首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular mechanisms governing mitotic entry during animal development are incompletely understood. Here, we show that the mitotic kinase CDK-1 phosphorylates Suppressor of Par-Two 1 (SPAT-1)/Bora to regulate its interaction with PLK-1 and to trigger mitotic entry in early Caenorhabditis elegans embryos. Embryos expressing a SPAT-1 version that is nonphosphorylatable by CDK-1 and that is defective in PLK-1 binding in vitro present delays in mitotic entry, mimicking embryos lacking SPAT-1 or PLK-1 functions. We further show that phospho–SPAT-1 activates PLK-1 by triggering phosphorylation on its activator T loop in vitro by Aurora A. Likewise, we show that phosphorylation of human Bora by Cdk1 promotes phosphorylation of human Plk1 by Aurora A, suggesting that this mechanism is conserved in humans. Our results suggest that CDK-1 activates PLK-1 via SPAT-1 phosphorylation to promote entry into mitosis. We propose the existence of a positive feedback loop that connects Cdk1 and Plk1 activation to ensure a robust control of mitotic entry and cell division timing.  相似文献   

2.
Cdk1 and Plk1/Plx1 activation leads to their inactivation through negative feedback loops. Cdk1 deactivates itself by activating the APC/C, consequently generating embryonic cell cycle oscillations. APC/C inhibition by the mitotic checkpoint in somatic cells and the cytostatic factor (CSF) in oocytes sustain the mitotic state. Plk1/Plx1 targets its co-activator Bora for degradation, but it remains unclear how embryonic oscillations in Plx1 activity are generated, and how Plk1/Plx1 activity is sustained during mitosis. We show that Plx1-mediated degradation of Bora in interphase generates oscillations in Plx1 activity and is essential for development. In CSF extracts, phosphorylation of Bora on the Cdk consensus site T52 blocks Bora degradation. Upon fertilization, Calcineurin dephosphorylates T52, triggering Plx1 oscillations. Similarly, we find that GFP-Bora is degraded when Plk1 activity spreads to somatic cell cytoplasm before mitosis. Interestingly, GFP–Bora degradation stops upon mitotic entry when Cdk1 activity is high. We hypothesize that Cdk1 controls Bora through an incoherent feedforward loop synchronizing the activities of mitotic kinases.  相似文献   

3.
The events of cell division are regulated by a complex interplay between kinases and phosphatases. Cyclin-dependent kinases (Cdks), polo-like kinases (Plks) and Aurora kinases play central roles in this process. Polo kinase (Plk1 in humans) regulates a wide range of events in mitosis and cytokinesis. To ensure the accuracy of these processes, polo activity itself is subject to complex regulation. Phosphorylation of polo in its T loop (or activation loop) increases its kinase activity several-fold. It has been shown that Aurora A kinase, with its co-factor Bora, activates Plk1 in G2, and that this is essential for recovery from cell cycle arrest induced by DNA damage. In a recent article published in PLoS Biology, we report that Drosophila polo is activated by Aurora B kinase at centromeres, and that this is crucial for polo function in regulating chromosome dynamics in prometaphase. Our results suggest that this regulatory pathway is conserved in humans. Here, we propose a model for the collaboration between Aurora B and polo in the regulation of kinetochore attachment to microtubules in early mitosis. Moreover, we suggest that Aurora B could also function to activate Polo/Plk1 in cytokinesis. Finally, we discuss recent findings and open questions regarding the activation of polo and polo-like kinases by different kinases in mitosis, cytokinesis and other processes.  相似文献   

4.
The events of cell division are regulated by a complex interplay between kinases and phosphatases. Cyclin-dependent kinases (Cdks), polo-like kinases (Plks) and Aurora kinases play central roles in this process. Polo kinase (Plk1 in humans) regulates a wide range of events in mitosis and cytokinesis. To ensure the accuracy of these processes, polo activity itself is subject to complex regulation. Phosphorylation of polo in its T loop (or activation loop) increases its kinase activity several-fold. It has been shown that Aurora A kinase, with its co-factor Bora, activates Plk1 in G2, and that this is essential for recovery from cell cycle arrest induced by DNA damage. In a recent article published in PLoS Biology, we report that Drosophila polo is activated by Aurora B kinase at centromeres, and that this is crucial for polo function in regulating chromosome dynamics in prometaphase. Our results suggest that this regulatory pathway is conserved in humans. Here, we propose a model for the collaboration between Aurora B and polo in the regulation of kinetochore attachment to microtubules in early mitosis. Moreover, we suggest that Aurora B could also function to activate Polo/Plk1 in cytokinesis. Finally, we discuss recent findings and open questions regarding the activation of polo and polo-like kinases by different kinases in mitosis, cytokinesis and other processes.  相似文献   

5.
Polo-like kinase 1 (Plk1) is an important mitotic kinase that is crucial for entry into mitosis after recovery from DNA damage-induced cell cycle arrest. Plk1 activation is promoted by the conserved protein Bora (SPAT-1 in C. elegans), which stimulates the phosphorylation of a conserved residue in the activation loop by the Aurora A kinase. In a recent article published in Cell Reports, we show that the master mitotic kinase Cdk1 contributes to Plk1 activation through SPAT-1/Bora phosphorylation. We identified 3 conserved Sp/Tp residues that are located in the N-terminal, most conserved part, of SPAT-1/Bora. Phosphorylation of these sites by Cdk1 is essential for Plk1 function in mitotic entry in C. elegans embryos and during DNA damage checkpoint recovery in mammalian cells. Here, using an untargeted Förster Resonance Energy Transfer (FRET) biosensor to monitor Plk1 activation, we provide additional experimental evidence supporting the importance of these phosphorylation sites for Plk1 activation and subsequent mitotic entry after DNA damage. We also briefly discuss the mechanism of Plk1 activation and the potential role of Bora phosphorylation by Cdk1 in this process. As Plk1 is overexpressed in cancer cells and this correlates with poor prognosis, understanding how Bora contributes to Plk1 activation is paramount for the development of innovative therapeutical approaches.  相似文献   

6.
The IκB kinase (IKK) complex controls processes such as inflammation, immune responses, cell survival and the proliferation of both normal and tumor cells. By activating NFκB, the IKK complex contributes to G1/S transition and first evidence has been presented that IKKα also regulates entry into mitosis. At what stage IKK is required and whether IKK also contributes to progression through mitosis and cytokinesis, however, has not yet been determined. In this study, we use BMS-345541, a potent allosteric small molecule inhibitor of IKK, to inhibit IKK specifically during G2 and during mitosis. We show that BMS-345541 affects several mitotic cell-cycle transitions, including mitotic entry, prometaphase to anaphase progression and cytokinesis. Adding BMS-345541 to the cells released from arrest in S-phase blocked the activation of aurora A, B and C, Cdk1 activation and histone H3 phosphorylation. Additionally, treatment of the mitotic cells with BMS-345541 resulted in precocious cyclin B1 and securin degradation, defective chromosome separation and improper cytokinesis. BMS-345541 was also found to override the spindle checkpoint in nocodazole-arrested cells. In vitro kinase assays using BMS-345541 indicate that these effects are not primarily due to a direct inhibitory effect of BMS-345541 on mitotic kinases such as Cdk1, Aurora A or B, Plk1 or NEK2. This study points towards a new potential role of IKK in cell cycle progression. Since deregulation of the cell-cycle is one of the hallmarks of tumor formation and progression, the newly discovered level of BMS 345541 function could be useful for cell-cycle control studies and may provide valuable clues for the design of future therapeutics.  相似文献   

7.
The E3 ubiquitin-protein ligase Chfr is a mitotic stress checkpoint protein that delays mitotic entry in response to microtubule damage; however, the molecular mechanism by which Chfr accomplishes this remains elusive. Here, we show that Chfr levels are elevated in response to microtubule-damaging stress. Moreover, G2/M transition is associated with cell cycle-dependent turnover of Chfr accompanied by high autoubiquitylation activity, suggesting that regulation of Chfr levels and auto-ubiquitylation activity are functionally significant. To test this, we generated Chfr mutants Chfr-K2A and Chfr-K5A in which putative lysine target sites of auto-ubiquitylation were replaced with alanine. Chfr-K2A did not undergo cell cycle-dependent degradation, and its levels remained high during G2/M phase. The elevated levels of Chfr-K2A caused a significant reduction in phosphohistone H3 levels and cyclinB1/Cdk1 kinase activities, leading to mitotic entry delay. Notably, polo-like kinase 1 levels at G2 phase, but not at S phase, were ∼2–3-fold lower in cells expressing Chfr-K2A than in wild-type Chfr-expressing cells. Consistent with this, ubiquitylation of Plk1 at G2 phase was accelerated in Chfr-K2A-expressing cells. In contrast, Aurora A levels remained constant, indicating that Plk1 is a major target of Chfr in controlling the timing of mitotic entry. Indeed, overexpression of Plk1 in Chfr-K2A-expressing cells restored cyclin B1/Cdk1 kinase activity and promoted mitotic entry. Collectively, these data indicate that Chfr auto-ubiquitylation is required to allow Plk1 to accumulate to levels necessary for activation of cyclin B1/Cdk1 kinase and mitotic entry. Our results provide the first evidence that Chfr auto-ubiquitylation and degradation are important for the G2/M transition.  相似文献   

8.
During mitotic entry, the centrosomes provide a scaffold for initial activation of the CyclinB/Cdk1 complex, the mitotic kinase Aurora A, and the Aurora A-activating kinase p21-activated kinase (PAK). The activation of PAK at the centrosomes is yet regarded to happen independently of the Rho-GTPases Rac/Cdc42. In this study, Rac1 (but not RhoA or Cdc42) is presented to associate with the centrosomes from early G2 phase until prometaphase in a cell cycle-dependent fashion, as evidenced by western blot analysis of prepared centrosomes and by immunolabeling. PAK associates with the G2/M-phase centrosomes in a Rac1-dependent fashion. Furthermore, specific inhibition of Rac1 by C. difficile toxinB-catalyzed glucosylation or by knockout results in inhibited activation of PAK1/2, Aurora A, and the CyclinB/Cdk1 complex in late G2 phase/prophase and delayed mitotic entry. Inhibition of PAK activation at late G2-phase centrosomes caused by Rac1 inactivation coincides with impeded activation of Aurora A and the CyclinB/Cdk1 complex and delayed mitotic entry.  相似文献   

9.
Coordination of cell growth and proliferation in response to nutrient supply is mediated by mammalian target of rapamycin (mTOR) signaling. In this study, we report that Mio, a highly conserved member of the SEACAT/GATOR2 complex necessary for the activation of mTORC1 kinase, plays a critical role in mitotic spindle formation and subsequent chromosome segregation by regulating the proper concentration of active key mitotic kinases Plk1 and Aurora A at centrosomes and spindle poles. Mio-depleted cells showed reduced activation of Plk1 and Aurora A kinase at spindle poles and an impaired localization of MCAK and HURP, two key regulators of mitotic spindle formation and known substrates of Aurora A kinase, resulting in spindle assembly and cytokinesis defects. Our results indicate that a major function of Mio in mitosis is to regulate the activation/deactivation of Plk1 and Aurora A, possibly by linking them to mTOR signaling in a pathway to promote faithful mitotic progression.  相似文献   

10.
Cytokinesis of animal cells requires ingression of the actomyosin-based contractile ring between segregated sister genomes. Localization of the RhoGEF Ect2 to the central spindle at anaphase promotes local activation of the RhoA GTPase, which induces assembly and ingression of the contractile ring. Here we have used BI 2536, an inhibitor of the mitotic kinase Plk1, to analyze the functions of this enzyme during late mitosis in human cells. We show that Plk1 acts after Cdk1 inactivation and independently from Aurora B to promote RhoA accumulation at the equator, contractile ring formation, and cleavage furrow ingression. Inhibition of Plk1 abolishes the interaction of Ect2 with its activator and midzone anchor, HsCyk-4, thereby preventing localization of Ect2 to the central spindle. We propose that late mitotic Plk1 activity promotes recruitment of Ect2 to the central spindle, triggering the initiation of cytokinesis and contributing to cleavage plane specification in human cells.  相似文献   

11.
Mitosis is orchestrated by several protein kinases including Cdks, Plks and Aurora kinases. Despite considerable progress toward understanding the individual function of these protein kinases, how their activity is coordinated in space and time during mitosis is less well understood. In a recent article published in the Journal of Cell Biology, we show that CDK-1 regulates PLK-1 activity during mitosis in C. elegans embryos through multisite phosphorylation of the PLK-1 activator SPAT-1 (Aurora Borealis, Bora in human). SPAT-1 variants mutated on CDK-1 phosphorylation sites results in severe delays in mitotic entry, mimicking embryos lacking spat-1 or plk-1 function. We further show that SPAT-1 phosphorylation by CDK-1 promotes its binding to PLK-1 and stimulates PLK-1 phosphorylation on its activator T-loop by Aurora A kinase in vitro. Likewise, we find that phosphorylation of Bora by Cdk1 promotes phosphorylation of human Plk1 by Aurora A suggesting that this mechanism is conserved in humans. These results indicate that Cdk1 regulates Plk1 by boosting its kinase activity. Here we discuss these recent findings and open questions regarding the regulation of Plk1/PLK-1 by Cdk1/CDK-1 and Bora/SPAT-1.  相似文献   

12.
Polo-like kinase 1 (Plk1) is essential for checkpoint recovery and the activation of key mitotic enzymes; however, its own activation mechanism has remained elusive. Recent findings show that Bora, a G(2)-M expressed protein, facilitates Plk1 activation by the oncogenic kinase Aurora A in G(2). During mitosis, Plk1-dependent Bora degradation promotes Aurora A localization to the centrosome and/or spindle. Bora-dependent regulation provides important new insights into interactions between key mitotic kinases.  相似文献   

13.
Entry into mitosis requires the activation of mitotic kinases, including Aurora A and Polo-like kinase 1 (Plk1). Increased levels of these kinases are frequently found associated with human cancers, and therefore it is imperative to understand the processes leading to their activation. We demonstrate that TPX2, but neither Ajuba nor Inhibitor-2, can activate Aurora A directly. Moreover, Plx1 can induce Aurora A T-loop phosphorylation indirectly in vivo during oocyte maturation. We identify Ser204 in TPX2 as a Plx1 phosphorylation site. Mutating Ser204 to alanine decreases activation of Aurora A, whereas a phosphomimetic Asp mutant exhibits enhanced activating ability. Finally, we show that phosphorylation of TPX2 with Plx1 increases its ability to activate Aurora A. Taken together, our data indicate that Plx1 promotes activation of Aurora A, most likely through TPX2. In light of the current literature, we propose a model in which Plx1 and Aurora A activate each other in a positive feedback loop.  相似文献   

14.
Polo and Aurora kinases: lessons derived from chemical biology   总被引:2,自引:0,他引:2  
During the cell division cycle, mitotic entry, spindle assembly, chromosome segregation, and cytokinesis must all be carefully coordinated to ensure that the two daughter cells inherit all the genetic material required for further growth and development. Central to this coordination are several protein kinases including Aurora A, Aurora B, and the Polo-like kinase, Plk1. A number of small-molecule Aurora and Plk1 inhibitors have been developed because these kinases are seen as attractive anticancer drug targets. These inhibitors are now being widely used as chemical biology tools to understand how these kinases ensure faithful genome transmission.  相似文献   

15.
Recovery from DNA damage is critical for cell survival. However, serious damage cannot be repaired, leading to cell death for prevention of abnormal cell growth. Previously, we demonstrated that 4N-DNA accumulates via the initiation of an abnormal interphase without cytokinesis and that re-replication occurs during a prolonged recovery period in the presence of severe DNA damage in mitotic cells. Mitotic phosphorylated Plk1 is typically degraded during mitotic exit. However, Plk1 has unusually found to be dephosphorylated in mitotic slippage without cytokinesis during recovery from mitotic DNA damage. Here, we investigated how Plk1 dephosphorylation is established during recovery from mitotic DNA damage. Mitotic DNA damage activated ATM and Chk1/2 and repressed Cdk1 and Greatwall protein kinase, followed by PP2A activation through the dissociation of ENSA and PP2A-B55. Interaction between Plk1 and PP2A-B55α or PP2A-B55δ was strongly induced during recovery from mitotic DNA damage. Moreover, the depletion of PP2A-B55α and/or PP2A-B55δ by siRNA transfection led to the recovery of Plk1 phosphorylation and progression of the cell cycle into the G1 phase. Therefore, to adapt to severe DNA damage, the activated Greatwall/ENSA signaling pathway was repressed by ATM/Chk1/2, even in mitotic cells. Activation of the PP2A-B55 holoenzyme complex induced the dephosphorylation of Plk1 and Cdk1, and finally, mitotic slippage occurred without normal chromosome segregation and cytokinesis.  相似文献   

16.
Present in organisms ranging from yeast to man, homologues of the Drosophila Polo kinase control multiple stages of cell division. At the onset of mitosis, Polo-like kinases (Plks) function in centrosome maturation and bipolar spindle formation, and they contribute to the activation of cyclin-dependent kinase (Cdk)1—cyclin B. Subsequently, they are required for the inactivation of Cdk1 and exit from mitosis. In the absence of Plk function, mitotic cyclins fail to be destroyed, indicating that Plks are important regulators of the anaphase-promoting complex/cyclosome (APC/C), a key component of the ubiquitin-dependent proteolytic degradation pathway. Finally, recent evidence implicates Plks in the temporal and spatial coordination of cytokinesis.  相似文献   

17.
18.
Spatial and temporal coordination of polo-like kinase 1 (Plk1) activity is necessary for mitosis and cytokinesis, and this is achieved through binding to phosphorylated docking proteins with distinct subcellular localizations. Although cyclin-dependent kinase 1 (Cdk1) creates these phosphorylated docking sites in metaphase, a general principle that explains how Plk1 activity is controlled in anaphase after Cdk1 inactivation is lacking. Here, we show that the microtubule-associated protein regulating cytokinesis (PRC1) is an anaphase-specific binding partner for Plk1, and that this interaction is required for cytokinesis. In anaphase, Plk1 creates its own docking site on PRC1, whereas in metaphase Cdk1 phosphorylates PRC1 adjacent to this docking site and thereby prevents binding of Plk1. Mutation of these Cdk1-sites results in a form of PRC1 that prematurely recruits Plk1 to the spindle during prometaphase and blocks mitotic progression. The activation state of Cdk1, therefore, controls the switch of Plk1 localization from centrosomes and kinetochores during metaphase, to the central spindle during anaphase.  相似文献   

19.
The irreversible nature of mitotic entry is due to the activation of mitosis specific kinases such as cdk1/cyclin B. Cdk1/cyclin B induces activation of mitosis by promoting phosphatases while suppressing inhibitory factors such as the tyrosine kinase wee1. Since wee1 keeps cdk1/cyclin B inactive during the S and G2 phases, its activity must be down-regulated for mitotic progression to occur. One mechanism of suppressing wee1 activity is ubiquitin-dependent proteolysis. Cdk1/cyclin B1 phosphorylates wee1, targeting it for recognition by ubiquitin ligases and subsequent proteasomal degradation. One of the ubiquitin ligases promoting wee1 destruction during mitosis is the SCFβ-trcp complex. We demonstrate that this complex, and a second SCF complex containing the F-box protein Tome-1, regulate wee1 degradation during the S and G2 phases of the cell cycle. Therefore, redundant ubiquitin ligase activities promote efficient mitotic entry of eukaryotic cells.  相似文献   

20.
The coordination between late mitotic events such as poleward chromosome motion, spindle elongation, DNA decondensation, and nuclear envelope reformation (NER) is crucial for the completion of chromosome segregation at the anaphase-telophase transition. Mitotic exit is driven by a decrease of Cdk1 kinase activity and an increase of PP1/PP2A phosphatase activities. More recently, Aurora kinases have also emerged as master regulators of late mitotic events and cytokinesis. Aurora A is mainly associated with spindle poles throughout mitosis and midbody during telophase, whereas Aurora B re-localizes from centromeres in early mitosis to the spindle midzone and midbody as cells progress from anaphase to the completion of cytokinesis. Functional studies, together with the identification of a phosphorylation gradient during anaphase, established Aurora B as a major player in the organization of the spindle midzone and in the spatiotemporal coordination between chromosome segregation and NER. Aurora A has been less explored, but a cooperative role in spindle midzone stability has also been proposed, implying that both Aurora A and B contribute to accurate chromosome segregation during mitotic exit. Here, we review the roles of the Aurora kinases in the regulation of late mitotic events and discuss how they work together with other mitotic players to ensure an error-free mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号