp40, and gp15 are shed from the surface of the C. parvum sporozoites during gliding motility (4, 7, 35).The studies presented here began with electron microscopic observations of C. parvum oocysts stained with ruthenium red (23), which revealed novel fibrils or tethers that extend radially from the inner surface of the oocyst wall to the outer surface of sporozoites. We hypothesized that at least some of these fibrillar tethers might be the antigenic mucins, which are abundant on the surface of C. parvum sporozoites. To test this hypothesis, we used mass spectroscopy to identify oocyst wall proteins and sporozoite glycoproteins and used deconvolving and immunoelectron microscopy (immuno-EM) with lectins and anti-C. parvum antibodies to directly label the tethers.  相似文献   

15.
Here, we report a fluorescence in situ hybridization (FISH) method for rapid detection of Cronobacter strains in powdered infant formula (PIF) using a novel peptide nucleic acid (PNA) probe. Laboratory tests with several Enterobacteriaceae species showed that the specificity and sensitivity of the method were 100%. FISH using PNA could detect as few as 1 CFU per 10 g of Cronobacter in PIF after an 8-h enrichment step, even in a mixed population containing bacterial contaminants.Cronobacter strains were originally described as Enterobacter sakazakii (12), but they are now known to comprise a novel genus consisting of six separate genomospecies (20, 21). These opportunistic pathogens are ubiquitous in the environment and various types of food and are occasionally found in the normal human flora (11, 12, 16, 32, 47). Based on case reports, Cronobacter infections in adults are generally less severe than Cronobacter infections in newborn infants, with which a high fatality rate is associated (24).The ability to detect Cronobacter and trace possible sources of infection is essential as a means of limiting the impact of these organisms on neonatal health and maintaining consumer confidence in powdered infant formula (PIF). Conventional methods, involving isolation of individual colonies followed by biochemical identification, are more time-consuming than molecular methods, and the reliability of some currently proposed culture-based methods has been questioned (28). Recently, several PCR-based techniques have been described (23, 26, 28-31, 38). These techniques are reported to be efficient even when low levels of Cronobacter cells are found in a sample (0.36 to 66 CFU/100 g). However, PCR requires DNA extraction and does not allow direct, in situ visualization of the bacterium in a sample.Fluorescence in situ hybridization (FISH) is a method that is commonly used for bacterial identification and localization in samples. This method is based on specific binding of nucleic acid probes to particular DNA or RNA target regions (1, 2). rRNA has been regarded as the most suitable target for bacterial FISH, allowing differentiation of potentially viable cells. Traditionally, FISH methods are based on the use of conventional DNA oligonucleotide probes, and a commercial system, VIT-E sakazakii (Vermicon A.G., Munich, Germany), has been developed based on this technology (25). However, a recently developed synthetic DNA analogue, peptide nucleic acid (PNA), has been shown to provide improved hybridization performance compared to DNA probes, making FISH procedures easier and more efficient (41). Taking advantage of the PNA properties, FISH using PNA has been successfully used for detection of several clinically relevant microorganisms (5, 15, 17, 27, 34-36).  相似文献   

16.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

17.
Understanding the mechanisms underlying potential altered susceptibility to human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) individuals and the later clinical consequences of breakthrough infection can provide insight into strategies to control HIV-1 with an effective vaccine. From our Seattle ES cohort, we identified one individual (LSC63) who seroconverted after over 2 years of repeated unprotected sexual contact with his HIV-1-infected partner (P63) and other sexual partners of unknown HIV-1 serostatus. The HIV-1 variants infecting LSC63 were genetically unrelated to those sequenced from P63. This may not be surprising, since viral load measurements in P63 were repeatedly below 50 copies/ml, making him an unlikely transmitter. However, broad HIV-1-specific cytotoxic T-lymphocyte (CTL) responses were detected in LSC63 before seroconversion. Compared to those detected after seroconversion, these responses were of lower magnitude and half of them targeted different regions of the viral proteome. Strong HLA-B27-restricted CTLs, which have been associated with disease control, were detected in LSC63 after but not before seroconversion. Furthermore, for the majority of the protein-coding regions of the HIV-1 variants in LSC63 (except gp41, nef, and the 3′ half of pol), the genetic distances between the infecting viruses and the viruses to which he was exposed through P63 (termed the exposed virus) were comparable to the distances between random subtype B HIV-1 sequences and the exposed viruses. These results suggest that broad preinfection immune responses were not able to prevent the acquisition of HIV-1 infection in LSC63, even though the infecting viruses were not particularly distant from the viruses that may have elicited these responses.Understanding the mechanisms of altered susceptibility or control of human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) persons may provide invaluable information aiding the design of HIV-1 vaccines and therapy (9, 14, 15, 33, 45, 57, 58). In a cohort of female commercial sex workers in Nairobi, Kenya, a small proportion of individuals remained seronegative for over 3 years despite the continued practice of unprotected sex (12, 28, 55, 56). Similarly, resistance to HIV-1 infection has been reported in homosexual men who frequently practiced unprotected sex with infected partners (1, 15, 17, 21, 61). Multiple factors have been associated with the resistance to HIV-1 infection in ES individuals (32), including host genetic factors (8, 16, 20, 37-39, 44, 46, 47, 49, 59, 63), such as certain HLA class I and II alleles (41), as well as cellular (1, 15, 26, 55, 56), humoral (25, 29), and innate immune responses (22, 35).Seroconversion in previously HIV-resistant Nairobi female commercial sex workers, despite preexisting HIV-specific cytotoxic T-lymphocyte (CTL) responses, has been reported (27). Similarly, 13 of 125 ES enrollees in our Seattle ES cohort (1, 15, 17) have become late seroconverters (H. Zhu, T. Andrus, Y. Liu, and T. Zhu, unpublished observations). Here, we analyze the virology, genetics, and immune responses of HIV-1 infection in one of the later seroconverting subjects, LSC63, who had developed broad CTL responses before seroconversion.  相似文献   

18.
19.
The bacterium Helicobacter pylori is remarkable for its ability to persist in the human stomach for decades without provoking sterilizing immunity. Since repetitive DNA can facilitate adaptive genomic flexibility via increased recombination, insertion, and deletion, we searched the genomes of two H. pylori strains for nucleotide repeats. We discovered a family of genes with extensive repetitive DNA that we have termed the H. pylori RD gene family. Each gene of this family is composed of a conserved 3′ region, a variable mid-region encoding 7 and 11 amino acid repeats, and a 5′ region containing one of two possible alleles. Analysis of five complete genome sequences and PCR genotyping of 42 H. pylori strains revealed extensive variation between strains in the number, location, and arrangement of RD genes. Furthermore, examination of multiple strains isolated from a single subject''s stomach revealed intrahost variation in repeat number and composition. Despite prior evidence that the protein products of this gene family are expressed at the bacterial cell surface, enzyme-linked immunosorbent assay and immunoblot studies revealed no consistent seroreactivity to a recombinant RD protein by H. pylori-positive hosts. The pattern of repeats uncovered in the RD gene family appears to reflect slipped-strand mispairing or domain duplication, allowing for redundancy and subsequent diversity in genotype and phenotype. This novel family of hypervariable genes with conserved, repetitive, and allelic domains may represent an important locus for understanding H. pylori persistence in its natural host.Helicobacter pylori, a gram-negative bacterium, is remarkable for its ability to persist in the human stomach for decades. Colonization with H. pylori increases risk for peptic ulcer disease and gastric adenocarcinoma (53, 70) and elicits a vigorous immune response (15). The persistence of H. pylori occurs in a niche in the human body previously considered inhospitable to microbial colonization: the acidic stomach replete with proteolytic enzymes.H. pylori strains exhibit substantial genetic diversity, including extensive variation in the presence, arrangement, order, and identity of genes (2, 4-7, 25, 51, 74). Furthermore, analyses of multiple single-colony H. pylori isolates from separate stomach biopsy specimens of individual patients have demonstrated diversity, both within hosts (27, 65), and over time (36). The mechanisms that generate H. pylori genetic diversity may be among the factors that enable persistence in this environment (3, 28).While the natural ability of H. pylori for transformation and recombination may explain some of the intra- and interhost genetic variation observed in this bacterium (43), point mutations and interspecies recombination alone are not sufficient for explaining the extent of the variation in H. pylori (14, 32). The initial genomic sequencing of H. pylori strains 26695 and J99 (6, 72) revealed large amounts of repetitive DNA (1, 59). DNA repeats in bacteria are associated with mechanisms of plasticity, such as phase variation (49, 67); slipped-strand mispairing (41, 46); and increased rates of recombination, deletion, and insertion (17, 60, 62). Because many of the recombination repair and mismatch repair mechanisms common in bacteria are absent or modified in H. pylori (28-30, 56, 76), this organism may be particularly susceptible to the diversifying effects of repetitive DNA. In fact, loci in the H. pylori genome containing repetitive DNA have been shown to exhibit extensive inter- and intrahost variation (9, 10, 28, 37).We hypothesized that identification of repetitive DNA hotspots in H. pylori would allow the recognition of genes whose variation could aid in persistence. To examine this hypothesis, we conducted in silico analyses to identify open reading frames (ORFs) enriched for DNA repeats and then used a combination of sequence analyses and immunoassays to examine the patterns associated with the specific repetitive DNA observed. Our approach led to the realization that a previously identified H. pylori-specific gene family (19, 52) exhibits extensive genetic variation at multiple levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号